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Abstract
Chronic exposure to stress or drugs of abuse has been linked to altered gene expression

throughout the body, and changes in gene expression in discrete brain regions are thought

to underlie many psychiatric diseases, including major depressive disorder and drug addic-

tion. Preclinical models of these disorders have provided evidence for mechanisms of this

altered gene expression, including transcription factors, but evidence supporting a role for

these factors in human patients has been slow to emerge. The transcription factor ΔFosB is

induced in the prefrontal cortex (PFC) and hippocampus (HPC) of rodents in response to

stress or cocaine, and its expression in these regions is thought to regulate their “top down”

control of reward circuitry, including the nucleus accumbens (NAc). Here, we use biochem-

istry to examine the expression of the FosB family of transcription factors and their potential

gene targets in PFC and HPC postmortem samples from depressed patients and cocaine

addicts. We demonstrate that ΔFosB and other FosB isoforms are downregulated in the

HPC but not the PFC in the brains of both depressed and addicted individuals. Further, we

show that potential ΔFosB transcriptional targets, including GluA2, are also downregulated

in the HPC but not PFC of cocaine addicts. Thus, we provide the first evidence of FosB
gene expression in human HPC and PFC in these psychiatric disorders, and in light of

recent findings demonstrating the critical role of HPC ΔFosB in rodent models of learning

and memory, these data suggest that reduced ΔFosB in HPC could potentially underlie cog-

nitive deficits accompanying chronic cocaine abuse or depression.

Introduction
The molecular and circuit-level mechanisms of psychiatric diseases such as depression and
addiction are not fully understood, and this knowledge is crucial for rational development of
new and better treatments. Alterations in gene expression in the nucleus accumbens (NAc)
and the brain regions that exert top-down control over NAc function, like prefrontal cortex
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(PFC) and hippocampus (HPC), have been implicated in the pathogenesis of addiction and
depression by many studies in both model organisms and in post-mortem human brain [1–5].
Many current treatments for depression operate through chronic enhancement of serotonergic
and/or dopaminergic signaling, and virtually all drugs of abuse affect dopamine signaling in
NAc. Moreover, addiction and depression are highly comorbid, with nearly one third of
patients with major depressive disorder also having substance use disorders and comorbidity
yielding higher risk of suicide and greater social and personal impairment [6, 7]. Taken
together, these data suggest that chronic maladaptations in the mesolimbic dopamine circuit
and connected structures may underlie both addiction and depression, and that changes in
gene expression are likely to play a crucial role in these maladaptations.

As both depression and addiction develop over time and may be linked to chronic exposure
to stress and/or drugs of abuse [8, 9], and because typical antidepressants that target serotoner-
gic and dopaminergic signaling require weeks of treatment to be effective [10], it seems likely
that the pathogenesis of these diseases and the mechanisms of their treatment may be linked to
long-term changes in gene expression. Such changes could result from epigenetic modifications
of gene structure, and indeed evidence is mounting for a key role for DNAmethylation and
histone modifications in both addiction and depression [11–14]. However, this does not rule
out a potential role for transcription factors in these processes, particularly stable transcription
factors induced by chronic neuronal activation. One such transcription factor is ΔFosB [1, 15,
16], a splice variant produced from the FosB gene. Unlike the full-length FosB protein, ΔFosB
is remarkably stable in comparison to other immediate early gene products (half-life of up to 8
days in the brain [17]), primarily due to the truncation of two degron domains in the c-termi-
nus [18], as well as a stabilizing phosphorylation at Ser27 [19, 20]. ΔFosB is induced through-
out the rodent brain, including the NAc and related structures, by stress [21–23],
antidepressants [22], and drugs of abuse [24]. Furthermore, rodent models implicate ΔFosB
expression in NAc in both addiction [20, 25] and depression [26, 27], and recent studies sug-
gest a role for ΔFosB in these diseases in PFC [21] and HPC [28]. In the NAc, ΔFosB expression
promotes increased psychomotor sensitization to and reward from psychostimulants in
rodents [20, 25]. NAc ΔFosB also acts as a proresilience factor in the mouse chronic social
defeat model of depression, and its expression there is required for antidepressant function
[26]. In contrast, expression of ΔFosB in PFC promotes susceptibility to social defeat stress in
mice [21], suggesting that ΔFosB plays very different roles in the reward circuit and the brain
regions that innervate it. Finally, ΔFosB is induced in the mouse dorsal HPC by learning and
its function there is required for normal spatial memory formation [28], providing a possible
mechanism for the cognitive deficits often accompanying chronic drug exposure and/or
depression [29–31].

As ΔFosB is a transcription factor, it is commonly presumed that it exerts its biological
effects through modulation of the expression of select target genes, and many of those target
genes have been implicated in depression and addiction. ΔFosB regulates the expression of
multiple subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)- and
N-methyl-D-aspartate (NMDA)-type glutamate receptors [25, 26, 32], and these receptors
have been directly implicated in addiction [33, 34], depression [35, 36], and antidepressant
function [36, 37]. ΔFosB also regulates the expression of signaling molecules, like calcium/cal-
modulin-dependent protein kinase II α (CaMKIIα), which has been linked to many psychiatric
disorders [38], and we have shown that this regulation of CaMKII expression in mice drives
psychomotor sensitization to cocaine [20] and antidepressant function [27]. In addition,
ΔFosB regulates the expression of cyclin-dependent kinase 5 (cdk5) [39], which is induced in
striatum by psychostimulant exposure and stress [40–42] and regulates the psychomotor and
motivational responses to cocaine [43]. Thus, there is strong evidence in rodent models that
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induction of ΔFosB in multiple brain regions by stress, antidepressants, and drugs of abuse
may regulate behaviors related to depression and addiction by modulating the expression of
select target genes in discreet brain regions.

Although preclinical models of addiction and depression have been quite fruitful, it is essential
to support findings from animal models with evidence from human studies if we expect to trans-
late potential molecular mechanisms into novel treatment options. We have previously demon-
strated that ΔFosB is upregulated in the NAc of human cocaine addicts [20] and reduced in the
NAc of depressed humans [26]. However, regulation of FosB gene product expression in HPC and
PFC, critical regulators of NAc neuronal activation, has not previously been studied in human
brain, nor has regulation of potential ΔFosB target gene expression. We therefore examined the
expression of FosB gene products, as well as the expression of potential ΔFosB target genes, in the
PFC and HPC of patients suffering frommajor depressive disorder or cocaine addiction.

Materials and Methods

Human Samples
Post-mortem human brain tissues were obtained from the Douglas Bell-Canada Brain Bank
(Douglas Mental Health University Institute, Montreal, Quebec, Canada). Substance use infor-
mation regarding human cocaine addicts, depression patients, and matched controls can be
found in Table 1. The preservation of tissue proceeded essentially as described [44]. Briefly, once
extracted, the brain is placed on wet ice in a Styrofoam box and rushed to the Douglas Bell-Can-
ada Brain Bank facilities. Hemispheres are immediately separated by a sagittal cut in the middle
of the brain, brain stem, and cerebellum. Blood vessels, pineal gland, choroid plexus, half cerebel-
lum, and half brain stem are typically dissected from the left hemisphere which is then cut coron-
ally into 1 cm-thick slices before freezing. The latter half cerebellum is cut sagittally into 1cm-

Table 1. Substance dependence, toxicology, and use of antidepressant medication in human cocaine addicts, depression patients, andmatched
control groups.

Group (number of subjects) Additional Substance
Dependence

Toxicology at Death (Drugs of
Abuse)

Psychiatric Medication (Previous 3
months)

Control (18) • Alcohol (1/18) Total = 2/18
• Opioid (1/18)
• Ethanol (1/18)

None

Cocaine Dependent (19) Total = 15/19
• Alcohol (11/19)
• Cannabis (3/19)
•Opioid (1/19)
• Sedative (1/19)

Total = 14/19
• Cocaine (11/19)
• Opioid (2/19)
• Ethanol (8/19)

Total = 6/19
• SSRI/SNRI (3/19)
• Benzodiazepine (5/19)
• Classic Antidepressant (2/19)
• Antipsychotic (2/19)

Control (11) None Ethanol (1/11) None

Depressed Non-Medicated
(14)

• Alcohol (5/14) Total = 4/14
• Opioid (1/14)
• Ethanol (4/14)

• Benzodiazepine (2/14)

Depressed Medicated (13) • Alcohol (1/13) Total = 2/13
• Opioid (1/13)
• Ethanol (1/13)

Total = 13/13
• SSRI/SNRI (9/13)
• Benzodiazepine (6/13)
• Classic Antidepressant (5/13)
• Tricyclic Antidepressant (1/13)
• Antipsychotic (3/13)

Parentheses show number of patients with given condition out of number of total patients in the group. Note that some patients abused multiple additional

substances or used multiple medications, thus the total number in a group with an additional condition is given as “Total.” SSRI: selective serotonin reuptake

inhibitor; SSNI: selective norepinephrine reuptake inhibitor.

doi:10.1371/journal.pone.0160355.t001
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thick slices before freezing. Tissues are flash frozen in 2-methylbutane at -40°C for ~60 sec. All
frozen tissues are kept separately in plastic bags at -80°C for long-term storage. Specific brain
regions are dissected from frozen coronal slices on a stainless steel plate with dry ice all around to
control the temperature of the environment. PFC samples come from Brodmann area 8/9, and
HPC samples are taken from center mass of the hippocampal formation (Fig 1).

Mouse Samples
The study followed guidelines described in the Guide for the Care and Use of Laboratory Ani-
mals, eighth edition (Institute of Laboratory Animal Resources, 2011). Before any testing, all

Fig 1. Diagram of dissection regions for human brain samples. Drawings represent anterior (A) and
posterior (B) coronal sections of human brain used for dissection of PFC samples, and (C) HPC samples.
Red boxes highlight areas of dissection. SFG: superior frontal gyrus; MFG: middle frontal gyrus; IG: insular
gyrus; FuG: fusiform gyrus.

doi:10.1371/journal.pone.0160355.g001
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experimental procedures were approved by the Institutional Animal Care and Use Committee
at Michigan State University. If any animal displays lack of grooming, infection, severe weight
loss, or immobility, the animal is euthanized. No animals required such euthanization prior to
experimental endpoint in the current study. After arrival to the facility, 7 week old C57BL/6
male mice (The Jackson Laboratory, Bar Harbor, ME, USA) were group housed at 4 per cage in
a colony room set at a constant temperature (23°C) for at least 3 days before experimentation
in a 12 h light/dark cycle with ad libidum food and water. Mice were given chronic (7 days) or
acute (single injection) cocaine (15 mg/kg) or sterile saline (0.9% saline) via an intraperitoneal
(i.p.) injection, and sacrificed by cervical dislocation one hour after the final injection. Tissue
was harvested immediately (Fig 2) or at varying time points after sacrifice (Fig 3).

Western Blotting
Mouse brains were extracted rapidly on ice and then sliced into 1 mm sections, and dorsal hip-
pocampus was removed with a 12 gauge punch and immediately frozen on dry ice. Both

Fig 2. Comparison of human andmouse FosB proteins. (A) Western blot of hippocampal proteins with FosB antibody reveals multiple additional bands in
typical human cocaine addict HPC sample compared to a chronic cocaine-treated (15 mg/kg for 7 days) mouse HPC. Novel bands are apparent at 20 kDa,
23 kDa (white arrow), and 30 kDa (black arrow). (B) Correlation and linear regression plots of protein expression for each band in the human samples with the
postmortem interval (time between death and brain freezing) for each human sample. Dotted lines represent 95% confidence interval; no linear regression
slope differed significantly from 0.

doi:10.1371/journal.pone.0160355.g002
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human and mouse samples were homogenized by light sonication in modified RIPA buffer (10
mM Tris base, 150 mM sodium chloride, 1 mM EDTA, 0.1% sodium dodecyl sulfate, 1% Tri-
ton X-100, 1% sodium deoxycholate, pH 7.4, protease and phosphatase inhibitors [Sigma
Aldrich]). Concentration was measured using DC Protein Assay (BioRad) and gel samples
were normalized for total protein. Proteins were separated on 4–15% polyacrylamaide gradient
gels (Criterion System, BioRad), and Western blotting was performed using chemilumines-
cence (SuperSignal West Dura, Thermo Scientific). Total protein was assayed using Swift
Membrane Stain (G Biosciences) and proteins were quantified using ImageJ software (NIH).
Primary antibodies were used to detect FosB isoforms (5G4; 1:500; Cell signaling, 2251),
GluA2/3 (1:1,000; Millipore, 07–598), CaMKIIα (1:1,000; Millipore, 05–532), cdk5 (1:1,000;
Santa cruz, sc-173), GAPDH (1:20,000; Cell Signaling, 21185).

Statistics
All statistical analyses were performed using the Prism 6 software package (GraphPad). Linear
regression analysis was used to determine whether the expression of FosB gene products was
correlated with postmortem interval. The slope of each linear regression line was tested for sig-
nificant difference from zero. Student’s t-tests were used for all pair-wise comparisons between
control and cocaine addicted individuals (indicated in Results where t value is given). One-way
ANOVAs were used for all multiple comparisons between controls, depressed individuals with
antidepressants on board, or depressed individuals with no antidepressants (indicated in
Results where F value is given). The one-way ANOVAs were followed by Tukey post hoc test.
P< 0.05 was considered significant.

Results
Our recent studies indicate that the three major products of the FosB gene in brain, full-length
FosB (~50 kDa), ΔFosB (~35–37 kDa), and Δ2ΔFosB (~25 kDa), are differentially induced in
mouse brain reward-associated regions in response to stress and antidepressant treatment [22],
and other Fos-related antigens likely produced by the FosB gene have also been observed in
mouse brain [45–47]. Therefore, we first sought to determine whether human brain expresses
a pattern of FosB gene products similar to that found in mouse brain. We compared a typical
HPC sample from a human cocaine addict (Table 2) to HPC from a mouse given chronic

Fig 3. Expression of FosB proteins in mouse HPC after extended postmortem intervals. The brains of
mice given an acute injection of cocaine (15 mg/kg i.p.) were left in situ for 0, 1, or 8 hrs after sacrifice before
harvesting HPC. Western blot reveals buildup of a 23 kDa band in the 8 hr animals, but does not show other
bands found in human HPC samples.

doi:10.1371/journal.pone.0160355.g003
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cocaine (15 mg/kg, i.p. for 7 days). All three major FosB gene products were found in both
mouse and human brain tissue, but additional bands were observed in the human sample com-
pared to mouse (Fig 2A). Most prominently, bands at ~30 kDa, ~23 kDa, and ~20 kDa
appeared in human samples but were not observed in mouse samples. We postulated that these
bands may represent proteolytic products resulting from degradation of FosB or ΔFosB due to
the extended postmortem interval (PMI) in our human samples (Table 2). However, no corre-
lation was found between the intensity of these novel bands and PMI (Fig 2B), or between PMI
and the major gene products, FosB, ΔFosB, and Δ2ΔFosB (Fig 2B), i.e., none of the regression
lines had a slope significantly different from zero. Thus, these novel bands may not be proteo-
lytic degradation products resulting from prolonged time between death and tissue freezing.

To further investigate this, we gave mice a single injection of cocaine (15 mg/kg, i.p.) or
saline and sacrificed them by cervical dislocation one hour later. The brains were then left in
situ for zero, one, or eight hours before samples were taken. We noted some degradation prod-
ucts (Fig 3), the most prominent being ~23 kDa, but the resulting pattern did not mimic that
seen in human HPC samples. Taken together, these data indicate that there are additional Fos-
related antigens in human brain that may represent novel FosB gene products and are unlikely
to be the result of proteolysis of FosB or ΔFosB.

We next sought to determine whether cocaine dependence, untreated depression, or depres-
sion coupled with exposure to antidepressant medication are associated with changes in FosB
gene products in human HPC or PFC. Patients and control subjects were chosen such that
there were no significant differences in average age, gender, brain pH, or PMI (Table 1). In
samples from cocaine dependent patients, Western blot revealed no differences in the expres-
sion of any FosB isoform in the PFC compared to controls (Fig 4A and 4B). However, we
observed a marked decrease in the HPC of cocaine dependent individuals in full-length FosB (t
(35) = 2.67, p = 0.012), ΔFosB (t(31) = 2.81, p = 0.009), as well as in all three novel bands, 30
kDa (t(34) = 2.71, p = 0.011), 23 kDa (t(15) = 2.7, p = 0.016), and 20 kDa (t(13) = 2.43,
p = 0.031), and a trend toward a decrease in Δ2ΔFosB (t(29) = 2.03, p = 0.052). Similarly, in
samples from patients suffering from depression, there were no differences in the expression of
any FosB isoform in the PFC, while the HPC showed decreases in full-length FosB (F(2,35) =
1.98, p = 0.048) and ΔFosB (F(2,30) = 1.38, p = 0.027), as well as in the 23 kDa band (F(2,21) =
2.05, p = 0.022) and the 20 kDa band (F(2,18) = 0.97, p = 0.028) (Fig 4C and 4D). These data
suggest that FosB gene expression in HPC is reduced in multiple psychiatric conditions while
PFC expression is unaffected.

Direct evidence for gene targets of ΔFosB transcriptional regulation in HPC is scant, with
only cyclin-dependent protein kinase 5 (cdk5) a confirmed target after electroconvulsive stim-
ulation in mice [39]. However, many other genes are known targets for ΔFosB transcriptional
regulation in other brain regions, particularly in NAc. These include a number of genes

Table 2. Demographics of human cocaine addicts, depression patients, andmatched control groups.

Group (number of subjects) Age %Male Brain pH Postmortem Interval (h)

Control (18) 33.05 ± 3.193 95% 6.569 ± 0.062 36.08 ± 4.515

Cocaine Dependent (19) 39.80 ± 2.153 p = 0.11 95% 6.546 ± 0.072 p = 0.48 42.78 ± 4.661 p = 0.31

Control (11) 41.58 ± 3.241 83% 6.508 ± 0.074 31.75 ± 5.899

Depressed Non-Medicated (14) 48.14 ± 3.061 71% 6.721 ± 0.055 39.04 ± 6.478

Depressed Medicated (13) 45.75 ± 2.713 p = 0.33 69% 6.671 ± 0.083 p = 0.14 40.66 ± 7.357 p = 0.65

All values are mean +/- standard error. P values are calculated using two-tailed student’s t-test for cocaine samples and one-way ANOVA for depression

samples. 100% of participants were Caucasian.

doi:10.1371/journal.pone.0160355.t002
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essential for hippocampal cell function and synaptic plasticity, such as GluA2 [48] and CaMKII
[20]. Therefore, we used Western blot to assess the levels of potential gene targets of ΔFosB in
HPC and PFC of cocaine dependent and depressed patients. We found no significant differ-
ences in the protein levels of the candidate target genes in the PFC of cocaine dependent indi-
viduals, while the HPC showed a significant decrease in GluA2 (t(34) = 2.31, p = 0.027) and a
strong trend toward decrease in CaMKII levels (t(35) = 1.99, p = 0.053) expression, while cdk5
remained unchanged (Fig 5A and 5B). In the PFC and HPC of depressed patients there were
no changes in expression of the ΔFosB target genes (Fig 5C and 5D). These data suggest that
ΔFosB may be regulating the expression of potential target genes in human HPC, and this regu-
lation may be brain region and disease specific.

Discussion
Here, we present the first compilation of FosB gene product and ΔFosB-target protein analysis
in the hippocampus and prefrontal cortex of cocaine addicts and depressed patients. These

Fig 4. Expression of FosB proteins in HPC and PFC of human cocaine addiction and depression patients. (A) Western blot of FosB proteins from the
HPC and PFC of human cocaine addicts (Coc) and controls (Con). (B) Quantitation reveals a cocaine-dependent decrease in many FosB proteins in the
HPC but not PFC (*:p<0.05, #:p = 0.05). (C) Western blot of FosB proteins from the HPC and PFC of human depression patients off (Dep) or on
antidepressants (Dep + AD) and controls (Con). (D) Quantitation reveals a depression-dependent decrease in some FosB proteins in the HPC but not PFC
(*:p<0.05). Error bars indicate mean +/- SEM.

doi:10.1371/journal.pone.0160355.g004
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brain regions are known to play key roles in the pathophysiology of these diseases, and the use
of human post-mortem samples allows us to: 1) determine whether the molecular alterations
found in well-studied rodent models of these diseases are recapitulated in humans; 2) identify
novel pathways for study in rodent models for potential therapeutic intervention. Our analyses
focused on the expression of FosB gene products, as their expression in these regions has been
suggested to play a role in depression and is induced by cocaine exposure in rodent models [21,
22, 24]. When initially examining the FosB protein levels in our human samples, it was clear
that our FosB antibody detected more bands than have previously been reported in rodent
brain samples by our group and many others [1, 22]. Because human brains are frozen hours

Fig 5. Expression of possibleΔFosB gene target proteins in HPC and PFC of human cocaine addiction and depression patients. (A) Western
blot of potential ΔFosB gene target proteins from the HPC and PFC of human cocaine abusers (Coc) and controls (Con). (B) Quantitation reveals a
cocaine-dependent decrease in all GluA2 and CaMKII in the HPC but not PFC (*:p<0.05, #:p = 0.05). (C) Western blot of potential ΔFosB gene target
proteins from the HPC and PFC of human depression patients off (Dep) or on antidepressants (Dep + AD) and controls (Con). (D) Quantitation reveals no
depression-dependent changes. Error bars indicate mean +/- SEM.

doi:10.1371/journal.pone.0160355.g005
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after death while mouse samples are removed and frozen within two minutes of sacrifice, we
left mouse brains in situ after sacrifice for up to eight hours to determine whether similar
bands would emerge. However, because we did not observe the same pattern of FosB proteins
found in the human samples, and because we also found no correlation between the length of
PMI and the levels of the various bands in human samples, we concluded that many of the
bands in the human brain samples are unlikely to be the result of proteolytic degradation of
larger FosB isoforms. Although we cannot rule out differences in the proteolytic machinery
between species, we would suggest that some of the human bands may result from differential
splicing of the FosB mRNA, and future studies from our group will address this question.

Previous results from rodent studies have found an increase in FosB isoforms in HPC and
PFC after chronic cocaine [24]. However, from our cohort of cocaine dependent individuals we
found a decrease in all FosB isoforms in HPC, with no change in PFC compared to control
individuals. We believe this may be due to the inherent differences between rodent studies and
cases of human addiction. Studies of cocaine addiction only last for a small fraction of the
rodent’s life, and no ΔFosB induction studies to date have gone beyond 14 days of continuous
cocaine exposure [1, 20]. Human cocaine users can be addicts for much longer time periods,
which may induce homeostatic effects causing the FosB gene to be repressed in HPC. More-
over, many studies have demonstrated that long-term addiction to psychostimulants is accom-
panied by reduced cognitive function [9, 49]. Our recent work demonstrates that HPC ΔFosB
plays a critical role in learning [28], and thus the decrease in HPC FosB gene expression in
cocaine addicts shown here may represent a mechanism for cognitive decline in psychostimu-
lant addiction. With decreased expression of the FosB gene in HPC, we also observed a decrease
in the protein levels of candidate ΔFosB target genes GluA2 and CaMKII, and both of these
molecules are also critical for HPC function and learning [50] and have been previously linked
to addiction [38, 51].

In the HPC of depressed patients, we observed a decrease in multiple FosB proteins,
depending on whether patients were taking antidepressants. This may indicate that antidepres-
sants have differential effects on the splicing or stability of FosB gene products, though our pre-
vious studies in rodents did not reveal any such differences [22]. However, there were no
differences in the expression of potential target genes in either HPC or PFC of these patients.
Although major depression is often accompanied by cognitive problems [52], it is likely that
HPC ΔFosB is not the only factor altered in response to depression. While the cocaine addicts
showed changes in HPC ΔFosB and in target gene expression, depression may be leading to dif-
ferent compensatory mechanisms that prevent reduction in GluA2 or CaMKII expression.
Thus, future studies will elucidate whether changes in HPC gene expression in depression and
addiction arise from similar mechanisms.

It is critical to note that the human populations used for this study lack the homogeneity of
preclinical rodent or primate models. For instance, five of the depressed patients suffered from
alcoholism, and two had opiates on board at time of death. Similarly, six of the cocaine-depen-
dent individuals had used antidepressants in the three months prior to death. Although this is
not surprising, since depression and addiction have a high level of comorbidity [6, 7], it does
complicate interpretation of results. We do not observe a significant difference in any of our
biochemical measures between cocaine-dependent subjects who had antidepressants on board
and those that did not, nor do we observe differences between depressed patients who had sub-
stance dependence and those who did not (data not shown). However, this does rule out over-
lapping or synergistic effects of depression and addiction on our measures. On the contrary, as
we observe similar decreases in HPC FosB isoform expression with depression and addiction,
it is possible that reduction in HPC FosB gene expression is a common mechanism between
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the two conditions and may contribute to comorbidity. Investigation of this hypothesis will
require much larger cohorts of human subjects and additional preclinical studies.

In conclusion, we find that multiple FosB gene products are downregulated in the HPC, but
not the PFC, of humans suffering from addiction and depression. Although we cannot make
an etiological connection between this phenomenon and the disease states, it is possible that
decreases in HPC ΔFosB and/or other FosB isoforms may in part underlie the cognitive deficits
associated with depression and addiction, or contribute to the comorbidity of these psychiatric
disorders.
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