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A B S T R A C T   

Psychological stress poses a risk for sleep disturbances. Importantly, trauma-exposed individuals who develop 
posttraumatic stress disorder (PTSD) frequently report insomnia and recurrent nightmares. Clinical studies have 
provided insight into the mechanisms of these sleep disturbances. We review polysomnographic findings in PTSD 
and identify analogous measures that have been made in animal models of PTSD. There is a rich empirical and 
theoretical literature on rapid eye movement sleep (REMS) substrates of insomnia and nightmares, with an 
emphasis on REMS fragmentation. For future investigations of stress-induced sleep changes, we recommend a 
focus on tonic, phasic and other microarchitectural REMS measures. Power spectral density analysis of the sleep 
EEG should also be utilized. Animal models with high construct validity can provide insight into gender and time 
following stressor exposure as moderating variables. Ultimately, preclinical studies with translational potential 
will lead to improved treatment for stress-related sleep disturbances.   

1. Introduction to the effects of stress on sleep 

Sleep disturbance is practically ubiquitous among mental disorders. 
Across diverse trauma-exposed clinical populations, sleep disturbances 
are frequently reported in both the acute aftermath of a traumatic event 
(Mellman et al., 2007) and chronically (Sharon et al., 2009). Of these 
disturbances, the most common sleep-related phenotypes observed in 
posttraumatic stress disorder (PTSD) are insomnia and recurrent 
nightmares, which we will discuss in detail below. Our discussions here 
add to the existing literature on stress, sleep and PTSD (Natraj and 
Murkar, 2023; Sanford et al., 2023; Murkar, 2018) by focusing on both 
acute and chronic stress experiences and on REMS fragmentation in 
PTSD which has received less attention than other characteristics of 
sleep architecture. For theoretical models of sleep disturbances under-
lying PTSD, please see (El-Solh et al., 2018; Krakow et al., 2015). 

Among individuals with PTSD, 70–90% report insomnia (Maher 
et al., 2006), which also may be an independent risk factor for the 
development of PTSD (Wang et al., 2018; Gehrman et al., 2013). Poly-
somnographic (PSG) studies of insomnia have shown a disruption of 
sleep continuity, which may be most pronounced during REMS (Baglioni 

et al., 2014; Riemann et al., 2012; Feige et al., 2008; Wassing et al., 
2016). Insomnia in PTSD has been quantified as long sleep onset latency 
(SOL; defined as time to transition to sleep from waking), reduced sleep 
efficiency (total sleep time/total recording time), and frequent awak-
enings after sleep onset (Neylan et al., 2003; Werner et al., 2016). A 
recent meta-analysis of PSG studies in PTSD patients compared to 
normal controls provides evidence for increased wake time after sleep 
onset (WASO) and reduced total sleep time and slow wave sleep (SWS) 
percentage (SWS time/total sleep time) (Zhang et al., 2019). Decreased 
sleep efficiency and SWS percentage were significantly associated with 
increased PTSD symptom severity (Zhang et al., 2019). 

A hallmark of PTSD is re-experiencing the traumatic event as re-
petitive trauma-related nightmares (Ross et al., 1989; Mellman et al., 
1995; Germain, 2013). These nightmares, which are reported by 
approximately 80% of PTSD patients, are long, frightening dreams that 
culminate in awakening (DSM-5, American Psychiatric Association, 
2013; Kilpatrick et al., 1994). They may occur in non-REMS (NREMS) as 
well as REMS (Phelps et al., 2018; Mysliwiec et al., 2018), and they are 
associated with leg movements and increased heart rate on awakening 
(Phelps et al., 2018). REMS phasic activity typically is measured 

* Corresponding author. Stress Neurobiology Division Department of Anesthesiology and Critical Care Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 
E-mail address: bhatnagars@chop.edu (S. Bhatnagar).  

Contents lists available at ScienceDirect 

Neurobiology of Stress 

journal homepage: www.elsevier.com/locate/ynstr 

https://doi.org/10.1016/j.ynstr.2023.100588 
Received 16 January 2023; Received in revised form 3 November 2023; Accepted 5 November 2023   

mailto:bhatnagars@chop.edu
www.sciencedirect.com/science/journal/23522895
https://www.elsevier.com/locate/ynstr
https://doi.org/10.1016/j.ynstr.2023.100588
https://doi.org/10.1016/j.ynstr.2023.100588
https://doi.org/10.1016/j.ynstr.2023.100588
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neurobiology of Stress 28 (2024) 100588

2

electrooculographically in clinical studies. Increased REM density 
(number of rapid eye movements/total REMS time), which has been 
related to the processing of fearful stimuli (Datta, 2000; Mavanji et al., 
2003), and REMS fragmentation (a disruption of REMS continuity), 
which has been related to nightmare production, have been described in 
PTSD (Kobayashi et al., 2007; Habukawa et al., 2018; Ross et al., 1994). 
Younger individuals with PTSD, in particular, may show a decrease in 
REMS percentage (REMS time/total sleep time) (Zhang et al., 2019). 

We view the relationship between REMS and traumatic stress as a 
critical area of study. Along with tonic REMS, phasic activity, power 
spectral densities (PSD), and other aspects of REMS microarchitecture 
should be explored. Such work also may provide insight into the 
mechanisms and management of insomnia, arguably a REMS disorder 
(Riemann et al., 2012; Feige et al., 2008). As noted above, NREMS 
mechanisms also have been implicated in sleep changes following 
traumatization and require further investigation; however, that is 
beyond the scope of this manuscript. 

2. Overview of preclinical studies of effects of stress on sleep 

Although there have been advances in the treatment of stress-related 
sleep disturbances (Raskind et al., 2002; Taylor and Pruiksma, 2014; 
Zhang et al., 2020), many patients remain symptomatic. It has been 
essential to utilize basic as well as human research to understand how 
emotional stress affects sleep and to translate these findings to advances 
in clinical care. Animal models can control for variables that have 
contributed to some divergence in PSG and other clinical findings 
(Kobayashi et al., 2007). For example, animal models are able to take a 
developmental perspective, accounting for time following stress pre-
sentation. Interestingly, clinical research has indicated that both REMS 
percentage and REMS segment length increase with time 
post-traumatization (Ross, 2014; Mellman et al., 2014). Animal models 
of the PTSD sleep disturbance have also begun to consider sex differ-
ences. This is of great importance because PTSD and acute stress dis-
order, with characteristic symptoms of PTSD persisting not longer than a 
month after trauma exposure, occur more commonly in women than 
men [Olff et al., 2007; Schenker et al., 2022; Richards et al., 2022]. 
Moreover, nightmares are reported more frequently by women 
[Richards et al., 2013]. 

Investigators have struggled to establish animal models of PTSD with 
high face validity. Most models do not include sleep measures and do not 
consider sex differences. The construct validity of an animal model de-
pends on its parallels with human behavior. Although rodent sleep and 
human sleep have different sleep cycle durations and circadian timing, 
insomnia-like and nightmare-like features can be observed in rodents 
after stress exposure (McCarley, 2007; McKenna et al., 2007, 2008). We 
highlight paradigms that have assessed changes over time following 
stress presentation. These include repeated social defeat, repeated re-
straint stress, and fear conditioning (Papale et al., 2005; DaSilva et al., 
2011b; Laitman et al., 2011; MacLean et al., 2012; Yu et al., 2015; 
Sharma et al., 2018; Grafe et al., 2020; Gargiulo et al., 2021). Repeated 
stress paradigms may be less likely to produce simple rebound changes 
in sleep compared to acute stress paradigms (Kant et al., 1995; Pawlyk 
et al., 2008) and therefore may be more translationally relevant. Despite 
the challenges in developing animal models due to variations in exper-
imental methods, variations in trauma exposure factors (e.g., type and 
time since exposure) and in heterogeneity of samples, animal models 
offer an important opportunity to explore this variability and the 
developmental responses to trauma by controlling the conditions before, 
during, and after trauma exposure. 

3. Insomnia-like features in animal models of relevance to PTSD 

Insomnia-like features that can be quantified in animal models of 
stress include increased SOL, reduced sleep efficiency, increased WASO, 
and increased number of awakenings. The most robust effects of stress 

on SOL have been observed in animal models using predator or 
conspecific odor. Exposure to a cage soiled by a conspecific increased the 
latency to the onset of SWS in rats, and this effect was reversed by a dual 
orexin receptor antagonist (Gamble et al., 2021). Similarly, mice 
exposed to predator odor had persistent difficulty falling asleep 
(demonstrated by increased SWS and REMS latencies, which are the 
times to enter into these phases of sleep after initial sleep onset) and an 
increase in the frequency of waking bouts during the light period 
(Sharma et al., 2018). 

Repeated stress has been found to reduce sleep efficiency. Daily 
immobilization stress (22h/day) significantly reduced sleep efficiency 
within two days, and the effect lasted at least four days (Papale et al., 
2005). Compared to four days of foot shock (intermittent 2 mA shocks 
for 1h twice a day), swim stress (twice a day for 1h), and cold stress (1h 
at 4 ◦C per day), immobilization stress was more effective in reducing 
sleep efficiency, likely due to its longer duration (Papale et al., 2005). 
The decrease in sleep efficiency produced by fear conditioning (Pawlyk 
et al., 2005) could be reversed by social partnering (DaSilva et al., 
2011a, 2017), a finding consistent with the observation that social 
interaction can increase sleep efficiency in humans (in a general civilian 
population and in soldiers returning from deployment; Cacioppo et al., 
2002; Pietrzak et al., 2009). 

Repeated social defeat and repeated restraint have been reported to 
increase WASO in rodents. Rats coping passively in response to defeat 
(characterized by rapid submission), compared to actively coping rats 
(characterized by resistance to defeat), showed an increase in WASO 
after seven days of social defeat, an effect that persisted two weeks after 
the end of social defeat (Grafe et al., 2020). Also, two exposures to social 
defeat increased the number of awakenings from sleep four days later. 
These findings demonstrate the importance of examining sleep several 
days or possibly weeks past the stressful experience (Kinn et al., 2008; 
Kinn Rød et al., 2014). Repeated restraint stress in rats increased the 
percent of time spent awake during the light period (Gargiulo et al., 
2021). This increase was more pronounced in females and persisted 
during recovery days in females only. This finding aligns with a 
meta-regression analysis in humans that found that studies with a higher 
percentage of female patients showed increased WASO in PTSD patients 
compared to controls, which the authors hypothesized might be due to 
sex differences in the orexin system (Zhang et al., 2020). 

4. Nightmare-like features in animal models of relevance to 
PTSD 

As mentioned previously, nightmares in PTSD are associated with leg 
movements on awakening (Phelps et al., 2018). Thus, animal studies 
have aimed to capture motor activity occurring as an animal awakens 
from sleep via PSG recordings and behavioral observation, which may 
reflect one aspect of nightmare-like behavior. Repeated social defeat, 
repeated restraint, and foot shock stress all have been shown to produce 
robust motor activity during awakening. Rats using an active coping 
strategy in response to social defeat showed a less exaggerated motor 
response to waking from REMS than rats using a passive coping strategy 
(Grafe et al., 2020), suggesting that active coping may protect against 
the development of nightmare-like behavior. Repeated restraint stress 
has been shown to exaggerate motor responses to waking from REMS in 
female, but not male, rats, highlighting an important sex difference in 
the sleep response to stress (Gargiulo et al., 2021). Rats exposed to foot 
shock stress exhibited startled awakening (suddenly waking from un-
disturbed sleep with jumping behavior) (Yu et al., 2016). Interestingly, 
rats that observed another rat undergo foot shock stress reacted simi-
larly, indicating that witnessing the stressor applied to a conspecific is 
sufficient to induce a nightmare-like response to stress (Yu et al., 2016). 
There is evidence that orexins, norepinephrine, and serotonin acting in 
brain regions important for fear memory retrieval during sleep are 
relevant neural substrates (Yu et al., 2015). In sum, various animal stress 
paradigms can influence motor activity during waking from sleep, with 
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both coping strategy and sex as modifiers. Examination of other possible 
nightmare-related measures, including heart and respiratory rates dur-
ing waking, are likely to be informative as well (Stam, 2007) 

5. REMS fragmentation in animal models of relevance to PTSD 

REMS fragmentation has been described in PTSD (Mellman et al., 
2002; Riemann et al., 2012). Some research suggests that such frag-
mentation in the early aftermath of trauma predicts the development of 
PTSD (Mellman et al., 2002; Breslau et al., 2004; Habukawa et al., 
2007). Alternatively, REMS discontinuity may predate trauma exposure 
and increase susceptibility to PTSD (Lerner et al., 2017). In preclinical 
studies, REMS fragmentation has been analyzed by classifying single and 
sequential REMS episodes (Sin-REMS and Seq-REMS, respectively) 
(Amici et al., 1994). Sin-REMS is comprised of REMS episodes preceded 
and followed by > 3-min intervals. Seq-REMS is comprised of REMS 
episodes separated by ≤ 3-min intervals and tending to occur in clusters. 
Fear conditioning was found to increase REMS fragmentation, here 
defined as a shift toward Seq-REMS, in stress-sensitive Wistar-Kyoto rats 
(DaSilva et al., 2011a, 2011b). The alpha adrenoceptor antagonist pra-
zosin, which may effectively treat the nightmare disturbance in PTSD 
patients (Raskind et al., 2002), reduced this fragmentation (Laitman 
et al., 2011; Laitman et al., 2014), as did social partnering (DaSilva et al., 
2011a). Repeated social defeat and repeated restraint have failed to 
produce long-lasting REMS fragmentation (Grafe et al., 2020; Gargiulo 
et al., 2021). 

Wassing et al. (2016) posited a link between REMS fragmentation 
and heightened REMS phasic activity in humans. They defined “restless 
REMS” as REMS with a high number of phasic events and suggested that 
restless REMS interferes with the ability to manage emotional distress 
(Wassing et al., 2016). Work in animals that has implicated REMS phasic 
activity in the processing of fearful stimuli (Datta, 2000; Mavanji et al., 
2003) is broadly consistent with this hypothesis. Studying fear condi-
tioning in rats, DaSilva et al. (2011b) suggested that early failure to 
mount a strong phasic REMS response to a stressful experience (here 
measured as nuchal myoclonic twitch density) could contribute to the 
increase in REMS phasic activity that has been observed in humans with 
chronic PTSD (Kobayashi et al., 2007). 

6. Power spectral density (PSD) signatures in animal models of 
relevance to PTSD 

PSD describes the distribution of signal power over frequency 
(Dressler et al., 2004) and can inform how stress changes brain activity 
during wake and sleep states (Vyazovskiy and Delogu, 2014). Studies in 
humans have found an increase in beta band power and a decrease in 
alpha band power in psychologically stressful contexts (Hinrichs and 
Machleidt, 1992; Hayashida et al., 2010; Awang et al., 2011; Rajendran 
et al., 2021). The beta frequency band has been associated with an in-
crease in mental workload and concentration under psychological stress 
(Palacios-García et al., 2021). In contrast, the alpha frequency band may 
indicate a relaxed state, with lower mental vigilance (MacLean et al., 
2012; Kamzanova et al., 2014; Fernandez Rojas et al., 2020). 

Zhang et al. (2019) conducted a meta-analysis of PSD in PTSD sleep. 
Compared to trauma-exposed controls, PTSD-diagnosed patients have 
exhibited reduced delta band power and increased power in higher 
frequency bands (de Boer et al., 2019; Wang et al., 2019). Decreased 
beta band power in REMS as well as NREMS also has been observed 
(Denis et al., 2021), and there are reports of changes in spindle range 
activity (de Boer et al., 2019; van der Heijden et al., 2022; Wang et al., 
2020). In PTSD-diagnosed patients compared to trauma-exposed con-
trols (de Boer et al., 2019; Denis et al., 2021), an increase in slow 
oscillation power during REMS, which was found together with power 
loss in high frequency bands, was strongly correlated with nightmare 
reports. Increased high frequency gamma band power also has been 
observed (Wang et al., 2019). It has been suggested that high frequency 

EEG activity during REMS is an index of fragmented REMS, which in-
terferes with the resolution of emotional distress (Wassing et al., 2016; 
van der Helm et al., 2011). 

In various animal models of repeated stress, increased beta power 
and lower delta power generally have been observed in both NREMS and 
REMS, indicating less deep and restful sleep (Fenzl et al., 2011; Nedel-
covych et al., 2015). PSD analysis of the sleep EEG has helped to identify 
mechanisms of REMS fragmentation. Gamma oscillations in the EEG are 
synchronized throughout the brain in periods of focused attention dur-
ing REMS as well as waking, which may indicate a temporal binding 
process (Bragin A et al., 1995; Jensen et al. (2007), Laitman et al. (2011) 
found that relative gamma power at REMS transitions was low in 
fear-conditioned, stress-sensitive Wistar-Kyoto compared to Wistar rats. 
Gamma oscillations during REMS have been associated with memory 
processing and dream formation (Cantero et al., 2004; Kahn et al., 
1997). Thus, PSD data may be important for both detecting the memory 
processes occurring after trauma, as well as the quality of the subsequent 
sleep. The PSD during application of a stressor has not been studied 
systematically in animal models. Findings could identify brain bio-
markers of the development of sleep disturbances in PTSD (Hinrichs and 
Machleidt, 1992; Hayashida et al., 2010; Awang et al., 2011; Rajendran 
et al., 2021). Further, there is not a good understanding of how acute 
stress compared to repeated stress may impact REMS and how long the 
impacts endure. This is an important issue for future consideration as 
PTSD may be related to a single traumatic event or repeated events and 
the mechanisms underlying changes in REMS may differ between acute 
and repeated stressful experiences. 

7. Neurobiological substrates of REMS fragmentation 

The neurobiological substrates of REMS fragmentation have not been 
well studied. Investigation of these will depend on knowledge of the 
biology of normal REMS. It is still not completely understood how REMS 
is induced and regulated. However, previous research suggests that 
REMS is partially regulated through the interplays between cholinergic 
and monoaminergic neurons in the brainstem (Wang et al., 2015). 
Specifically, a role for the locus coeruleus, which has 
norepinephrine-containing cells that are active during wake but cease 
firing during normal REMS (known as “REM off” neurons), is likely. 
Moreover, cholinergic neurons (known as “REM on” neurons) that 
project to the nucleus point oralis can induce REMS. 

Beyond the interaction between norepinephrine and acetylcholine in 
REMS, wake-promoting hypothalamic orexin neurons are thought to 
play a key role in REMS regulation. Blocking orexin activity can reduce 
arousal during sleep and increase REMS percentage (Kaplan et al., 
2022). A recent evaluation of the dual orexin receptor antagonist 
suvorexant compared to placebo in a sample of 37 patients with 
trauma-related insomnia found no group differences in improvement of 
insomnia and other PTSD symptoms (Mellman et al., 2022). Exploratory 
within-group analyses of the suvorexant group found increases in REMS 
percentage and segment duration, with the latter associated with 
improvement in PTSD symptom severity. Notably, no emergence of 
nightmare events was observed within the treatment group. Enhancing 
REMS continuity by targeting the orexin system may hold promise for 
treating trauma-associated insomnia and nightmares and should be a 
focus of future clinical and preclinical investigations. 

As discussed by others (Pace-Schott et al., 2015; Bottary et al., 2023; 
Colvonen et al., 2019; Davidson and Pace-Schott, 2020), there is a strong 
link between fear learning processes and sleep in trauma. Mechanisms 
underlying fear learning including extinction and extinction retention 
involve the amygdala and hippocampus and other regions (for a dis-
cussion of these mechanisms, see Ressler et al., 2022). However, the 
mechanisms through which sleep impacts fear learning related to stress 
or trauma are not well described and deserve attention. Other preclinical 
data have begun to uncover another possible neural mechanism by 
which stress may induce REMS fragmentation. Specifically, social defeat 
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stress is thought to induce REMS fragmentation through a pathway from 
the prefrontal cortex (PFC) to the ventrolateral preoptic area (VLPO) 
(Chouvaeff et al., 2022). In vivo activation of PFC-VLPO projections in-
terrupts ongoing REMS in favor of NREMS, leading to fragmented REM 
bouts. This exciting discovery could explain how top-down regulation is 
recruited in stressful situations to induce REMS fragmentation. 

8. Conclusions 

It is crucial that future work in animal models of PTSD includes 
insomnia-like and nightmare-like sleep measures. The former may have 
relevance to chronic insomnia disorder as well. Repeated stress models, 
in particular, may hold promise for identifying the neural mechanisms of 
sleep disruption in PTSD. Previous studies suggest the importance of 
REMS fragmentation, which can best be explored by incorporating 
phasic REMS measures, Sin-REMS/Seq-REMS analysis, and PSD into 
experimental designs. Sex differences in the response of sleep to stress 
require further investigation (Neylan et al., 2003; Otte et al., 2007; 
Schenker et al., 2021), especially as both PTSD and insomnia are more 
prevalent in women (DSM-5) and PTSD-diagnosed females have higher 
prevalences of insomnia and nightmares (Zhang and Wing, 2006; 
Habukawa et al., 2018, Richards et al., 2022; Schencker et al., 2022). 

Overarching perspectives  

- Perspective 1: Studies in animals of PTSD-like sleep disturbances 
should use stress models that allow for a developmental view of the 
response to trauma(s).  

- Perspective 2: Studies in animals of PTSD-like sleep disturbances 
should examine sex differences because of the clear sex differences in 
the effects of stress and in clinical studies of PTSD.  

- Perspective 3: Studies in animals of PTSD-like sleep disturbances 
should focus on REMS continuity using several measures of REMS 
microarchitecture. 
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