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The analysis of ribonucleic acids (RNA) by mass spectrometry
has been a valuable analytical approach for more than 25 years.
In fact, mass spectrometry has become a method of choice for
the analysis of modified nucleosides from RNA isolated out of
biological samples. This review summarizes recent progress that
has been made in both nucleoside and oligonucleotide mass
spectral analysis. Applications of mass spectrometry in the
identification, characterization and quantification of modified
nucleosides are discussed. At the oligonucleotide level, advances
in modern mass spectrometry approaches combined with the
standard RNA modification mapping protocol enable the
characterization of RNAs of varying lengths ranging from low
molecular weight short interfering RNAs (siRNAs) to the
extremely large 23 S rRNAs. New variations and improvements
to this protocol are reviewed, including top-down strategies, as
these developments now enable qualitative and quantitative
measurements of RNA modification patterns in a variety of
biological systems.

Introduction

Ribonucleic acids (RNAs) play a critical role in both transcrip-
tion and translation. A unique feature of many RNAs is that they
are significantly modified post-transcriptionally, with such modi-
fications believed to have important structural and functional
roles.1 Currently, there are >100 post-transcriptional modifica-
tions known in RNA.2 Due to these post-transcriptional modifi-
cations, methods that can provide both sequence and
modification status of RNAs are required. Mass spectrometry
(MS) has proven to be a powerful analytical tool for revealing
both pieces of information. This review will cover developments
in the field of MS of modified ribonucleosides and ribonucleic
acids over the past decade. For a more historical description of

this area, a number of excellent reviews and book chapters can be
consulted.3-10

When RNA modifications are viewed through the lens of MS,
there are essentially 3 different sample types one could analyze:
nucleosides and nucleotides (treated in MS as small molecules),
oligonucleotides, and intact nucleic acids (the latter 2 both treated
as larger biopolymers). Techniques and strategies in small molecule
MS – usually arising from developments in organic mass spec-
trometry – have not only been applied to nucleosides and nucleoti-
des, but also to oligonucleotides. As these well-established
approaches are utilized on larger and more complex samples, the
information that one can obtain about the biological status of the
sample increases. Thus, a goal of this review is to illustrate how
these analytical strategies yield biological insights pertinent to mod-
ified RNAs. In this manner, we hope the reader will better appreci-
ate the capabilities of MS in the field of RNA modifications and
become more aware of the possibilities of including MS to increase
the quality and quantity of biological information available.

Modified Nucleosides and Nucleotides

Identification of new modified nucleosides
As of the writing of this review, nearly 100% of the modified

nucleosides that are reported in the literature and are collected in
one of the 2 databases devoted to modified nucleosides – Modo-
mics11 and The RNA Modification Database12 – were either ini-
tially discovered by MS or were structurally characterized, in part
or in total, by MS. In fact, as with any low molecular weight
organic compound, high performance mass spectrometry data,
that is molecular weight measurements obtained at high mass
measurement accuracy, is necessary for publishing the structure
of any new modification. Moreover, MS can reveal the possibility
of new modifications, even ahead of the final structural character-
ization and identification. For example, while determining the
modified sequence of tRNALys from Trypanosoma brucei, 3-(3-
amino-3-carboxypropyl)-5,6-dihydrouridine (acp3D) was found
in the variable loop by Kirpekar and co-workers.13 A second
modification was also found in this tRNA at position 37 through
the unique mass shift detected by mass spectrometry; however
sample limitations precluded complete characterization of this
modification.
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An illustration of the utility of MS for the characterization of
new modified nucleosides is the structural determination of the
modified cytidine, agmatidine. Agmatidine was found in Archaea
to be present in the wobble position of tRNAIle instead of the
common lysidine modification that is found in Bacteria.14,15

When the enzyme responsible for the catalysis of agmatidine was
knocked out and the tRNA with the anticodon UAU was
expressed, a new modification was discovered at the wobble posi-
tion. This modification was found to contain a cyanomethyl
group on the uridine,16 although interestingly this modification
appears to be limited to organisms within the euryarchaea
branch.

Even in established, well-studied systems such as Escherichia
coli tRNA, MS has revealed new and complex modifications.
Geranylated uridines (Fig. 1) have been identified at position 34,
the wobble position, where a large geranyl group is found on the
sulfur at the second position of the base.17,18 This modification
was found to be catalyzed by selU through MS analysis of nucleo-
sides from knock out strains and in vitro activity. Besides E. coli,
the geranylated modifications has also been shown to be present

in other bacteria including Enterobacter aerogenes, Pseudomonas
aeruginosa, and Salmonella typhimurium.18 The discovery of
agmatidine, cyanomethyluridine and these geranylated uridines
is consistent with the cellular use of metabolic intermediates and
products as reagents for RNA modification.19

A rather unique example of an RNA modification that appears
to have been overlooked for many years was reported by Suzuki
and colleagues.20 N6-threonylcarbamoyladenosine, t6A, is a com-
mon tRNA modification that has been identified in Bacteria and
Eukaryotes. Suzuki and colleagues discovered this modification
actually exists in a cyclic form, ct6A, in most organisms (Fig. 2).
The cyclic modification can be converted to t6A depending on
isolation conditions. The ct6A is labile in the presence of amine
containing buffers and can form adducts with amine containing
buffers such as Tris and ethanolamine.20 While this opening of
the cyclic modification does not greatly change the data that is
known for tRNAs to date, this report does illustrate that the final
mass spectrometry data obtained on modifications can be influ-
enced by both sample isolation and mass spectrometry experi-
mental conditions.

Modification networks – quantifying changes in modified
nucleosides

Staying consistent with the desire in the natural and physical
sciences to examine systems of greater complexity, MS is now
used to provide the complete census of modified nucleosides
within any particular system and – more powerfully – can be
used to reveal the dynamics of modified nucleosides within a sys-
tem. The paradigmatic example was the work of Dedon and cow-
orkers, who studied the changes in modified nucleoside
abundance for yeast as the organism was subjected to different
stress conditions.21

In this study, a single labeled deoxyadenosine standard was
mixed with the sample to allow the authors to normalize the sig-
nal response from analysis to analysis and from sample to sample.
They then found statistically significant differences in the signal
response for 23 modifications between untreated and treated
yeast cells. This work led them to identify modifications that
decreased or increased with respect to the untreated sample when
cells were treated with varying amounts of oxidizing reagents.
The largest differences found resulted from hydrogen peroxide
treatment where 5-methylcytidine (m5C), 20-O-methylcytidine
(Cm) and N2,N2-dimethylguanosine (m2

2G) increased in abun-
dance while 5-methyluridine (m5U), 1-methylguanosine (m1G),
N2-methylguanosine (m2G), 5-carbamoylmethyl-2-thiouridine
(mcm5s2U), N6-isopentenyladenosine (i6A), wybutosine (yW),
and 1-methyladenosine (m1A) decreased in abundance (Fig. 3).
In accordance with these finding, knock out mutants of trm4
(catalyzes m5C) and trm7 (catalyzes Cm) were found to be less
viable after hydrogen peroxide exposure as compared to wild
type yeast.21 The capability to routinely monitor dynamic
changes in RNA modification levels22 enabled Dedon and Begley
to propose a regulatory model that correlates such changes with
the transcriptional and translational needs of an organism.23

While an internal standard can provide a means to compare 2
samples, a more accurate determination of the quantity of

Figure 1. Structures of geranylated uridines: geranylated 2-thiouridine
(ges2U), geranylated 5-methylaminomethyl-2-thiouridine (mnm5ges2U), and
geranylated 5-carboxymethylaminomethyl-2-thiouridine (cmnm5ges2U).
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individual nucleosides can be obtained by using an isotope dilu-
tion method.24 Isotope dilution methods require adding a known
amount of an isotopically labeled standard to quantify the
amount of that nucleoside. The direct comparison of the signal
of the unlabeled sample and the labeled standard allows a very
accurate and reproducible measurement. Although isotope dilu-
tion has been used in the past to quantify individual modified
nucleosides, recently the Carell group synthesized 12 isotopically
labeled standards to measure the levels of multiple nucleosides in
8 tissues from mouse and pig.25 By using well-calibrated analyti-
cal measurements, they showed that the levels of individual
nucleosides vary considerably from one tissue type to another.

While the Carell group’s approach is very appealing for quan-
tification purposes, the synthesis of isotopically labeled modified
nucleosides for every modification of interest is not a possibility
for every lab. To circumvent this issue, Helm and co-workers

used isotopically labeled media to label every nucleoside from an
RNA extract with either 15N or 13C. As an example, 5-methyluri-
dine, m5U (or ribosylthymidine, rT), is labeled with either 10
13C atoms or 2 15N atoms shifting the mass by C10 Da or C2
Da, respectively (Fig. 4).26 They then measured the absolute
quantity of these labeled nucleosides using unlabeled, commer-
cially available standards. This technique thus allows for the addi-
tion of the quantified, isotopically labeled sample to test samples
for quantification of a wide array of modified nucleosides. This
strategy also allowed for the identification of unknown modifica-
tions with the added benefit of determining the number of car-
bon and nitrogen atoms in the new modifications. With these
various options for quantifying large numbers of modified
nucleosides across multiple samples, it appears likely that mass
spectrometry will become an even more important tool as modi-
fications are evaluated within a metabolomics framework.27

Figure 2. Structural determination of N394. (A) The CID spectra of unlabeled (top) and deuterium (D)-labeled (bottom) ct6A bases (BH2
C). The product

ions are assigned in the chemical structures of the ct6A base. D-labeled product ions are shown in red. Unassigned spectra containing the D-labeled por-
tion are indicated by asterisks. (B) LC/MS coinjection of the synthetic and natural ct6A. UV traces (254 nm) and mass chromatograms (m/z 395) of syn-
thetic ct6A (top), natural ct6A in E. coli total RNA (middle) and co-injected natural and synthetic ct6A (bottom). ct6A peaks in the UV trace are indicated by
red arrows. (C) The chemical structures of ct6A and t6A are mutually convertible by hydration and dehydration. Reprinted by permission from Macmillan
Publishers Ltd: Nature Chemical Biology, volume 9, pages 105–111 (2013).
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Mass spectrometry analysis of modified nucleotides
Although nucleosides and nucleotides are quite similar – dif-

fering by only a phosphate—and are both analyzed by the techni-
ques and instrumentation of small molecule MS, progress in the
area of nucleotide MS analysis is much more limited than what
has been illustrated for nucleosides. One of the main limiting fac-
tors is the ability to separate the modified nucleotides by high
performance liquid chromatography (HPLC) prior to detection.
Fabris and coworkers have utilized the ability of ion mobility MS
to provide separation of nucleotides based on the collisional cross

section in the gas phase.28 The desire would
be to separate every nucleotide based on the
collisional cross section or mass. At this time
commercially available instruments do not
have the resolving power in the ion mobility
cell to separate a large number of structurally
similar nucleotides, such as methylated
nucleotides that simply differ by the methyl-
ation site along the aromatic ring or ribose
sugar. Nevertheless, potential advantages
arising from the ability of electrospray ioni-
zation (ESI) to ionize nucleotides preferen-
tially over nucleosides suggests more efforts
in this area will be forthcoming.

Modified Oligonucleotides – RNA
Modification Mapping by Mass

Spectrometry

RNA modification mapping of tRNAs
and rRNAs

Not long after the development of ioniza-
tion methods such as ESI and matrix-assisted
laser desorption/ionization (MALDI) that
are capable of sensitive analysis of biomole-
cules, MS of oligonucleotides was
reported.29,30 This area of analysis can be
separated into 2 sample types – synthetically
generated modified oligonucleotides, such as
those created for therapeutic applications,
and biologically isolated modified oligonu-
cleotides. For the former, direct mass spec-
trometry sequencing is often used to
characterize these synthetic modified oligo-
nucleotides.31 Within the latter type, while
direct analysis of smaller RNAs, such as
small interfering or micro RNAs (siRNAs
and miRNAs) has been reported,32 MS
approaches for the analysis of large RNAs,
such as tRNAs (tRNAs) and rRNAs
(rRNAs), are primarily used to map modi-
fied nucleosides onto an already known
RNA sequence. These RNA modification
mapping approaches typically seek to charac-
terize modified large RNAs through the ini-
tial generation of smaller oligonucleotides,

which may or may not be modified, as these smaller oligonucleo-
tides are quite compatible with modern techniques and instru-
mentation available in MS. Keeping with the overall focus of this
review, MS analysis of therapeutic oligonucleotides will not be
covered in any further detail, although there are several excellent
summaries of advances in the field that the interested reader may
consult for further information.31,33-35

Ribonuclease (RNase) fingerprinting is a biochemical
approach developed in the early 1960’s for sequence and

Figure 3. Hierarchical cluster analysis of toxicant-induced changes in tRNA modification spectra
in wild-type yeast exposed to concentrations of MMS, H2O2, NaOCl, and NaAsO2 producing 20%,
50%, and 80% cytotoxicity. The top-left color bar indicates the range of fold change values.
Figure reproduced from ref (21).
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structural analysis of
RNA.36 As originally devel-
oped, a specific RNase such
as RNase T1, which cleaves
30 of any unmodified gua-
nosine residues, is used to
digest a larger RNA into
smaller digestion products.
These products were end-
labeled, separated by iono-
phoresis (electrophoresis)
and the resulting bands
detected by radioisotope
imaging. The presence of
modified nucleosides in T1
digestion products was
determined by anomalous
migration within the gel. In
1993, »30 years after the
original, McCloskey created
a mass spectrometry-based
protocol, which obviated
the need for radiolabeling
and gel separation
(Fig. 5).37 By using tandem
mass spectrometry (MS/
MS) on HPLC separated RNase T1 digestion products, the
McCloskey RNA modification mapping approach became the
standard technique in MS for placing modified nucleosides onto
the primary sequence of large RNAs.38-40

RNA modification mapping for an individual RNA typical
begins by obtaining information on all of the modified nucleo-
sides present in the RNA through LC-MS/MS analysis of nucleo-
side digests (represented by the left side of Fig. 5), which was
described above. This information simplifies the analysis of sub-
sequent RNase digestion products and also provides identifica-
tion on specific modifications, such as methylated nucleosides,
that cannot be directly determined by RNase digestion. The sam-
ple is then digested with the guanine-specific RNase T1, the pyr-
midine-selective RNase A, and/or the purine-selective RNase
U2. These RNase digestion products can be separated by HPLC
and concurrently analyzed by MS/MS (as illustrated on the right
side of Fig. 5).

MS/MS is commonly implemented in RNA modification
mapping by MS as the fragmentation of oligonucleotides has
been studied to the point where one can now predict the frag-
ment ions that may be produced by a particular sequence.41-44

Because one can predict the fragment ions produced, one can
also determine the sequence of an oligonucleotide based on the
mass and the fragment ions generated de novo. From the precur-
sor mass a list of potential nucleotide compositions can be gener-
ated, and depending on the enzyme used, some limitations of
compositions can be incorporated into the analysis scheme. For
instance, RNase T1 digests on the 3’ end of unmodified guano-
sine,45 and has been found to be inhibited by N2-methylguano-
sine (m2G) in certain instances.46 By limiting the number of

guanosines to one in a composition, the number of compositions
to be evaluated against the experimental data is reduced. With
this limited number of potential compositions, the resulting

Figure 4. Information obtained by LC-MS/MS of multiplexed isotope RNA labeling, displayed for m5U as a typical
ubiquitous modification. Note that the spectrum is an overlay of 3 consecutive injections. Reproduced from Ref. (26)
with permission from The Royal Society of Chemistry.

Figure 5. Protocol for the determination of post-transcriptionally modi-
fied nucleosides in RNA.
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MS/MS data can be analyzed to determine the composition that
is correct and the order of the nucleotides in the sequence.

This RNA modification mapping process is illustrated in
Figure 6. From a separate LC-MS/MS analysis of the nucleoside
digest of this RNA (not shown in this figure), the nucleosides
determined to be present in the sample are the typical C, U, G
and A found in RNA as well as modified nucleosides dihydrouri-
dine (D), pseudouridine (C), 5-methylcytosine (m5C), m5U,
m2G, and queuosine (Q). With this information in hand, the
tRNA was then digested with RNase T1 and the resulting diges-
tion products were analyzed by LC-MS/MS to determine where
each of these modified nucleosides were to be located on the pri-
mary RNA sequence. The digestion product of most interest for
this work was that of the anticodon of the tRNA with the
sequence CCU[Q]UCA[m5C]Gp.46 This oligonucleotide was
found to elute at 39.0 min. with other nearly co-eluting oligonu-
cleotides. The sequence of this RNase T1 digestion product is
confirmed by collision induced dissociation tandem mass spec-
trometry (CID MS/MS). The fragmentation obtained by CID

produces primarily –c and –y ions for the canonical nucleotides
and most modified nucleotides (Fig. 7).41-43,47,48 Therefore the
MS/MS data is inspected for the expected product ions for this
oligonucleotide. The same analysis can then be performed for
every detectable oligonucleotide to map each modification
detected onto the gene sequence, and finally arriving at the com-
plete modified sequence (Fig. 6). The procedure is also repeated
with other RNase digestions, if necessary, to ensure appropriate
sequence coverage of the RNA of interest.46

Most commonly, the RNA modification mapping approach
has been used for the placement of modified nucleosides onto a
single RNA sequence, although large numbers of smaller RNA
sequences or very large (e.g., rRNA) sequences can be analyzed in
a serial fashion. For example, the Suzuki group used their Chap-
let chromatography system49 to isolate each bovine mitochon-
drial tRNA for LC-MS/MS analysis of both the nucleosides and
oligonucleotide digests. The number of characterized bovine
mitochondrial tRNAs was increased from 11 to 22 tRNAs, and 5
tRNAs that were previously characterized were found to contain

Figure 6. Schizosaccharomyces pombe Asp-tRNAGUC contains queuosine at position 34. (A) LC-MS/MS was performed on T1 digested tRNA producing a
total ion chromatogram (TIC). (B) A digestion produce (m/z 1002.6) was found eluting at 39.0 min., as shown by the extracted ion chromatogram (XIC).
The MS spectra at this time point depicts a signal from 3 oligonucleotides CCU[Q]UCA[m5C]Gp (m/z 1504.25¡2 and 1002.58¡3), AAUCCCGp (m/z
1120.33¡2 and 746.67¡3), and UACACAAG>p (m/z 1288.25¡2 and 858.42¡3). (C) Collision induced dissociation of m/z 1002.58 produces the nearly all
expected –c and –y ions for the sequence CCU[Q]UCA[m5C]Gp. (D) Sequence of S. pombe Asp-tRNAGUC. Reprinted and adapted with permission from
ACS Chemical Biology. Copyright 2014 American Chemical Society.
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additional modifications that were originally
not reported or reported as unknown
modifications.50

McCloskey and coworkers, building
extensively on their RNA modification map-
ping protocol,37 have mapped modified
nucleosides onto the sequences of 16S rRNA
from Haloferax volcanii,51 Thermus thermo-
philus,39 and Thermotoga maritima40 by LC-
MS/MS. Also using LC-MS/MS, Rozenski
and coworkers mapped modifications onto
the 16S rRNA sequences of Clostridium ace-
tobutylicum52 and Legionella pneumophila.53

MALDI-MS has been used by Kirpekar and
coworkers to map modifications onto the
sequence of various 23S rRNAs including
the A-loop (helices 90–92) from Sulfolobus
acidocaldarius, Bacillus subtilis, and Bacillus stearothermophilus,54

and the entire 23S rRNAs of Thermus thermophilus55 and Haloar-
cula marismortui,56 as well as the 5S rRNA from Solfolobus acido-
caldarius, Bacillus Stearothermophilus, Halobacterium halobium,
and Haloarcula marismortui.57 As modifications have been
mapped onto various rRNA sequences, a database, which is cur-
rently limited to 16S rRNAs, has been established to enable vari-
ous biochemical and phylogenetic analyses of rRNA
modification patterns (http://rna.rega.kuleuven.be/ssu/).58

Another common application of RNA modification mapping
is for the characterization of modification enzyme substrates and
activity. For example, the human DNA methyltransferase
Dnmt2, which was known to catalyze the production of m5C,
was recently found to also be active on tRNAs.59 The tRNA
sequence location of this methylation was identified by MS, and
Dnmt2 has since been implicated in stress sensitivity. Moreover,
homologs have been found in many organisms outside of verte-
brates including Schizosaccharomyces pombe, Dictyostelium discoi-
deum, Entamoeba hystolitica, and the bacterium Geobacter
sulfurreducens, to name a few.60-63

Limitations of the RNA modification mapping approach
One limitation of the traditional RNA modification mapping

approach by MS is the reliance on mass differences to identify
the sequence location for a modified nucleoside. Modifications
that share the same mass value, e.g., methylations such as 7-meth-
ylguanosine (m7G), 1-methylguanosine (m1G), N2-methylgua-
nosine (m2G) and 2’-O-methylguanosine, cannot be
differentiated within the MS/MS data. In those cases, the total
nucleoside analysis – conducted separately – can be used to limit
the possibilities. In cases where that additional information can-
not resolve the discrepency, one can resort to using phylogenetic
conservation of modification locations (found in the Modomics
Database)11 or to using nucleoside digests of fractionated RNase
digests37 to help clarify modification placement.

A more severe limitation of this RNA modification mapping
approach arises when trying to place pseudouridine onto specific
sequence locations of an RNA. Pseudouridine is a structural iso-
mer of the cannonical nucleoside uridine, thus no mass difference

will be revealed during MS/MS analysis that can differentiate
pseudouridine from uridine. To overcome this limitation, 2 gen-
eral methods for mapping pseudouridines onto primary RNA
sequences by mass spectrometry, derivitization or fragmentation-
based identification have been developed.64-69 The fragmenta-
tion-based method is very convenient because it does not require
special sample treatment, but does require more sample to be
analyzed for the detection of specific product ions from fragmen-
tation that will indicate a pseudouridine is present on the end of
the oligonucleotide or in the middle of the oligonucleotide.64,67

The derivitization method typically involves treating the sample
to chemically label pseudouridines and not uridines, with meth-
ylvinylsulfone, acrylonitrile or 1-cyclohexyl-(2-morpholinoethyl)
carbodiimide metho-p-toluene sulfonate (CMCT), which was
originally used for biochemical pseudouridine detection by
strong stops during primer extension.66,69,70 The added mass
after any of these chemical treatments can easily be detected and
the sites of pseudouridylation identified. However, great care
must be taken to ensure that pseudouridines are labeled selec-
tively. This derivatization strategy was used by the Suzuki group
to place pseudouridines when characterizing the bovine mito-
chondrial tRNAs described above.50

Variations of RNA Modification Mapping

Signature digestion products
Within the past decade, several variations of the RNA modifi-

cation mapping by mass spectrometry approach have been intro-
duced. One of the earliest arose from the realization that RNA
modifications can be used to identify the presence or absence of
specific RNAs through the unique increase in mass brought
about by modification.71 Hossain and Limbach then introduced
the concept of signature digestion products (SDPs), which are
RNase digestion products that can be used for the identification
of the source RNA. Using this method with total E. coli tRNA,
19 tRNA families could be identified using RNase T1 and 13
tRNA families with RNase A (Fig. 8).72 The number of SDPs
can be increased for any given sample by using multiple RNases

Figure 7. The standard nomenclature for oligonucleotide fragmentation during collision-
induced dissociation tandem mass spectrometry (CID-MS/MS). The numbering of a-B, c and w, y
fragments starts from the 50 and 30 terminus, respectively.
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for the analysis.73 The identification of signature digestion prod-
ucts can be performed in MS mode only, but the use of MS/MS
will enhance the number of signature digestion products
identified.74

Isotopic Labeling of
RNase Digestion Products

Another variation has
been to incorporate isoto-
pic labels within RNase
digestion products to
enhance the identification
and/or quantification of
(modified) RNAs. The first
reported isotopic labeling
strategy involved using
labeled water during the
RNase digestion of an
RNA.75 The catalytic
mechanism for RNase
digestion involves the
transfer of an oxygen (as a
hydroxyl) from water onto
the 3’-terminus of the oli-
gonucleotide digestion
product. This enzymatic
incorporation of isotopic
labels has been used to
improve data analysis in
MS/MS experiments,75

enable the relative quantifi-
cation of RNAs (modified
or not) present in 2 sam-
ples,76,77 and allowed for
the comparative analysis of
RNA digests (CARD)
approach,78,79 which is
described further below.

More recently, Wagh-
mare and Dickman
showed the advantages of
incorporating isotopic
labels through the cultur-
ing medium.80 RNA could
be labeled by growing E.
coli in 14N and 15N
enriched media. They illus-
trated how isotopic label-
ing improved the
identification of RNase
digestion products, as the
mass shift arising from 15N
allows one to confine the
number of nitrogen atoms
in any particular digestion
product. In addition, vari-

ous ratios of labeled RNAs were combined and analyzed by mass
spectrometry to determine the accuracy and precision of RNA
quantification by this strategy. As proof-of-concept of the utility
of this labeling strategy, they were able to obtain relative

Figure 8.MALDI mass spectra obtained from the RNase T1 digestion of E. coli tRNAs. (A)m/z 900–2700; (B)m/z 2700–
6000. (C) MALDI mass spectra obtained from the RNase A digestion of E. coli tRNAs. Figure reproduced from ref (72).
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quantitative information on
modified and unmodified
oligonucleotides from
RNase digests of 16 S
rRNA (Fig. 9).

Subsequently, the Wil-
liamson lab adapted this
labeling strategy to study
rRNA modification pattern
changes during the assembly
of bacterial ribosomes.
Labeling of the RNA was
accomplished with 15N
ammonium sulfate, CD3

methionine (for labeling
methylations), and/or 5,6-
D-uracil (for labeling uracil
and pseudouridine). The
non-enriched medium was
used to isolate fully formed
70 S ribosomal particles iso-
lated by sucrose gradient,
which was considered 100%
modified for comparison
purposes. The example of
this analysis in Figure 10
depicts results obtained
from 15N labeling of a oli-
gonucleotide with 23 nitro-
gens. The mass shift allows
the direct comparison of
signal intensity between the
2 samples for quantification
purposes. The isotopically
enriched RNA was fraction-
ated using sucrose gradients
and the modification status
across the gradient were
compared to the fully
formed 70 S particle. Using
this approach, early, middle
and late occurring rRNA
modifications during the
course of rRNA maturation
could be determined.81 As
with measurements at the nucleoside level, the ability to incorpo-
rate isotopic labels into RNA samples and use such labels for
quantitative evaluation of changes in modified RNAs appears to
be a powerful marriage of methodology and technology.

Comparative analysis of RNase digestion products
Most recently, our group introduced a multiplex approach for

measuring changes in RNA sequence and/or modification status
that combines isotopic labeling with concepts originating within
the signature digestion product approach.78 Here multiplex anal-
ysis is obtained by digesting one of the samples with 18O water.

The labeling of one sample with an additional 2 Da allows the
direct comparison of the labeled sample to one that is digested in
non-enriched water, which can enable the identification of differ-
ences among the digestion products of the 2 samples.

We subsequently used the CARD approach for the com-
parative sequencing of nearly all of the tRNAs from the bac-
terium Citrobacter koseri by using the previously
characterized E. coli tRNAs as the reference for compari-
son.79 One advantage of the CARD approach for mapping
modifications onto RNAs is that rather complex mixtures,
such as mixtures of total tRNAs, can be analyzed without

Figure 9. RNA quantification using stable isotope labeling and mass spectrometry analysis. (A) TOF MS spectra of
the light and heavy oligoribonucletide AUAACCG>p observed from a range of different light:heavy ratios. (B) Light
to heavy ratios obtained for 5 different oligoribonucleotides identified. (C) RNA quantification of the theoretical and
experimental data from 5 different oligoribonucleotides generated from the 16S rRNA digest. The error bars repre-
sent the standard deviation. Reprinted with permission from Analytical Chemistry, volume 83, pages 4894–4901.
© 2011 American Chemical Society.
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requiring the de novo sequencing of all detected digestion
products nor requiring the purification of individual RNAs
prior to analysis by techniques such as Chaplet chromatog-
raphy.49 However, a limitation of this CARD approach
arises when 18O water is used for isotopic labeling. The
small mass difference (C2 Da) between the reference and
unknown digestion products become challenging to charac-
terize due to the presence of natural isotopes (e.g., 13C and
15N), which can overlap and obscure the doublets expected
from identical digestion products. A remedy to this problem

involves culturing samples in 12C-enriched/13C-depleted
medium.74 Reducing the 13C isotope contribution signifi-
cantly simplifies the identification of singlets and doublets
in the CARD approach (Fig. 11).

Intact RNAs

While RNase digestions produces reliable data by decreasing
the size of the analyte to be analyzed, at times analysis of the

intact molecule may be
desirable or even beneficial.
In the case of relatively
small non-coding RNAs,
the molecules can be sepa-
rated chromatographically
before MS analysis if
desired and can provide
complete or nearly com-
plete sequence informa-
tion.32 In some cases where
the location of a modifica-
tion has been determined,
MS is used for validation
purposes to determine the
mass of the intact RNA,
which should match the
expected mass. One such
situation is the use of MS
to confirm the presence of
a single methylation on
plant microRNAs.82 The
methylation was found to
be located on the terminal
nucleotide of the micro
RNAs. The enzyme
responsible for the catalysis
of the methylation is
HEN1 and has since been
found to block uridylation,
which leads to microRNA
degradation. Homologs
have also been found in
Drosophila to methylate
siRNAs and piRNAs83 and
in mouse to methylate
piRNAs.84

The analysis of intact
RNAs (referred to as top-
down analysis) up to the
length of tRNAs has been
demonstrated primarily by
the groups of McLuckey
and Breuker.85,86 The gen-
eral scheme for analysis is
to purify the RNA of
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interest to near homogeneity, infuse the RNA for ESI, which pro-
duces a wide range of charge states of the molecule, isolate one of
the species in the gas phase, and perform tandem mass spectrom-
etry on the isolated molecule by CID and/or electron detachment
dissociation (EDD). The resulting fragmentation of the RNA is
very complex but near complete sequence coverage has been
obtained using both methods of tandem mass spectrometry.

The McLuckey group performed their analysis with a proto-
type QqTOF. Commercially prepared yeast tRNAPhe was ion-
ized by electrospray, and a single charge state was selected in the
gas phase for fragmentation. After fragmentation of the tRNA by
CID, the charge state of the product ions was reduced by intro-
ducing a singly positively charged ion. The charge state is reduced
in the gas phase due to ion/ion interactions, and finally the prod-
uct ions are analyzed by the time of flight to provide high accu-
racy data for identification. The sequence coverage, however, was
not complete, especially in the middle region of the tRNA near
the anticodon loop where many modifications of interest are
found.85

The Breuker group utilized a Fourier transform ion cyclo-
tron resonance (FT-ICR) mass spectrometer and infused a
commercially prepared E. coli tRNAVal in the presence of
piperidine and quinuclide to generate highly charged species
of the tRNA. The tRNA was isolated and fragmented by
CID and EDD independently. The product ions from both
methods of fragmentation allowed nearly complete sequence
coverage of the tRNA (99%) (Fig. 12). The high resolution
and accuracy obtained from the FT-ICR allowed the identifi-
cation of highly charged product ions and confidence in the
identification. This method provides an intriguing possibility
to analyze large intact molecules that are synthesized or post-
transcriptionally modified using commercially available
instrumentation.86

The Techniques for RNA Mass Spectrometry

High-performance liquid chromatography - nucleosides
HPLC has become an indispensable analytical technique for

the analysis of modified nucleosides and for RNA modification
mapping. Within the field of nucleoside analysis, the most com-
mon chromatography method, based on C18 stationary phases,
was originally published approximately 40 years ago87 and was
then adapted to LC-MS analysis by Pomerantz and McClos-
key.88 These chromatographic conditions have changed little in

the past 25 years. The use of columns that can withstand very
highly aqueous conditions have been employed and the scale of
the chromatography has been reduced to use less solvent and
improve desolvation by reducing the flow rate. Yet, all of these
changes have occurred to better match the HPLC conditions to
the ESI source often used during LC-MS/MS.

While not commonly implemented, hydrophilic interaction
liquid chromatography (HILIC) has been investigated to allow
for separations using a higher percentage of solvent to aid desol-
vation.89-92 Unfortunately, these methods have not been applied
to nucleoside digests of biologically isolated modified RNAs, and
thus limited information is available regarding the expected
retention times for modified nucleosides.

There are few reports of the development of appropriate
HPLC conditions that would enable LC-MS/MS analysis of
modified nucleotides. Ion pairing reverse phase (IP-RP) chro-
matographic conditions have been described for the LC-MS anal-
ysis of nucleotides,93,94 although primarily standard nucleotides
were investigated. Similarly, while HILIC coupled to ESI-MS
has been described for the analysis of standard nucleotides,90 it is
unclear if that approach is applicable to mixtures of modified
nucleotides. Further investigations and developments in this area
are warranted.

High-performance liquid chromatography - oligonucleotides
The most widely used chromatography for oligonucleotide

analysis for LC-MS/MS analysis is IP-RP chromatography.95,96

This method allows the separation of RNase digested RNAs,
although the combination of triethylamine, as the ion pairing
agent, and 1,1,1,3,3,3-hexafluoro-2-isopropanol, as a mobile
phase additive to improve ESI performance, can lead to instru-
ment contamination, which will be an issue if other analytes and/
or chromatographies are to be used on the same LC-MS system.
Recently, a variety of HPLC mobile phases that are more friendly
to instrumentation have been investigated, primarily within the
field of therapeutic oligonucleotide analysis.34 While those meth-
ods have not yet been exported into an LC-MS/MS approach for
RNA modification mapping, one would expect to see a greater
variety of IP-RP conditions being used for separating and analyz-
ing RNase digests of RNA in the near future.

Far less common in RNA modification mapping is the use of
non-RP methods. As for nucleoside chromatography, HILIC has
also been investigated for the on-line separation and ESI-MS
analysis of oligonucleotides.97-99 Although RNase digests have
not been analyzed using HILIC, these early reports do suggest

Figure 10. (See previous page). LC-MS separation and data fitting. Results of the control experiment in which 14N- and 15N-labeled and individually purified
16S RNA were mixed in a 1:1 molar ratio and digested with ribonuclease T1. (A) Low-resolution contour plot of the LC-MS run, showing pairs of the co-eluting
14N/15N rRNA fragments. Data were collected using negative ionization mode. (B) High-resolution LC-MS peak profiles (box 1), MS isotope distributions (red
dots), and their least-squares fits (green traces) for a representative 16S fragment (box1 in A). (C) Ambiguity of peak identification as a function of themass tol-
erance parameter (ppm). MS peaks were matched against the 16S theoretical digest (described in D), and the fraction of experimental peaks assignable to
more than one rRNA fragment was calculated. Peak identification was carried out usingm/z values for 14N-labeled fragments only (black); m/z for both 14N-
and 15N-labeled fragments and assuming that fragments should elute within 0.1 min of each other (red); using 14N and 15Nm/z and charge state (z) of the 2
species (blue). (D) Excerpt of the RNase T1 theoretical digest containing predicted 16S RNA fragments and their monoisotopic m/z values in the ‘vicinity’ of
(m6

2A)(m
6
2A)CCUG (gray box). Digest includes RNA specieswith charges 1–4,with 0¡2missed cleavages and either linear or cyclic (>p) phosphate at 30 termi-

nus. List is sorted by 14Nm/z values. m¡ is a methyl group,>p¡ cyclic phosphate (otherwise linear), and * marks compositionally nonunique RNA fragments
included as a single entry. (E) Histogram of RNA level values calculated for all 16S rRNA fragments identified in the control experiment. Reprinted with permis-
sion from Journal of the American Chemical Society, volume 136, pages 2058–2069. © 2014 American Chemical Society.

1578 Volume 11 Issue 12RNA Biology



this alternative may provide advantages for LC-MS/MS within
an RNA modification mapping strategy. The chromatographic
method that is usually avoided for oligonucleotide separation is
anion exchange (AE) chromatography. While AE is commonly
used in biochemical laboratories for oligonucleotide separations,
the requirement of high salt concentrations for effective separa-
tions precludes its direct coupling with ESI-MS.100

Mass spectrometry instrumentation
Mass spectrometers for nucleoside, nucleotide, and oligonu-

cleotide analysis vary greatly and each has benefits and disadvan-
tages. These benefits and disadvantages match those found in
typical mass spectrometry applications – that is, instrumentation
that provides high resolution and high mass measurement accu-
racy, which are requirements for characterizing new modified
nucleosides, may not yield the best sensitivity, which is a require-
ment for accurate quantification of modified nucleosides. The
descriptions below arise from the author’s own experiences and
biases – and exceptions can certainly be found for every generali-
zation provided. More detailed descriptions of mass spectrometer
configurations, especially as used in small and large molecule bio-
logical research, can be found in a number of recent
reviews.4,9,31,33-35,101,102

The most common mass spectrometry platform for nucleoside
analysis depends on the analytical goals of the experiment.

Without question, for
quantitative analyses –
especially those illustrated
by the work of the Dedon
and Helm labs 21,26 – a tri-
ple quadrupole mass ana-
lyzer configuration is
preferred. Triple quads, as
they are called, provide
outstanding sensitivity
especially when operated
in multiple reaction moni-
toring (MRM) mode. Dur-
ing MRM operation, the
mass spectrometer can iso-
late a particular m/z for the
nucleoside in question
using the first quadrupole,
fragment the nucleoside
using the second quadru-
pole, and detect a particu-
lar fragment ion using the
third quadrupole. The
high sensitivity arises due
to the unique precursor to
product ion transition (Q1
! Q3) that limits back-
ground noise and enhances
the selectivity of nucleoside
quantification. In typical
experiments, a number of

transitions are established prior to the HPLC run, enabling
global quantification of the entire complement of modified
nucleosides within the sample. Because these MRM transitions
are established before sample analysis, this mode of operation is
typically used only when the sample components are already
identified.

For the discovery of unknown modifications, or when qualita-
tively characterizing modified nucleosides from isolated RNAs,
other mass analyzers such as ion traps and time-of-flight (TOF)
configurations can be used. These instruments are generally less
sensitive than a triple quadrupole in MRM mode, thus requiring
more sample for analysis. However, the duty cycle of these instru-
ments readily exceeds that found for triple quadrupoles, allowing
them to be used in applications requiring extensive characterization
of sample mixtures. Common iterations include linear ion traps or
quadrupole-TOFs (qTOF) coupled to HPLC for the characteriza-
tion of RNase digests. Both instrument configurations retain their
good sensitivity when coupled with HPLC, with qTOFs being
preferred as the chromatographic time scale (i.e., peak widths)
decrease.

At the high end of mass spectrometry instrumentation, many
qTOF and MALDI-TOF/TOF systems possess sufficient
mass resolving power and mass measurement accuracy to
allow for elemental composition prediction, which is essential
for the identification of new modifications. The alternative

Figure 11. Improvements in singlet and doublet identification using 12C-enriched medium as illustrated with the
doubly-charged E. coli total tRNA RNase T1 digestion product A[ms2i6A]AACCGp (MW 2403.4 Da). (a) Mass spectrum
from sample grown in LB medium and labeled with 16O during RNase T1 digestion. (b) Same sample as in (a) except
labeled with both 16O and 18O during RNase T1 digestion. (c) Mass spectrum obtained when sample grown in 12C-
enriched medium and labeled with 16O during RNase T1 digestion. (d) Same sample as in (c) except labeled with
both 16O and 18O during RNase T1 digestion. Singlet and doublet identifications are simplified in (c) and (d), respec-
tively, by use of 12C-enriched medium. Figure reproduced with permission from ref (121).
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for identification of new modifica-
tions are Fourier transform-based
mass analyzers, either FT-ICR or
orbitrap instruments, that provide
unparalleled mass accuracy. These
high end mass analyzers are also quite
appropriate for standard analysis and
detection of modified nucleosides or
for RNA modification mapping by
MS/MS analysis of RNase digests.
We note that while the user will gain
significant information through such
higher performance instruments
because the higher resolving power
can be used to better identify the
sample or interpret the MS/MS data,
linear ion traps and Q-TOF configu-
rations can be used with little overall
effect on the modification mapping
strategy.

Software and database tools for
RNA analysis by mass spectrometry

As is common in nearly all areas of
biological mass spectrometry, the
demands of data analysis software and
bioinformatic tools to help make sense
of data obtained from the analysis of
modified RNAs outstrip the supply of
tools on hand for the researcher. Fortu-
nately, over the past several years, solu-
tions are being developed that – at a
minimum – now simplify the process
of interpreting and understanding mass
spectral data. Within the area of modi-
fied RNA analysis, the solutions can be
grouped into 2 broad categories – data-
bases and software.

As mentioned in an earlier section,
there are 2 major databases that are
devoted to modified nucleosides –
Modomics (http://modomics.genesi-
lico.pl/)11 and The RNA Modification
Database (http://mods.rna.albany.edu/
home).12 While sharing similarities,
each database has a different focus on
the topic of modified nucleosides.
Modomics provides a repository of the
biosynthetic pathways, enzymes and sequence locations for all
known modified nucleosides in RNA. The RNA Modification
Database provides a comprehensive listing of the chemical prop-
erties of modified nucleosides, including citations to the original
synthesis and structural characterization of each. In this manner,
these databases are complementary and either can be consulted
when seeking to learn about the types and diversity of RNA mod-
ifications found in nature. There are also more specialized

databases devoted to modified RNAs that can be of use during
RNA modification mapping. As mentioned earlier, the 16 S
rRNA database58 (http://rna.rega.kuleuven.be/ssu/) contains a
listing of all reported modifications within the small subunit
RNA. A similar database of modified nucleosides in rRNAs for
model organisms is also a useful resource (http://people.bio-
chem.umass.edu/fournierlab/3 dmodmap/main.php).103 Two
databases devoted to modified tRNAs, the tRNAdb (http://trna.

Figure 12. (A) ESI mass spectrum of tRNAVal (2 mm) in H2O/CH3OH (1:1) with piperidine (10 mm) and
quinuclidine (10 mm); (B) isolation of ions with m/z values between 700 and 920; (C) mass spectrum
after exposure of these ions to 28 eV electrons (the inset shows isotopically resolved fragment-ion sig-
nals). Bottom: Fragment-ion map illustrating sequence coverage from CAD and EDD of tRNAVal. Figure
adapted with permission from ref (86).
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bioinf.uni-leipzig.de/DataOutput/)104 and RNAccess (http://
bearcatms.uc.edu/rnaccess/)72 are also resources that can be con-
sulted to assist in RNA modification mapping of those specific
RNAs.

The status of software geared for RNA mass spectrometry has
improved significantly over the past several years.105 Simple cal-
culators that can be used to predict expected molecular weights
of modified nucleosides or RNAs are available (MongoOligo –
an online calculator (http://mods.rna.albany.edu/Masspec-
Toolbox) and MO Predict – a downloadable calculator (http://
bearcatms.uc.edu/new/limbachgroup_publication/mo-predict-
software.html)). These calculators also allow one to predict
expected MS/MS fragmentation patterns, which can be useful
during the interpretation of data obtained by mass spectrome-
try. Two database search strategies for RNA mass spectrometry
data, RRM106 and Ariadne,107 permit the analysis of RNA MS
and MS/MS data in a similar manner as the polypeptide analysis
suite MASCOT and other similar protein-focused software.108

RRM allows one to search genome or RNA sequence databases
using MS data. Ariadne takes tandem mass spectrometry data
generated from either biologically or in vitro-derived RNA and
scores the comparison of the data to an inputted database of the-
oretical ribonuclease digested and CID-fragmented RNA
sequences.

In addition to these databases, stand-alone software also exists
to assist in the interpretation and annotation of raw mass spectral
data, including MS/MS data. Nyakas et al. developed the pro-
grams OMA and OPA, which allow analysis of MS and MS/MS
data with a customizable database of nucleotides, thus all known
RNA modifications can be analyzed.109 Most recently, we have
reported on the software program RoboOligo (http://bearcatms.
uc.edu/new/limbachgroup_publication/robooligo-software.
html), which allows for the manual annotation of MS/MS data
from modified oligonucleotides.110 Further, RoboOligo also has
a de novo annotation feature, that can automate and batch-pro-
cess LC-MS/MS datasets, in particular those obtained during
RNA modification mapping. While additional tools will benefit
the field and accelerate the pace of research, all of the components
– chromatography, mass spectrometry and software – exist to
enable mass spectrometry to be applied to increasingly complex
samples and more involved experimental conditions.

The Future – Promises and Challenges

As we hope is clear from the all too brief summary of recent
developments in the field, mass spectrometry is an extremely
powerful analytical tool for the detection and characterization of
modified nucleosides and RNAs. In the opinion of these authors,
this technique remains surprisingly underutilized and underap-
preciated by researchers in RNA-related fields. To be sure, geno-
mic-based technologies are more widespread, usually of lower
cost, and are more familiar to biological researchers. As such, one
can now see an emphasis on creating methods for detecting RNA
modifications that utilize genomic-based technologies, e.g.,
microarrays or RNA-seq.111-115 Such methods do provide

advantages related to sensitivity, broad applicability to sample
types such as mRNA, and more readily available informatics tools
to assist in processing large amounts of data. One trade-off is the
limited number of modifications that can be characterized, at this
time, by such approaches.

However, it is instructive to note those areas where genomic-
based technologies have advantages over mass spectrometry to
identify areas where mass spectrometry improvements would be
beneficial. Among the most critical challenges facing mass spec-
trometry-based approaches is the relatively poor sensitivity of
ionization methods for nucleosides and oligonucleotides, with
the former being far worse than the latter, along with the need
for rigorous sample preparation to generate RNA samples com-
patible with MS. A recent example illustrates these points
well.116 Hori and coworkers have shown that only 20 ng of a sin-
gle purified tRNALeu from Thermoplasma acidophilum was
required for mapping modified nucleosides onto this RNA
sequence. The less sensitive nucleoside analysis required 40 £
more sample (800 ng), although both of these sample amounts
appear to be compatible with many biological investigations.
However, the total amount of sample actually required for all of
the sample purification steps, while not specifically reported in
this work, was significantly greater as total RNA isolation, gel
purification, tRNA precipitation and probe-isolation of the spe-
cific tRNA were all necessary to prepare the < 1 mg sample
amount used in the MS analyses. Contrasted with RNA-Seq pro-
tocols that require from 100 ng to 10 mg of sample for total
RNA analysis, mass spectrometry still has room for improvement
if it is to compete with the sensitivity of amplification-based
technologies.

Another advantage of most genomics-based technologies is the
high level of multiplexing available. Whether microarrays or
RNA-Seq, large numbers of unique RNA sequences are amenable
to analysis in any given experiment. In contrast, as noted earlier
in this review, mass spectrometry approaches have more com-
monly been applied in a serial fashion (i.e., one RNA sequence at
a time) and even in cases where multiplexing has been used (e.g.,
total census of modified nucleosides, CARD), there are still sig-
nificant limitations on the upper number of RNA sequences that
are amenable to analysis. The challenge in the standard RNA
modification mapping approach is seen by simply calculating the
expected number of RNase digestion products from any given
group of RNA sequences. For example, a recent publication dem-
onstrating the mapping of modifications onto the total tRNA
pool from Lactococcus lactis required the analysis of > 250 RNase
T1 digestion products that were detected during LC-MS/MS.117

Even then, multiple RNase digestions were required to obtain
complete mapping coverage of the 40 unique tRNAs from this
bacterium. Noting that the goal in mass spectrometry applica-
tions is the detection and characterization of digestion products
containing modified nucleosides, such large numbers of RNase
digestion products require improvements in chromatographic
resolution and instrumental dynamic range. While true shotgun
analysis of such digestion products has not yet been reported, the
success of that approach within the field of proteomics118 pro-
vides one future opportunity for expanding sample complexity
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and multiplexing the analysis of RNA sequences for
modifications.

Additional opportunities may arise by examining more pow-
erful separation strategies such as 2D-HPLC or gas-phase separa-
tion via ion mobility. Again, learning from the field of
proteomics, 2D-HPLC, wherein peptide mixtures are separated
on 2 different (and ideally orthogonal) stationary phases,
increases peak capacity and can improve peptide sequencing
results yielding greater protein identifications.119 There is no
inherent reason why a similar strategy could not also be used for
RNase digestion mixtures, although additional research into sta-
tionary phases that yield orthogonal separations of smaller oligor-
ibonucleotides would be beneficial. Similarly, ion mobility
separations are another area whereby increases in sample com-
plexity could be handled by new instrumentation and
technology.

A challenge as significant looms within the top-down charac-
terization strategy. As with proteomics, this strategy currently
relies quite heavily on specialized high-end mass spectrometers or
on specialized ion-ion/ion-molecule chemistry. For this approach
to become more widely used in solving biological problems,
methods are needed to improve the characterization of RNA mix-
tures – where a goal of characterizing the complete cellular mix-
ture of RNAs could be foreseen in a manner similar to that
reported in proteomics.120 Here, as with the bottom-up strategy,

improvements in analyte separation prior to mass spectrometry
will be key.

In closing, it is important to keep in mind the particular
advantages and disadvantages of any analytical technique. For
mass spectrometry as used in the field of RNA modifications, the
advantages of this technique remain its ability to detect previ-
ously unknown modifications, its ability to detect a broad range
of modifications within any single analysis, and its improving
capabilities for readily mapping modifications onto RNA sequen-
ces. While challenges arising from the needs of biological analyses
will continue to spur developments in the field, the continued
refinement of analysis methods along with improving software
for simplified data reduction and interpretation105 should
increase the applicability of this tool for generating useful and
desired information about RNA modification status.
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