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Abstract

Mice in which lung epithelial cells can be induced to express an oncogenic KrasG12D develop 

lung adenocarcinomas in a manner analogous to humans. A myriad of genetic changes accompany 

lung adenocarcinomas, many of which are poorly understood. To get a comprehensive 

understanding of both the transcriptional and post-transcriptional changes that accompany lung 

adenocarcinomas, we took an omics approach in profiling both the coding genes and the non-

coding small RNAs in an induced mouse model of lung adenocarcinoma. RNAseq transcriptome 

analysis of KrasG12D tumors from F1 hybrid mice revealed features specific to tumor samples. 

This includes the repression of a network of GTPase related genes (Prkg1, Gnao1 and Rgs9) in 

tumor samples and an enrichment of Apobec1-mediated cytosine to uridine RNA editing. 

Furthermore, analysis of known SNPs revealed not only a change in expression of Cd22 but also 

that its expression became allele-specific in tumors. The most salient finding however, came from 

small RNA sequencing of the tumor samples, which revealed that a cluster of ~53 microRNAs and 

mRNAs at the Dlk1-Dio3 locus on mouse chromosome 12qF1 was dramatically and consistently 

increased in tumors. Activation of this locus occurred specifically in sorted tumor-originating 

cancer cells. Interestingly, the 12qF1 RNAs were repressed in cultured KrasG12D tumor cells but 

reactivated when transplanted in vivo. These microRNAs have been implicated in stem cell 

pleuripotency and proteins targeted by these microRNAs are involved in key pathways in cancer 

as well as embryogenesis. Taken together our results strongly imply that these microRNAs 

represent key targets in unraveling the mechanism of lung oncogenesis.
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Introduction

Lung cancer is the leading cause of cancer-related mortality in both men and women 

worldwide. Lung cancer subtypes include small cell lung cancer (SCLC) and non-small cell 

lung cancer (NSCLC), which is subdivided into adenocarcinoma, squamous cell carcinoma 

and large cell carcinoma. Adenocarcinomas represent approximately 30% of all lung tumors. 

Each of these subtypes has different prognosis, disease signature and risk factors (e.g. 

smoking).

The role that KRAS plays during development, organ homeostasis and in the development 

of lung cancer has been extensively studied, leading to an understanding of its role in 

uncontrolled tumor growth, angiogenesis and inhibition of apoptosis.1 KRAS is a GTP 

binding protein that is localized to the inner face of the plasma membrane. Guanine 

nucleotide exchange factors activate KRAS and enable cell growth and survival through 

downstream signaling pathways.2, 3 KRAS is inactivated by GTPase activating proteins; 

however, many point mutations identified in KRAS prevent this GTP hydrolysis and thus 

maintain a constitutively active KRAS4 KRAS mutations are very frequent in lung 

adenocarcinoma, occurring in approximately 25% of tumors5, 6 Among KRAS mutations, 

variants at amino acid 12 represent 90 percent of the cases and a mouse bearing a 

conditional KrasG12D mutation has been generated to study the effects of this mutation on 

cancer initiation.5, 7, 8

The decreased cost of sequencing technologies has sparked an interest in identifying the 

genetic changes that occur during tumor progression. Targeted re-sequencing9 in addition to 

whole exome and whole transcriptome studies10, 11 of tumor biopsies have provided several 

new candidate mutations. The analysis of the effect of additional somatic mutations and 

gene expression changes in mouse models of human tumors have complemented existing 

mutation data and provide a genetic framework for understanding tumor development. 

Additionally, genomic sequencing of several mouse strains has revealed several coding 

SNPs that can be used to identify parent of origin expression from F1 offspring from hybrid 

mouse strain crosses. Large scale non-coding RNA profiling studies have also identified 

microRNAs involved in oncogenesis including the miR-17 to miR-92 cluster of six 

microRNAs that are upregulated in B-cell lymphoma and SCLC12, 13 and the common 

microRNA, let-7, has been shown to regulate the 3′UTR of Kras.14 These previous studies 

have been insightful in understanding tumor development in lung adenocarcinoma, despite 

of focus solely on either coding or noncoding RNA populations.

We employed an integrative omics approach to identify transcriptional changes in a defined 

mouse model of lung adenocarcinoma. Sequencing was performed of bulk tumors, which 

reflect a mixed population of both tumor cells and infiltrating stromal cells; notable genetic 

changes could then be validated in purified sorted tumor cells. This approach revealed 

dysregulation of a complex stem cell associated microRNA locus in lung adenocarcinoma.
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Results

Gene expression analysis indicates that a subset of genes are up and down regulated 
specifically in lung tumors

We performed a high throughput RNA sequencing analysis of the small and large RNA 

populations from three wildtype lungs and three KrasG12D-driven lung adenocarcinomas. 

Two of these sets were derived from the offspring of an F1 between 129S4 and Molf/EiJ 

parents and one set from 129S4 homozygous parents (Table 1).

Differential expression analysis yielded ~450 significantly up-regulated and twice as many 

down-regulated genes in tumor versus normal lung samples (Figure 1a, Supplementary 

Table 1), distributed more or less evenly across the genome (Supplementary Figure 1). 

Genes significantly up in tumors include the Ros1 proto-oncogene (Supplementary Figure 

2a) and Clec4n, both previously implicated in Kras transcriptomics and lung cancer.15, 16 

The top three genes decreased in tumors are the cGMP-dependent protein kinase Prkg1, the 

guanine nucleotide binding protein alpha (Gnao1) and the regulator of G-protein signaling 9 

(Rgs9). These genes and Kras thus potentially are directly related or at least perform similar 

function as all are G-protein signal proteins. The Kras gene itself had similar levels of 

expression between tumors (p-value = 0.545; Supplementary Figure 2b).

Ingenuity Pathway Analysis of the most significantly differentially expressed genes 

provided broad categories of nucleic acid metabolism, embryonic/organ development and 

cell signaling and cancer that were enriched in differentially regulated genes in the tumor 

(Supplementary Figure 3a, 3b). In addition, pathway analysis revealed that direct and 

indirect connections could be established between the Kras gene, the p53 gene and the three 

most differentially down-regulated G-protein associated genes Prkg1, Rgs9 and Gnao1 

(Supplementary Figure. 3c).

RNA expression profiles have been evaluated previously in similar KrasG12D-driven lung 

tumors by microarray analysis that revealed 657 significantly differentially expressed 

genes.17 The corresponding fold-changes of these genes in our RNAseq data were quite 

similar (Pearson r of 0.631; p < 0.001; Figure 1b) and several genes were considered 

significantly differentially expressed (112 up and 193 down) in each data set (Figure 1c).

Somatic mutations accumulate at similar frequencies in normal lung and tumor samples

The extensive coverage afforded by high throughput sequencing enabled us to identify 18, 

34 and 23 nonsynonymous variants in the three tumor samples and 44, 40 and 80 variants in 

the three control lung samples (Supplementary Table 2). Genes with nonsynonymous 

variants from lung adenocarcinoma samples were not more frequently present in the Cosmic 

database18 than the corresponding normal lung sample genes. Thus, in this model, Kras 

mutations do not appear to act together with multiple commonly mutated genes in lung or all 

cancers (Table 2).
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Analysis of known SNPs between MOLF and 129S4 mice identifies allele specific 
expression and potential areas of loss of heterozygosity

A total of 8065 coding variants in 4234 unique genes differentiate MOLF and 129S4 mice. 

This enabled analysis of allele specific expression of certain genes in addition to locations of 

loss of heterozygosity. Binning of SNPs based on their percent maternal expression did not 

show broad differences of parent-of-origin expression between tumor and normal lung 

samples (Figure 2a, Supplementary Figure 4). However, we could use the SNP information 

to identify individual genes with a biased allele specific expression (Supplementary Table 

3). Cd22 had high levels in tumor samples (FPKM of 10.21 in tumor and 0.32 in normal 

lung; p=0.0001, Figure 2b). Surprisingly however, this expression largely or exclusively 

came from only the paternal allele while wildtype samples had bi-allelic expression (2 way 

ANOVA p-value of 0.028; Figure 2c). This primarily mono-allelic expression has been 

observed previously as a mechanism to retain specific antigen activity.19 Sanger-based 

sequencing revealed no chromosomal amplifications and confirmed an allele-specific 

expression bias for Cd22 mRNA (Supplementary Figure 5). Allelic expression analysis for 

Kras revealed that neither the wildtype nor mutant allele was amplified, as can be the case in 

certain tumors with KRAS mutations.20

Analysis of RNA editing sites indicate that Apobec mediated C-to-U editing is common in 
tumors but not in wildtype lung

Post-transcriptional modifications, including RNA editing, can also be evaluated from 

RNAseq data. Several adenosine to inosine RNA editing sites have been identified in 

mice.21 We found no evidence of differential adenosine to inosine editing in these tumor 

samples at these known positions (Figure 3a; Wilcoxon signed rank test p=0.19). However, 

the Apobec enzyme performs an alternate form of RNA editing, namely cytidine 

deamination leading to a uridine residue. Of the 30 editing sites that were identified in 

studies of Apobec1−/− mice22 and were expressed in our lung samples, just over half (16) 

were C-to-U edited in tumor samples with editing ranging from 1.7% to 18.8% and the 

levels of editing were higher than corresponding rates in controls (Figure 3b). Detection of 

expression levels of Apobec1 revealed a modest 1.5 fold increase in expression in tumors 

(p<0.05; Figure 3c). A C-to-U edited site present in the Serinc1 3′UTR was validated by 

Sanger sequencing (Figure 3d). This data indicate that C-to-U editing is enriched in lung 

tumorigenesis, though it does not distinguish between whether the editing arises within the 

tumor during its formation or is the result of editing in immune derived cells in response to 

the tumor. Indeed, sorting for pure tumor originating cells (described below) revealed low 

Apobec1 mRNA levels and an absence of C-to-U editing at the Serinc1 site. While this 

cannot exclude the possibility that C-to-U editing in surrounding cells contributes to tumor 

progression it suggests that editing is not an inherent property of the tumor-originating cells.

Small RNA sequencing identifies a cluster of microRNAs upregulated in lung 
adenocarcinomas

Our most salient finding arose when we complemented RNA sequencing by performing 

small RNA sequencing on the normal lung and adenocarcinoma samples. Almost all of the 

most differentially expressed microRNAs aligned to an ~800kb region (nucleotides 
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110,691,433-111,519,307) on mouse chromosome 12qF1 (Figure 4a; Supplementary Table 

4). 53 microRNAs align to this region with a mean fold increase of 31.6 (t-test p=3.8×10−87 

relative to all other microRNAs; Figure 4b). This fraction of chr12qF1 microRNAs 

represents ~9% of all lung adenocarcinoma miRNA reads, compared with 0.1–0.2% of 

miRNA reads in the normal lung. Outside this locus the two closest microRNAs, miR-345 at 

~600kb proximal and miR-203 at ~1.8mb distal, had equivalent expression between tumors 

and normal lung samples. This level of microRNA induction was substantially higher and 

more prominent than was observed for large RNAs suggesting that microRNAs may be key 

mediators of oncogenic drive in this mouse model.

Northern blot analysis validated representative chr12qF1 microRNA expression patterns in 

lung adenocarcinoma samples from all 12 mice tested (two shown in Figure 4c). However, 

cell lines derived from the KrasG12D mouse tumors, normal lung and SCLC samples had 

levels of chr12qF1 microRNAs comparable to wildtype lung (Figure 4c, 4d). Thus, the up-

regulated microRNA cluster is a hallmark only of the tumors in vivo and not of the 

associated derived cell lines.

The mouse chr12qF1 region, also known as the Dlk1-Dio3 locus,23 it is an area that is 

extensively methylated with a set of genes that are expressed specifically from the maternal 

or paternal chromosome. The cluster of microRNAs is transcribed from the chromosome 

inherited from the mother, as are the noncoding RNAs Meg3, Meg8, Rtl1as and Rian. 

Conversely, paternally expressed genes include Dlk1, Rtl1 and Dio3. SNPs in these genes 

were used to verify that this established parent of origin expression pattern was maintained 

in the tumor samples. From the RNAseq dataset, only the Rian gene was significantly up-

regulated in the lung adenocarcinoma samples (FPKM of 6.48 for tumors versus 1.58; q-

value < 0.005). However, when we examined previous microarray data from lung 

adenocarcinoma mouse tumors, probes for Meg3 were ranked second and sixth as the most 

abundantly represented in adenocarcinoma versus control (10.56 fold and 5.33 fold 

differences respectively) and a probe for Dlk1 ranked ninth on this list (5.18 fold increase).17 

We confirmed this up-regulation via quantitative real-time PCR with probes against Rtl1 

(sense and antisense), Dlk1 and Meg3 (Figure 4e). Consistent with data from microRNAs in 

this locus, tumor samples displayed a marked increase in expression of these co-expressed 

noncoding RNAs (Figure 4e). Differentially methylated regions exist at the Meg3 promoter 

and intergenic to Meg3 and Dlk1 that are fully methylated in the adult lung. While 

hypomethylation at the maternal allele is typically associated with microRNA expression,24 

we observed no change in methylation in bulk tumors (Supplementary Figure 6) suggesting 

a different mode of locus activation is involved.

Increase of chr12qF1 microRNA expression is present in tumor-originating cells

Differential expression of genes or small RNAs from bulk tumors could arise from stromal 

cells that have infiltrated and become mixed with bona fide cancer cells. To reconcile 

whether the chromosome 12qF1 microRNAs and mRNAs are specific to the cancer cells, we 

generated tumors in KrasLSL-G12D mice that also carried a Rosa26LSL-tdTomato Cre reporter 

allele. In this situation, when tumors were initiated with viral Cre, all resulting cancer cells 

would express red fluorescent protein along with the activated KrasG12D allele. 
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Fluorescence activated cell sorting of Tomato-positive cells from tumors enabled an 

evaluation of genes that are specific to the cancer cells. Validation of chromosome 12qF1 

microRNAs revealed a ~35 fold induction of miR-127 and miR-376a in KrasG12D 

expressing cells relative to wildtype lung (Figure 4f). Further, the Meg3, Dlk1 and Rtl1 

genes were dramatically up-regulated (Supplementary Figure 7a). This demonstrates that the 

chromosome 12qF1 locus is activated in a manner specific to cells carrying a KrasG12D 

mutation.

As noted above, cell lines derived from lung adenocarcinomas exhibited low levels of 

chr12qF1 gene and microRNA activation. However, when the KrasG12D cells were 

transplanted back into mice, tumors arose within 3 weeks. By evaluating three of the tumors 

derived from transplanted cells, we were able to demonstrate that the same population of 

cells could reactivate their chr12qF1 microRNAs (Figure 4f) and mRNAs (Supplementary 

Figure 7b) when propagated in vivo. Taken together, this implies that the cell lines derived 

from lung adenocarcinomas do not display some of the more prominent features of solid 

tumors that are dependent on their in vivo environment.

miRNAs alter select target protein levels without globally influencing mRNA target 
expression

The large scale small RNA and large RNA sequencing datasets enabled global comparisons 

between predicted microRNA targets and their expression changes. The 53 microRNAs that 

are up-regulated on chr12qF1 were compared to 51 microRNAs that had a similar 

expression profile (within 10% of each other) between tumor and normal lung. Target 

mRNAs had no significant difference in expression for chr12qF1 microRNAs relative to the 

control microRNA set for Miranda (p=0.18), Pictar (p=0.46) and TargetScan (p=0.39) 

prediction programs (Figure 5a). This indicates that chr12qF1 microRNAs do not lead to 

reduction in mRNA levels of predicted targets.

We utilized a luciferase reporter system to identify whether protein levels were altered by 

the up-regulation of these microRNAs. Twelve 3′UTRs that were predicted by TargetScan 

to be strong targets of ten of the most highly expressed chr12qF1 microRNAs. Co-

transfection of the luciferase constructs and its corresponding target miRNA led to the 

down-regulation of 8 of these 11 targets from nine of the ten microRNAs relative to a 

scrambled control shRNA (Figure 5b). Three point mutations in the miR-134 binding site of 

the Hyal1 3′UTR caused a loss of miR-134 mediated repression of this 3′UTR (Figure 5c). 

Quantitative RT-PCR analysis revealed that Cftr but not Antxr1 showed a reduction in 

mRNA levels (Figure 5d). This is just a select subset of genes that are potential targets, yet it 

indicates that the microRNAs do have the intended effect of mediating post-transcriptional 

effects. Given that microRNAs have many more predicted targets, the number of proteins 

influenced by these 53 microRNAs is exponentially larger and has the potential to 

dramatically re-shape the living tissue environment.
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Dlk1-Dio3 locus activation is characteristic of a subset of human lung adenocarcinoma 
samples

The small RNA population from 346 human lung adenocarcinoma samples has been subject 

to high throughput sequencing, available for analysis as part of the cancer genome atlas 

(TCGA). The percent of chr12qF1 microRNAs were increased 3.31-fold in these TCGA 

adenocarcinoma samples relative to 40 matched normal lung samples (p=0.014; 

Supplementary Figure 8a). However, from the tumor samples, a bimodal expression pattern 

was noted whereby several samples exhibited elevated expression patterns (Supplementary 

Figure 8a). Parsing of tumor samples into the 34 with high locus expression (~10%) with all 

other tumor samples revealed a consistent and specific activation of all Dlk1-Dio3 locus 

microRNAs (Supplementary Figure 8b). Thus, this locus is aberrantly activated in a subset 

of human lung adenocarcinomas.

Discussion

A central tenet of cancer genetics is that rapidly dividing tissues over time have the potential 

to accumulate enough mutations and chromosomal alterations in oncogenes and tumor 

suppressors such that a critical threshold is obtained and tumorigenesis ensues. However, in 

organs that do not undergo this rapid cell division and turnover – such as the lung – a 

reversal back to an embryonic state or a proliferation of stem cells (cancer stem cells) with 

their associated rapid growth and development is one of the mechanisms that is postulated to 

be involved. This is indicative of the scenario that we observe in this murine lung 

adenocarcinoma dataset in which a cluster of stem-cell associated microRNAs are up-

regulated.

Several lines of evidence point to the role of the chr12qF1 locus in stem cell biology, lung 

development and oncogenesis. The sustained expression of this locus is essential in the 

development of induced pluripotent cells with a common loss of chr12qF1 microRNA 

expression resulting in the low proportion of cells that maintain an iPS state.25 The proper 

expression of mmu-miR-127 is essential for lung development as its overexpression led to 

fewer terminal buds indicating impaired lung branching.26 Meanwhile, removal of the 

maternally-derived (but not paternally-derived) Meg3 allele in mice led to thin-walled lungs 

with reduced radial alveolar counts and early postnatal lethality.27 In addition, knockout of 

the Dicer1 gene, critical for RNA interference, had effects that were more specific to the 

lung,28 while loss of one Dicer1 allele reduced survival in the same KrasLSL-G12D lung 

adenocarcinoma model.29 Several of the chr12qF1 microRNAs were among the most up-

regulated by microarray analysis in a completely distinct mouse model of lung 

adenocarcinoma with sustained high levels of cyclin E and up-regulation of miR-376a and 

miR-136 was validated in human lung adenocarcinomas.30 Differential expression of the 

chr12qF1 locus has also been identified in other cancer subtytpes31 including up-regulation 

in mouse and human hepatocellular carcinoma samples,32 gastrointestinal stromal tumors,33 

acute promyelocytic leukemia34 and associated with epithelial to mesenchymal transition in 

endrometrial carcinoma.35 Notably, miR-127-3p was significantly up in colorectal cancer 

associated with KRAS mutations.36
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When an entire cluster of genes and miRNAs is up-regulated, it becomes difficult to identify 

and target a single gene or miRNA that may be responsible for the tumorigenic phenotype. It 

will be interesting to determine whether one or a few microRNAs are sufficient to 

recapitulate this oncogenic event, though a more likely scenario is that the cohort of small 

RNAs and non-coding RNAs act coordinately to regulate a multitude of genes. Several 

genes that are targets of chr12qF1 by luciferase analysis have implications in oncogenesis 

and lung development. The p53 interacting protein Tp53i11, repressed by miR-134 and 

miR-758 is a putative tumor suppressor in liver cancer.37 The actin related protein Actr3 is a 

major constituent of the Arp2/3 protein complex down-regulated in gastric cancer,38 Arfgef1 

in breast cancer,39 and Cul1 in various tissues.40 Relevant to lung biology, the cystic fibrosis 

transmembrane receptor Cftr which is hypermethylated and down-regulated in lung 

adenocarcinoma41 and mutated in non-small cell lung cancers,42 is targeted by miR-381 and 

miR-494. Indeed several oncogenic pathways are implicated upon microRNA activation. 

How these microRNAs are specifically activated (or how a stem cell like population can 

continue to proliferate unabated) will be of interest in future studies. While methylation 

patterns do not appear to change in the tumor samples (contradictory to established 

methylation patterns at this locus), other epigenetic marks certainly may be involved, 

particularly histone marks. Alternatively since we examined methylation patterns of tumor 

samples in bulk, it remains possible that demethylation at a subset of cells is sufficient to 

activate the chr12qF1 locus. The results of this and other mouse models43 appear to be 

limited to a subset of human lung tumors, and it will be interesting to determine if KRAS 

mutations in human samples can induce a similar activation of the chr12qF microRNAs.

By sequencing the transcriptome to a considerable depth we could search for additional 

mutations and expression changes that could aid in progression of tumorigenicity. An 

evaluation of both normal and tumorigenic lungs indicated no difference in the number of 

coding changes. However, if a variant caused nonsense-mediated decay or induces loss of 

expression, it would be more difficult to detect using this approach and would require whole 

genome or exome DNA sequencing. By examining allele-specific expression, we identified 

genes with modifications in expression of maternal versus paternal alleles depending on 

tumor status. This includes the paternal-specific enhancement of Cd22 mRNA expression 

specifically in tumor samples. CD22 is a B-cell lymphocyte cell surface marker that incurs 

mutations and splicing defects in human B-precursor leukemia44 and is the target of 

Epratuzumab, a humanized monoclonal antibody therapeutic for B cell tumors.45 

Interestingly, a group recently independently identified CD22 cell surface expression in 

A549 cells and solid tumors and have shown that anti-CD22 antibodies can delay tumor 

progression.46 Quantification of RNAseq read hits enabled a calculation of expression 

changes across the genome. The three most down-regulated genes (Prkg1, Gnao1 and Rgs9) 

are implicated in G-protein coupling and which have indirect connections with Kras and 

p53. Of note, a point mutation in Gnao1 has been recently identified in breast cancer,11 and 

this mutation appears to function in a manner analogous to the Kras G12D mutation in that 

it maintains the gene in a constitutively active state.47

The presence of editing in these lung adenocarcinoma samples is quite striking, yet it is 

difficult to ensure that this effect is specific to tumor progression or infiltration of B cells in 
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tumor samples. Of the 32 Apobec1 edited sites identified previously,22 all but one are 

present in the 3′UTR of transcripts which can have multiple effects including influencing 

poly-A usage.48 This can have regulatory consequences if regions such as microRNA 

binding sites are precluded from the edited RNA transcript. Our work suggests that much of 

the editing does not occur in tumor-originating cells; nonetheless, Apobec1 mRNA was 

increased overall in tumors and Apobec transgene expression in the liver has been shown to 

inadvertently drive HCC.52 Separate from RNA editing, APOBEC mediated DNA 

mutagenesis from up-regulated APOBEC family proteins was reported to be a property of 

several human cancers49, 50 after it was noted that cascades of localized C-to-T changes, 

termed kataegis, were found in breast cancer samples.51

In conclusion, through use of high throughput sequencing technology, we have uncovered 

several novel genetic abnormalities that exist in the coding and non-coding transcriptome of 

extracted solid tumors of the lung. By small RNA sequencing we were able to detect 

consistent up-regulation of a cluster of microRNAs typically associated with a stem cell like 

state. It is the activation of this locus and the multitude of mRNA targets of the ~53 

microRNAs that we believe are crucial for oncogenic drive in this Kras mutant mouse 

model of lung adenocarcinoma.

Materials and Methods

Mouse breeding

The Stanford Institute of Medicine Animal Care and Use Committee approved all animal 

studies and procedures. 129S4 males heterozygous for a KrasLSL-G12D allele were mated 

with MOLF/EiJ females. Littermate controls that were used include a KrasLSL-G12D+ mouse 

with no Adeno-Cre administered, and a wildtype Kras mouse with Adeno-Cre (to control for 

adenovirus exposure effects). In addition, tumors and normal lungs were extracted from a 

distinct mouse lung adenocarcinoma model, namely the Kras LA mouse which does not 

require Cre delivery and is present on an inbred background.8

KrasLSL-G12D mice were bred as previously described.53, 54 To evaluate allele-specific 

expression, KrasLSL-G12D mice on the 129S4/SvJae background were bred with MOLF 

mice. Offspring were genotyped for the presence of the KrasLSL-G12D allele. To activate 

Kras, an adenovirus bearing Cre-recombinase (AdCre:CaPi co-precipitates, Baylor Vector 

Development Lab) was intra-nasally administered at 6 weeks of age. Tumors were dissected 

~4 months later.

Tumor cell sorting and transplantation

The Rosa-LSL-tdTomato Cre reporter allele was bred into KrasLSL-G12D; p53flox mice. 

Tumors were initiated by intratracheal infection of mice with a lentiviral vector expressing 

Cre recombinase.54 Single cell suspensions were generated from individual lung tumors 

harvested from mice 8–14 months after tumor initiation. Tumors were minced and then 

digested for 30 min at 37°C in 2ml of HBSS-free containing trypsin, collagenase IV and 

dispase. Subsequently, 4ml of Quench Solution (L15 media supplemented with FBS and 

DNase) was added and samples were then pressed through 40mm cell strainers (BD 
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Biosciences). Finally, samples were centrifuged at 1,000 r.p.m. for 5 min and re-suspended 

in FACS media (PBS, 2% FBS, 2mM EDTA). Sorting for td-Tomato-positive cells was 

performed at the Stanford Shared FACS Facility.

High throughput large RNA sequencing

The Ribo-Zero ribosomal removal kit (Epicentre) was used to remove ribosomal sequences 

from total Trizol-extracted RNA. 200ng of purified RNA was subjected to strand-specific 

RNAseq using the ScriptSeq library preparation kit (Epicentre). 50bp paired end reads were 

generated on an Illumina HiSeq 2000 machine. Trimmed sequences were mapped to the 

mm9 genome using TopHat version 1.3.3 under default settings allowing multiple 

alignments with the following specific parameters: -r 100, --mate-std-dev 100 --segment-

length 20–library-type fr-unstranded.55 To accomodate SNPs between the Molf/EiJ and 

129S4/SvJae strains, three mismatches were allowed in the mapping process for these 

samples, while two mismatches were allowed for samples with homozygous parents. FPKM 

values were calculated using Cufflinks v.1.3.0.56, 57 Transcripts with a q-score of < 0.05 

were considered significant and we further required a minimum FPKM of 5 in at least one of 

the two conditions.

SNP analysis

GATK (v.1.5) was used to calculate non-synonymous variants present in tumor and normal 

lung samples.58, 59 Candidate variants in tumors were filtered based on a minimum read 

depth of 10, an absence in control lung samples, and that did not exhibit a bias in end-of-

sequence. Raw reads were manually inspected for accuracy of GATK calls.

Allele specific expression

To evaluate allele specific expression, we extracted a list of all coding single nucleotide 

variants between MOLF and 129S4 mice as computed from the Mouse Genome Informatics 

dataset (Jackson labs). The Samtools BCFtools program60 was used to call the number of 

variants in each sequenced sample. This data was filtered to have a minimum of 20 reads per 

sample. Variants in individual genes were sorted based on combined fold-changes between 

tumor and normal samples. Genes with the greatest fold-differences were manually analyzed 

for additional exonic SNPs.

RNA editing analysis

Allele calls at adenosine to inosine21 and cytosine to uridine22 editing sites were identified 

using BCFtools. The Serinc1 variant at chr10:57,235,791 (mm9) was validated by Sanger 

sequencing using the primers 5′-ACATTAGGCTCGGGTTAGGCACTA and 5′-

AAGGCTGGAACATGAAGATGAACT for both genomic DNA and cDNA.

Small RNA sequencing

3ug of a mirVana (Invitrogen) extracted small RNA fraction was ligated to a 3′linker in 

ATP-free buffer. Samples were resolved on a 12% polyacrylamide gel and 17–28nt 

fragments were excised. A barcoded linker was ligated to the 5′ end of the extracted RNA 

using T4 RNA ligase and these RNAs were reverse transcribed using Superscript II 
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(Invitrogen). 5ul of this product was subject to 21–24 PCR amplification cycles in a total of 

50ul volume using Taq polymerase (NEB). The product was resolved on a 4% Nusieve GTG 

agarose gel (Lonza, Rockland, ME). 20ng of this product was subjected to 36 base pair high 

throughput sequencing on an Illumina GAII machine. Small RNA reads (17–28bp) were 

aligned to miRBase (release 15)61 using the Bowtie program release 0.12.762 allowing for 

two mismatches.

Small RNA northern blot

10ug of Trizol (Invitrogen) extracted RNA was resolved on a 15% acrylamide gel, 

transferred to a Hybond N+ membrane (Amersham). Membranes were scanned using a 

phosphoimager.

Quantitative PCR

2ug of total RNA was reverse-transcribed using Superscript II (Invitrogen). Gene-specific 

probes used included Rtl1 (Mm02392620_s1), Dlk1 (Mm00494477_m1), Meg3 

(Mm00522599_m1), Tnrc6b (Mm00523487_m1), Cftr (Mm00445197_m1) and Antxr1 

(Mm00712952_m1) (Life Technologies). MicroRNA Taqman analysis was performed on 

250ng of Trizol-extracted small RNAs using probes that detect mature miR-21, miR-127-5p, 

miR-376a and U6 (Life Technologies). Quantitative RT-PCR was performed on a CFX384 

Real-Time system (BioRad).

Luciferase analysis

Dual-luciferase assays (Promega) were performed 24hr after transfection according to 

manufacturer’s protocol and detected by a Modulas Microplate Luminometer (Turner 

Biosystems). For transfection, 250ng of psi-check reporter plasmids were co-transfected 

with 250ng of miRNA overexpression plasmids (Sh-constructs) in E10.5 mouse embryonic 

fibroblasts using TransIT-LT1 (Mirus). Cell seeding was performed at a concentration of 

2.5×104 cells per well in a 24-well plate.

For cloning of the psi-check constucts, the entire 3′UTR of each gene was PCR amplified 

(see Supplementary Table 5 for primer sequences) from mouse genomic DNA and cloned in 

psi-check-2 vector (Promega) between the XhoI and SpeI sites using the In-fusion HD 

cloning kit. The quickchange II site directed mutagenesis kit (Agilent) was used to introduce 

three mutations in the Hyal1 3′UTR using the primer 5′-

GGACTTCCTCAAATACTGACTCATGCCCATAAGTC and the reverse complement 

thereof (mismatches are listed in bold). For generation of the microRNA over-expression 

constructs, shRNA sequences (Supplementary Table 6) were chemically synthesized; both 

strands were annealed and inserted between BglII and KpnI sites downstream of the U6 Pol 

III promoter.

Bisulfite sequencing

Genomic DNA was extracted from tumor and normal lung samples by the DNeasy tissue kit 

(Qiagen) and converted by bisulfite treatment using an EZ DNA methylation kit (Zymo 

research). PCR primers were as follows for Meg3: 5′-

GTTATAGTAATTTGTTATAGAATTTGGGG (forward) and 5′-
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AAACTTTCAACCACCAAAACC (reverse), and for an intergenic differentially methylated 

region: 5′-GGTTTGGTATATATGGATGTATTGTAATATAGG (forward) and 5′-

ATAAAACACCAAATCTATACCAAAATATACC (reverse).63 Products were cloned 

using the Topo TA cloning system (Invitrogen) and at least eight clones were sequenced per 

sample per locus.

miRNA target prediction

For Miranda, 395 targets were identified for chr12qF1 microRNAs versus 376 in controls 

using a cutoff mirSVR score of -1.364. The Pictar program predicted 1231 chr12qF1 and 

1171 control target mRNAs. Finally, 1002 chr12qF1 and 1125 control mRNAs were 

identified as TargetScan 61, 65 targets (within the 95th percentile of hits).

Pathway analysis

Transcripts significantly differentially expressed between tumor and normal samples (false 

discovery rate < 0.001) were analyzed by the ingenuity pathway analysis program using 

default settings.

Human lung adenocarcinoma samples

Small RNA deep sequencing reads corresponding to human microRNAs were queried from 

samples collected as part of the cancer genome atlas (TCGA). Data was available from a 

total of 346 samples from patients with stage I–IV lung adenocarcinomas collected from 

centers throughout the United States. This was compared with data from 40 matched normal 

samples.

Data access

Sequences have been deposited in the NCBI Gene Expression Omnibus (accession number 

GSE43028).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Expression profile of aligned RNA sequences defines tumor versus normal differentially 

expressed sequences. (a) A scatterplot of mean FPKM values from all genes with a 

minimum FPKM of 0.01 (N = 21110). Genes significantly enriched in tumor samples are in 

green while those significantly down in tumor are red. Overall correlation between samples 

had an R2 value of 0.90782. (b) Gene expression profiling is comparable with microarray 

data from lung adenocarcinoma tumors.17 Significant values from the microarray data set 

are plotted in the middle column. For genes significantly up in this data set, the 

corresponding RNAseq log2 fold change was plotted to the rightmost column. For genes 

significantly down in microarrays, the corresponding RNAseq values were plotted in the 

left-most column. (c) Venn Diagram of overlapping genes in this data set versus microarray 

examples.
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Figure 2. 
RNAseq analysis of coding variants reveals parent of origin specific expression or 

amplification of alleles. A total of 8065 coding variants that differ between 129S4/SvJae and 

MOLF/EiJ mice were interrogated for parent of origin expression. (a) Binning of percent 

maternal expression reveals that most SNPs follow a binomial distribution surrounding 

equal (50%) expression. (b) RNAseq read coverage for Cd22. Y-axis values represent read 

depth at each position adjusted by the total mapped reads for that sample relative to the 

mean mapped reads for all samples set from 0 to −300. Reads are negative because the gene 

is transcribed from right to left. (c) An analysis of genes that have the greatest fold 

difference of paternal to maternal allele expression reveals paternal-specific enhancement of 

Cd22 mRNA expression while maternal read counts remain similar between tumor and 

normal lung (2-way ANOVA p-value of 0.028 for tumor status). Error bars represent S.E.M. 

of the two F1 mice in each condition.
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Figure 3. 
Lung tumors display an increase in Apobec but not Adar RNA editing. (a) Mean percent 

editing for 168 previously identified Adar mediated A to I edited sites in the mouse with the 

size of the point reflecting the number of mapped reads at the given location. (b) Mean 

percent Apobec editing at 30 previously identified sites for the three samples, plotted as in 

panel A. (c) Apobec1 mRNA expression levels from the three sequenced mice in each 

condition plus tumors and normal lungs from four additional mice each, error bars represent 

SEM; * = p < 0.05 by t-test. (d) Sanger verification of C to T editing in the Serinc1 3′UTR. 

Primers were designed to amplify the edited site along with a coding SNP that indicated 

equal expression from both parental alleles.
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Figure 4. 
A cluster of microRNAs on chromosome 12qF1 is upregulated in lung adenocarcinomas. (a) 

A scatterplot of microRNA counts normalized to one million mapped microRNA reads. 

Points in purple represent microRNAs that arise on chromosome 12qF1. (b) Boxplot of log2 

based fold change for chr12qF1 microRNAs (in purple) and all remaining microRNAs (in 

black). (c) Small RNA northern blot of two representative microRNAs that align on 

chromosome 12qF1 (miR-127 and miR-376c), re-probed for tRNA sequences and/or U6. 

Small cell lung cancer (SCLC) and hepatocellular carcinoma (HCC) tumors were additional 

controls. (d) Cell lines derived from lung and liver tumor did not show high levels of 

chr12qF1 microRNA expression. (e) Quantitative RT-PCR analysis indicates that non-

coding RNA expression of genes in the chromosome 12qF1 interval are highly expressed in 

lung adenocarcinomas relative to normal lung, SCLC tumors, and human lung 

adenocarcinoma tumor-derived cell lines. (* Probes for Rtl1 detect both sense and antisense 

transcripts) Values are plotted as mean +/− standard error of the mean of at least three 

samples run in triplicate. Note the differences in the y-axis for each of the plots. (f) 
microRNA qPCR indicates that an upregulation of the chr12qF1 locus is specific to tumors 

in vivo. Levels of two microRNAs from this cluster, miR-127-5p and miR-376a were 

normalized to U6 snRNA and then to wildtype lung levels. Cell lines derived from tumors 

were grown in culture or transplanted back into mice.
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Figure 5. 
Chr12qF1 microRNAs can repress protein levels of a subset of genes involved in 

oncogenesis. (a) The cumulative distribution of mRNA expression is unchanged for mRNAs 

predicted to be targets of the 53 chr12qF1 microRNAs upregulated in lung adenocarcinoma 

(in red) versus 51 control unchanged microRNAs (in blue) and overall mRNAs (in green). 

Three prediction programs were queried, Miranda (395 chr12qF1 targets and 376 control 

targets), Pictar (1231 and 1117 respective targets) and Targetscan (1002 and 1125 respective 

targets). (b) Luciferase expression of UTRs of mRNAs predicted to be targets of chr12qF1 

microRNAs. Expression is normalized to firefly luciferase within the same construct and to 

a scrambled control shRNA (scr; black bars), transfected in E10.5 mouse embryonic 

fibroblasts (MEFs) where chr12qF1 microRNAs are not expressed. Significance was 

determined by a two-tailed t-test compared with a corresponding control shRNA (* = p < 

0.05; ** = p < 0.01; *** = p < 0.001). Values represent the mean +/− SEM of at least two 

experiments performed in triplicate. (c) Site directed mutagenesis of three nucleotides of the 

miR-134 minding site in the Hyal1 3′UTR abrogated the repression of miR-134 on this 

3′UTR. (d) Quantitative RT-PCR showed a reduction in Cftr but not Antxr1 mRNA levels in 

lung adenocarcinoma samples (n = 7) relative to normal lung (n = 7).
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