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Abstract

Background

Dengue is a serious vector-borne disease, and incidence rates have significantly increased

during the past few years, particularly in 2014 in Guangzhou. The current situation is more

complicated, due to various factors such as climate warming, urbanization, population

increase, and human mobility. The purpose of this study is to detect dengue transmission

patterns and identify the disease dispersion dynamics in Guangzhou, China.

Methodology

We conducted surveys in 12 districts of Guangzhou, and collected daily data of Breteau

index (BI) and reported cases between September and November 2014 from the public

health authority reports. Based on the available data and the Ross-Macdonald theory, we

propose a dengue transmission model that systematically integrates entomologic, demo-

graphic, and environmental information. In this model, we use (1) BI data and geographic

variables to evaluate the spatial heterogeneities of Aedes mosquitoes, (2) a radiation model

to simulate the daily mobility of humans, and (3) a Markov chain Monte Carlo (MCMC)

method to estimate the model parameters.

Results/Conclusions

By implementing our proposed model, we can (1) estimate the incidence rates of dengue,

and trace the infection time and locations, (2) assess risk factors and evaluate the infection

threat in a city, and (3) evaluate the primary diffusion process in different districts. From the

results, we can see that dengue infections exhibited a spatial and temporal variation during

2014 in Guangzhou. We find that urbanization, vector activities, and human behavior play

significant roles in shaping the dengue outbreak and the patterns of its spread. This study

offers useful information on dengue dynamics, which can help policy makers improve con-

trol and prevention measures.
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Author Summary

Dengue transmission is a spatio-temporal process with interactions between hosts, vectors,
and viruses. Its transmission also involves multiple complex or even hidden factors, such
as climate, social environment, vector ecology, and host mobility. These complexities
make the underlying process of dengue transmission difficult to clarify. We address how
the patterns of dengue transmission can be inferred by investigating the 2014 dengue out-
break in the city of Guangzhou, China, taking the available surveillance data and applying
mathematical models and computational methods. We can then estimate the distribution
of dengue infections and identify the transmission mechanisms. In our study, we systemat-
ically investigate the critical factors, enabling us to estimate the real patterns and dynamics
of dengue transmission beyond the surveillance data.

Introduction
Dengue is a mosquito-borne disease caused by one of the four dengue virus serotypes (DENV
1–4), and is primarily transmitted by Aedes aegypti and Aedes albopictus [1, 2]. The virus and
its vectors are now widely distributed throughout tropical and subtropical regions, resulting in
about half the world’s population being at risk of infection [1]. The World Health Organization
(WHO) has estimated that 50–100 million infections occur annually in over 100 endemic
countries [1, 3]. More recently, Bhatt et al. took into account the inapparent infections and
found that the global burden is probably much higher, at about 390 million infections per year
[4]. The problem of dengue epidemics in China has intensified over the past two decades [5],
and between 1991 and 2013 about 21,532 dengue cases and 620 deaths were reported. In 2014,
the incidence reached a peak, with 46,864 reported cases, 80% of which were infected in
Guangzhou. Dengue is not endemic in China [5], but the current situation has become more
complicated, and the exact causes of the increase in incidences and the detailed transmission
characteristics are unclear [5].

In this study, we aim to identify the spatio-temporal transmission patterns of dengue epi-
demics in Guangzhou in 2014 by addressing the following questions: How can we estimate the
temporal and geographical distributions of infection cases? How can we evaluate the infection
risk and the control effects? How can we assess the interactions of the factors involved among
different geographical locations and thus infer the diffusion process from one location to
another? The answers to these questions will be influential in epidemiological inference and
public health planning. Clear information about disease burden and infection risk can help in
correctly evaluating the effects of the factors involved and the correct allocation of resources
for intervention [4]. An accurate reflection of the transmission dynamics and diffusion process
of dengue can help us more fully understand and further predict the prevalence of epidemic
propagation. There are, however, many challenges to be addressed, such as misreported sur-
veillance data, obscure vector indices, the hidden effects of hosts and vectors, and the heteroge-
neous infection processes. These challenges and existing works related to our questions are
discussed in more detail below.

First, disease surveillance data is usually the baseline for estimating the infection burden,
but it does not directly reflect the full extent of infection, for the following reasons: (1) multiple
factors, such as inapparent infections, under-reporting, and misdiagnosis can lead to the misre-
porting of infected cases [4, 6]; (2) the incubation period of the dengue virus can create a delay
between infection and reporting; (3) human mobility can lead to the mis-registration of infec-
tion locations [7]. Feasible techniques to handle these issues have been proposed, such as
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analyzing index clusters and serologic testing to evaluate inapparent dengue infections [8],
using epidemiological models with exposed states (e.g., SEIR model) to account for the incuba-
tion period [9], and incorporating human mobility into the transmission model to examine its
effect on dengue infection [10]. Epidemiological information can be extracted from hidden
infections and unclear data through statistical and stochastic methods [11]. Ster et al. deployed
reversible jump MCMCmethods to reveal hidden infections and inferred the infectivity profile
of the U.K. 2001 foot and mouth epidemic [12]. By fitting the partially observed data sequences
of hospital infection, Cooper et al. estimated key epidemiological parameters using a structured
hidden Markov model [13]. We take the distribution of reported cases as the essential data,
and also incorporate the factors of incubation time lag, host mobility and reported rate, to esti-
mate the 2014 actual dengue burden in Guangzhou.

Second, dengue infection risk is in reality primarily evaluated by vector indicators, such as
the house index (HI), the container index (CI), the Breteau index (BI), the pupa index (PI), and
the adult productivity index [2]. However, the traditional vector indices (e.g., HI, CI, and BI)
have been shown to be poor proxies for measuring adult mosquito abundance and dengue risk,
possibly due to the inadequate quality of the vector and incidence data, diversity of vector indi-
ces and adult vector densities, or to geographic/temporal mismatches of infection sites and
index records [14–16]. Most vector indices only reflect vector prevalence rather than abun-
dance [17], as they do not take into account the container type productivity. In view of this,
other vector indicators have been suggested, such as sampling adult mosquitoes [14, 15, 18], or
integrating vector indices and other information (e.g., combing demographics and indices [18].
Beyond the vector indices, standard notions have been proposed to assess infection potentials,
such as the basic reproduction number [19, 20], the vectorial capacity (VCAP) [21–23], and
the entomological incubation rate (EIR) [22, 24]. In this study, we systematically integrate envi-
ronmental and ecological factors and BI data to evaluate the adult vector densities.

Third, the large-scale spread of dengue viruses is often caused by the spatial and temporal
dynamics of vectors and hosts [25–27]. A combination of elements, including dense popula-
tions, frequent human-vector contact, rural-urban migration, serotype circulation, and inade-
quate infrastructure, can lead to dengue infection and mosquito breeding opportunities [16,
28, 29]. These factors are significant in shaping the spatial and temporal transmission of den-
gue epidemics. Two types of studies have been performed to reveal transmission process and
assess the relevant factors [30, 31]. First, mapping techniques and statistical methods can be
used to process various data, such as geographic information systems method [32], time-series
Poisson regression [29], Moran’s I statistic [33, 34], and spatial scan statistics [35]. These meth-
ods can identify the hot spots, evaluate the relationship between different factors (e.g., climate,
imported cases and urbanization) and dengue incidence, and estimate the dispersion process
[29, 32–35]. The second type of analysis methods is primarily based on mathematical or
computational models, and focus more on the intrinsic biting-based transmission process and
the interaction between hosts, vectors, and viruses. These include differential equations [19,
20], spatially agent-based transmission models [36], and metapopulation models [10]. These
methods are able to estimate the infection capacity and simulate the time evolution and spatial
diffusion of dengue epidemics [10, 19, 20, 36]. However, it has been suggested that existing
models less take into account the heterogeneity of mosquito densities/behaviors and mosquito-
host encounters [31, 37], so may not effectively reflect the spatial heterogeneity and temporal
variation in the transmission [25, 31].

In this study, we use mathematical models and computational methods to tackle the afore-
mentioned problems. First, based on the Ross-Macdonald theory [9, 21–23], a transmission
model is defined to simulate the spatial diffusion of the dengue virus. Second, large-scale and
consecutive vector indices, together with environmental and ecological information, are
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integrated to estimate the vector quantities. Third, human mobility as a spatio-temporal driver
of dengue spreading dynamics [36], is estimated based on the radiation model proposed by
Simini et al. [38]. Underlying transmission parameters are quantified by fitting the model to
real-world observations using machine learning methods, such as the Markov chain Monte
Carlo (MCMC) method [39]. The issue of incomplete surveillance data is addressed by com-
paring the estimated incidence rates and surveillance data with a reported rate. The research
framework is shown in Fig 1.

We conduct an empirical study in Guangzhou, where serious dengue epidemics have
recently been experienced, particularly in 2014. Guangzhou is an international metropolis
located in the tropical/subtropical region, and its climate and geography are ideal for vector
growth and virus survival. In Guangzhou, the population is densely concentrated in the urban
areas, with frequent movement between districts. By implementing the proposed model, we
aim to (1) estimate the actual incidences and reveal the effects of environment and urbaniza-
tion on vector activities; (2) evaluate the infection risk in terms of the basic reproduction num-
ber and explain the temporal pattern of infection potential in each district; (3) identify the
underlying transmission process and mechanisms of dengue in Guangzhou.

Materials and Methods
To modeling the spatio-temporal patterns of dengue transmission in Guangzhou, we first sur-
veyed the situations about dengue outbreak (e.g., reported cases, control strategies and possible
causes of outbreak) from the local government reports, newspaper, and other media, and then

Fig 1. An illustration of the research framework. Taking multiple factors into consideration, we establish mathematical models (integrating data and
parameters) that fit underlying parameters through computational methods, and then predict the spatio-temporal patterns of disease transmission.

doi:10.1371/journal.pntd.0004633.g001
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investigate the related information (e.g., geographical environment, vector indices, climate,
population and transportation) in this region. Based on that, we propose a transmission model.
Detailed procedure is presented in the following.

Study areas
The city of Guangzhou (112°570E to 114°30E and 22°260N to 23°560N) is the capital of Guang-
dong province in South China, and has an area of 7434 square kilometers and about 12.93 mil-
lion residents. The climate is humid and subtropical, with high temperatures and humidity in
summer, and comparatively mild and dry in winter. The annual mean temperature is 22°C and
the annual accumulate precipitation is 1,800 mm. Guangzhou is an international port and an
important foreign trade gateway into China. The above information is based on the Guangzhou
government site (http://www.gz.gov.cn/gzgov/s2289/zjgz.shtml).

Guangzhou consists of 12 districts and is divided into three areas: urban, suburban, and
exurban, which follows the city’s overall planning (2010–2015) and its Five-Year Plan (2011–
2015) that take into account the urbanization, population density, and green coverage. The
urban areas are Liwan, Yuexiu, Haizhu, Tianhe, and Baiyun (south of Liuxihe and north second
ring), which account for 3.8% of the city area, 46.6% of the total population, and about 56% of
transportation. The suburban areas are Panyu, Huangpu, Luogang, Huadu, and Baiyun (out-
side the central area), and the exurban areas are Nansha, Zengcheng, and Conghua. A detailed
map is shown in Fig 2.

Data collection and parameter settings
To identify the underlying transmission patterns of dengue in 12 Guangzhou districts, the fol-
lowing data are collected.

• Dengue cases. Records of dengue daily cases in 12 districts are obtained from the Health
Department of Guangdong Province (http://www.gdwst.gov.cn/). According to the “Law of
the People’s Republic of China on the prevention and treatment of infectious diseases,” all
dengue cases confirmed by any medical institution or hospital must be reported to the sur-
veillance system in the local area within one day (12 hours in cities and towns, 24 hours in
villages). However, some cases go unreported, and the records of infection time and place of
some may be misreported [6].

• Breteau index. In Guangzhou, the available vector indicator is the BI data. Approximately
287 surveillance sites are distributed throughout the city, and the daily reports of BI in each
district are collected by the Guangzhou Center for Disease Control and Prevention (http://
www.gzcdc.org.cn/). In the affected areas, any indoor and outdoor water containers near
any of 50 to 100 houses in the vicinity (outside the houses, a radius of 10m is considered as
part of the property) are inspected. Larval growth is closely associated with temperature and
rainfall [40], so the missing BI is estimated by stepwise linear regression using one week’s
weather records.

• Population density. The population size in each district is retrieved from the 2013 Guangzhou
Statistical Yearbook, but some of the population in certain districts (registered as residents)
may travel to other districts early in the morning for work or study and return in the late
afternoon.

• Transportation. The transportation data is taken from the Guangzhou Transport Develop-
ment Annual Report and the Guangzhou traffic site (http://www.gzjt.gov.cn/gzjt/web/
Default.aspx), from which the daily commuting level of the districts can be evaluated.
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The parameters are set as follows.

• Study time period. Our study time period in Guangzhou is from September to November
2014. In January 2014 the imported cases have been found in Guangzhou, but the first
autochthonous case was reported in June, and starting from August the local infections dom-
inated the transmission.

• Time step. The time step is set to be one day, and each time step is divided into daytime and
nighttime. The duration of daytime is set to be from 0700 (7 a.m.) to 1900 (7 p.m.), according
to the working hour and commuting time in Guangzhou. It is assumed that residents who
work in other districts stay there during the daytime, and that all residents stay in their home
districts at night.

• Biting rate during daytime and nighttime. The dominant vector of dengue transmission in
Guangzhou is Aedes albopictus. It has been reported that the Aedes mosquito is a diurnal

Fig 2. An illustration of the study areas.Guangzhou is the capital of Guangdong province in China and is composed of 12 districts.

doi:10.1371/journal.pntd.0004633.g002
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feeder with peak biting periods in the early morning and in the evening [1], but surveys have
shown that the biting activity of Aedes albopictus varies from place to place. For example, in
Malaysia the activity peak is observed between 0600–0900 and 1500–2000 [41], and in
Macau (near Guangzhou), between 0600–0800 and 1800–2000 [42], but in India, it shifts to
2230–2300 and 2030–2100 [43]. In our study, we assume that the biting rate during daytime
and nighttime is the same, but has different values in different districts. The biting rate will
be estimated by our modeling approach and machine learning methods.

Transmission model
In this section, we propose a mathematical model integrating the geographic, transportation,
demographic, environmental, and surveillance information in dengue transmission.

The relationship between incomplete surveillance data and the estimated number of inci-
dences is discussed below. Surveillance systems usually record disease incidences in different
locations as a set of time series, so if we have observed the incidences ofH locations during
time period t = 1, 2, � � �, T, and the spatio-temporal surveillance data at time t are denoted by a
vector Γt = (γ1t, γ2t, � � �, γHt)T, then the correspondence of incidences between reporting and
modeling can be quantified as follows:

Gt ¼ drt þ εt; εt � Nð0;SÞ; ð1Þ

where δ is the reported rate, ρt = (ρ1t, ρ2t, � � �, ρHt)T is the numbers of incidences derived from
the modeling approach presented below, and ε is the error term, which follows normal distri-
bution with variations S ¼ diagðs2

1; s
2
2; . . . ; s

2
HÞ.

To specify and locate the infection events, the time step is set to be one day, and each is
divided into daytime and nighttime, to take daily commuting and biting difference into
account. For simplicity, the notations of subscript and superscript correspond to the district
number and vector age, and the hat and check correspond to daytime and nighttime,
respectively.

Vector density. To evaluate the infectious bites, we quantify the spatial densities of vectors
(i.e., Aedes mosquitoes). The vector flight range is less than 400m, and biting behavior usually
occurs around their habitats [1, 2], so we assume that the Aedes mosquitoes stay in their origi-
nal locations. We further assume that the abundance of immature female vector is proportional
to that day’s BI with parameter K, thus we can estimate the density of female Aedes mosquitoes

with specific ages in each district. Let xjiðtÞ denote the density of female adult vectors with age j
at time t in district i. It is then calculated as

xjiðtÞ ¼ KBiðt � j� 1ÞpðjÞ; ð2Þ
for j = 1, 2, � � �, h, where Bi(t) is the value of BI at time t in district i. The other parameters are

described in Table 1. The densities of adult female vectors xiðtÞ ¼
P

jx
j
iðtÞ in district i is therefore

dependent on the coefficient K, the BI values in early (1 + h) days, and the vector survival rates.
The proportionality coefficient K reflects the concentration of immature mosquitoes in lar-

val habitats, which is dependent on the climate, environment, hosts, container types, and sur-
veillance methods. Its value can therefore vary from time to time and from place to place. A
recent survey carried out in Guangzhou found that the abundance of larva vectors in aquatic
habitats fluctuated significantly between urban, suburban, and rural areas, which corresponds
to the three different classes of urban, suburban, and exurban [44], so we subdivide the param-
eter as K1, K2, and K3 accordingly. These parameters are viewed as constants, due to the short
period of our study.
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Daily commuting. To account for remote infections in other locations and to understand
the effects of human mobility on dengue transmission, we consider the daily commuting
between different locations. A radiation model has recently been developed to simulate human
mobility [38], where the commuting is a daily process related to employment, and the radiation
model appears to match experimental data very well [38]. In our study, commuters refer to
those who live and work (or study) in different districts, and who go out early in the morning
and return in the late afternoon. We use the radiation model to estimate commuting frequency
in different districts. Let Ni denote the population (number of residents) in district i, and Sil be
the total population in the circle whose center is the origin i and radius is the distance between
i and the destination l, minus the population at i and l. The number of commuters departing
from district i to l can then be calculated as follows:

Til ¼ Ti

NiNl

ðNi þ SilÞðNi þ Nl þ SilÞ
: ð3Þ

Here, Ti is the total number of commuters departing from i. It can be formulated as
Ti = Ni(Nc/N), where Nc is the total number of commuters and N is the total population [38].

Thus, the number of people who physically stay in district i at night is �Ni ¼ Ni, while during
the daytime the number becomes

N̂ i ¼ Ni � Ti þ
X
l 6¼i

Tli:

Incidence modeling. To determine the potential infectivity from mosquitoes, we use the
notion of vectorial capacity (VCAP), which is defined as the average number of infectious mos-
quito bites per unit time, following the introduction of a single infected host [21, 22]. VCAP
can capture the critical components of an insect’s role in pathogen transmission, which is
adapted from the basic reproduction number based on the Ross-Macdonald’s model [49].
VCAP has recently been logically generalized to consider mosquito senescence with an age-
dependent survival rate and life expectancy [23]. VCAP can therefore be more detailed and

precise when evaluating the activities of mosquitoes. Let Vj
i denote the VCAP contributed by

Table 1. Model parameters for the study in Guangzhou.

Parameters Definition Distribution Source

h The maximum of life span of adult vectors 44d [44]

p(i) Daily survival probability of adult mosquitoes at age i Weilbull [44]

a Human blood feeding rate at 12 hours Fitting2

k Extrinsic incubation period (EIP) 9d [45]

d The longest intrinsic incubation period (IIP)1 8d [46]

σ Age at which adult mosquitoes begin biting hosts 3d [23]

b = c Transmission probability from host to vector (=vector to host) 0.4 [47]

δ The report rate3 0.25 [4]

K The proportionality coefficient between BI and vector density Fitting2

PI The probability distribution of infection period Gamma(25, 0.2) [19, 48]

1The IIP follows Log-normal distribution denoted as PL [46].
2These parameters can be fitted by machine learning methods.
3The reported rate is adopted from the proportion of symptomatic infections during the high-incidence period.

doi:10.1371/journal.pntd.0004633.t001
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mosquitoes with age j in district i. Mathematically, it is calculated as [23]:

Vj
i ðtÞ ¼ mj

iðtÞa2i ejþk
Yjþk

l¼j

pðlÞ; ð4Þ

where ej+k is the expectation of remaining infectious life at age j + k, andmj
i is the ratio of female

mosquitos at age j to humans, whose values during daytime and nighttime are m̂j
i ¼ xji=N̂ i and

�mj
i ¼ xji= �Ni, respectively.
To further estimate the infection size in each district, we introduce the notion of entomolog-

ical incubation rate (EIR), which is defined as the number of infectious bites received by a
human at each time step [22]. Let ŷ iðtÞ denote the proportion of infected population in the day-

time. It is given by ŷ iðtÞ ¼ Î iðtÞ=N̂ i, where Î iðtÞ is the number of infections physically staying
in district i at time t. EIR in the daytime is then calculated through vectorial capacity and tem-
poral prevalence as follows [22]:

Ê iðtÞ ¼
bð1� dÞŷ iðtÞ

Ph�k
j¼s V̂

j
iðtÞ

1þ aibeð1� dÞŷ iðtÞ
; ð5Þ

where e ¼Ph�k
j¼s ipðiÞ is the average life span of Aedes mosquitoes. The range of j = σ, � � �, h − k

is because only those mosquitoes who can bite and live through EIP can contribute to the infec-

tion risk. The EIR at night �EiðtÞ can be similarly calculated.
A number of factors determine the selection of some of the parameters. In China, when den-

gue patients go to hospital for treatment, they are registered and reported according to the reg-
ulations. Most of them must be hospitalized or quarantined, and must also take care to avoid
being bitten. We therefore assume that the reported cases would not be bitten by mosquitoes
again and only the unregistered patients (1� dÞŷ i are involved in the further transmission.
Our study time is the high-incidence period of dengue occurrence in Guangzhou, when the
government took various measures (e.g., spraying insecticide and cleaning up the environ-
ment) to control the dengue outbreak. Information about dengue was also broadcasted widely
across the media. Therefore, the treatment rate can be regarded as high and the reported rate as
equal to the proportion of symptomatic infections in the total infections.

Based on the definition of EIR, the estimated number of new infections in the daytime is [24]:

L̂iðtÞ ¼ cÊiðtÞN̂ i: ð6Þ

Here, we suppose that the total population is susceptible, as those infected and who recovered in

Guangzhou only make up a small part of the total population. L̂iðtÞ counters those infected who
physically stay in their district i during the daytime. The corresponding value at night �LiðtÞ can
be derived similarly. The number of new infections in the daytime of those living in district i
(including those staying away) can therefore be estimated as:

Ŷ iðtÞ ¼ L̂iðtÞ 1�
P

l 6¼iTli

N̂ i

 !
þ
X
l 6¼i

L̂lðtÞ
Til

N̂ l

: ð7Þ

Those newly infected in the previous night and who stay in district i during the daytime can be
calculated as:

�Y iðtÞ ¼ �LiðtÞ 1�
P

l 6¼iTil

�Ni

� �
þ
X
l 6¼i

�LlðtÞ
Nli

�Nl

: ð8Þ
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It should be noted that all new infections L̂iðtÞ and �LiðtÞ are in a latent state at time t. Only after
the intrinsic incubation period (IIP) (3–7days [46, 50]), they will become patients (with or with-
out symptoms) and δ of them will seek treatment.

To activate the formula (5), temporal prevalences Î and �I is estimated as follows:

Î iðtÞ ¼
Xt

l¼1

PðlÞ
Xd
j¼1

PLðjÞ L̂iðt � j� lÞ þ �Y iðt � j� lÞ� � !
;

�I iðtÞ ¼
Xt

l¼1

PðlÞ
Xd
j¼1

PLðjÞ �Liðt � j� lÞ þ Ŷ iðt � j� lÞ� � !
;

ð9Þ

where PL(j) is the probability that the individuals become infected after being bitten j days

before, and PðlÞ ¼ 1�Pl
i¼1 PIðiÞ is the probability that those individuals who become infected

l days before remain infected. τ and d denote the longest IIP and the maximum infection
period, respectively.

Based on the report cards of infectious diseases in China, patients are registered as incidence
cases in their own residential districts. This may introduce a spatial mismatch between the sur-
veillance data and real infections. Hence, to evaluate the real transmission level, any remote
infections should be projected into their residential districts. Based on the radiation model (3)
and the transmission equations presented above, the number of real incidences among people
living in district i can be calculated as follows:

riðtÞ ¼
Xd
l¼1

PLðlÞ Ŷ iðt � lÞ þ �Lðt � lÞ� �
: ð10Þ

So far, the standard transmission process has been formulated by Eqs (2–10). To implement
this model in a specific region, knowledge of the BI values, the initial number of infections, and
suitable parameters is needed. The initial infections can be estimated by dividing the number
of the reported cases by a reported rate, and undetermined parameters can be fitted by machine
learning methods.

Markov chain Monte Carlo method. We adopt a Markov chain Monte Carlo (MCMC)
method to estimate the model parameters. The model parameters K and a are estimated by fit-
ting our model with surveillance data. The relationship between the sizes of reported cases and
of modeling cases can be written in matrix notation as Γ = δρ+ε, where Γ = (Γ1, Γ2, � � �, ΓH) is a
H × Tmatrix, representing the surveillance data, and ρ = (ρ1, ρ2, � � �, ρH) is a H × Tmatrix, rep-
resenting the modeling incidences. The H × Tmatrix ε follows a matrix normal distribution,
i.e., ε* N(0, IT, S). To account for any misalignment of the report date, each element in Γ
equals the average of reported cases over two successive days.

The likelihood can be calculated as:

PðGjK; aÞ ¼ ð2pÞ�HT=2jSj�T=2 exp tr
ðG� drÞ0ðG� drÞ

2S

� �� �
; ð11Þ

where in the evolution dynamic process K = (K1, K2, K3), a = (a1, a2, � � �, aH). Accordingly, the
joint posterior distributions of K and a are given by

PðK; ajGÞ /
YT
t¼1

PðGtjrt;K; aÞ
Y3
i¼1

PðKiÞ
YH
i¼1

PðaiÞ: ð12Þ
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The procedure of the MCMCmethod is carried out as follows [39]: First, we initialize all of
the independent model parameters K and a, each of which follows a normal distribution. We
then generate the value of the modeling cases based on new parameters for calculating the pos-
teriori likelihood P(K�, a�|Γ) according to Eq (11). For each iteration, new values of Γ are gen-
erated from an adaptive proposal distribution P(K�, a�|K, a). New values of K and a can then
be calculated. All new values K�, A� and Γ� will be accepted with probability

min 1;
PðK�; a�jGÞqðK; ajK�; a�Þ
PðK; ajGÞqðK�; a�jK; aÞ

� �
;

where q(K�, a�|K, a) is the proposed density. After a number of iterations, we can then analyze
the statistics of the model parameters and estimate their values.

Results

The heterogeneity of vector behaviors
According to the proposed model and the MCMC algorithm, the underlying model parameters
are estimated, and the values are presented in Table 2. Based on the scale factors between BI and
mosquito density (i.e., K1, K2 and K3), it is observed that the aquatic habitats contain the highest
concentration of larval mosquitoes in urban areas and the lowest concentration in exurban
areas, but the difference between the exurban and suburban areas is not significant. This finding
is consistent with the results in [44], where the authors have found that in urban areas of Guang-
zhou, the larvae and pupae of Aedes albopictus are more abundant in container habitats. The
possible reason for the disparity of K is that the temperature, food sources, and types of aquatic
habitats and containers vary between the urban, suburban, and rural areas [44].

The estimated number of bites per person per 12 hours by each female Aedes mosquito is
shown in Table 2, presented as ai in district i. This rate is equal to the product of the human
blood index (i.e., the proportion of blood meals of mosquitoes taken from humans) and the
mosquito feeding frequency, which is possibly associated with the status of demography,
temperature, geography and environment [42]. In Guangzhou, the terrain slopes downward
from the north to the south. The temperature usually falls 1–2 degree from the south to the
north, but the urban heat island effect results in over 1.7 higher degrees in the center areas in
2014. Low latitude and high temperature can cause frequent mosquito feeding. Specifically,
our results indicate that urban areas possess high values of human blood index or mosquito
feeding frequency. This is perhaps due to the dense population and the urban heat island
effect. Tianhe is the most prosperous district (with the highest GDP) and one of the densely
populated areas. Mosquitoes there prefer to bite humans frequently. In the suburban and

Table 2. Posterior means with posterior standard deviation (SD) for model parameters.

Parameters Mean (SD) SD Parameters Mean SD Parameters Mean SD

K1
1 12347 53 a3 0.332 0.007 a8 0.246 0.021

K2 7976 68 a4 0.485 0.012 a9 0.282 0.014

K3 6521 37 a5 0.428 0.011 a10 0.237 0.013

a1
2 0.391 0.006 a6 0.286 0.005 a11 0.318 0.012

a2 0.361 0.022 a7 0.271 0.01 a12 0.267 0.011

1Parameters K1, K2, K3 are the scale factors between the Breteau index and vector density in the urban, suburban and exurb areas.
2Parameter ai (i = 1, 2, � � �, 12) is the Aedes mosquitoes biting rate of humans in district i in Guangzhou within 12 hours, where districts 1 to 12 correspond

to Yuexiu, Haizhu, Liwan, Tianhe, Baiyun, Panyu, Huangpu, Luogang, Huadu, Nansha, Zengcheng, and Conghua, respectively.

doi:10.1371/journal.pntd.0004633.t002
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exurban areas, however, probably due to various blood sources (e.g., chicken, dogs, and cat-
tle), cool temperature, high altitude, and the sparse population, the biting rate on humans is
relatively low.

The infection risk
The infection risk is usually evaluated by the basic reproduction number R0, defined as the
expected number of secondary infections averagely generated by one case in a completely sus-
ceptible population [9, 19, 22]. R0 is widely used as an invasion threshold: if R0 is less than
one, then the disease will become extinct; otherwise, there will exist an endemic state. In epi-
demiology, R0 reflects the biology of the transmission dynamics and quantifies the transmis-
sion potential of an epidemic. For vector-borne diseases, the basic reproduction number was
first derived by Macdonald (1957) and Ross (1911) [9], based on which, we present the follow-
ing formula:

R0 ¼ 4bcW
Xh�k

j¼s

Vj; ð13Þ

where ϑ = ∑l lPI(l) = 5 days [48] is the average duration of human infection. Eq (13) is an evo-
lutionary form of the basic reproduction number with time-varied VCAP. Averaging over the
vector densities through the study period and inserting it into Eq (13), we obtain the mean
value of the basic reproduction number R0. The evolutionary and average values of R0 in each
district of Guangzhou are presented in Fig 3. It can be observed that R0 decreases from the
largest value, 4.4 (in Tianhe), in late September to less than 1 in early November, and the aver-
age value is between 1.81–2.59. We find that R0 is much higher but decreases more quickly in
urban areas, which implies that the infection capacity is at first greater in urban areas, and the
following intervention measures are effective there. Two peaks of R0 are observed in Huadu
and Conghua, due to the increase in mosquito numbers. It should be noted that a larger R0

does not determine a higher incidence, and a rapid decrease of R0 does not means a rapid
reduction in incidences, as the incidence rate is also dependent on the infection sources.

Fig 3. The basic reproduction numberR0 in each district of Guangzhou. The solid lines are the longitudinal R0 from September 21 to November 9, 2014.
The numbers in the legends are the average R0 during this period in the corresponding districts. Here, a portion of Baiyun is in the suburban area. The basic
reproduction number reflects the transmission potential of an epidemic disease.

doi:10.1371/journal.pntd.0004633.g003
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The spatio-temporal patterns of dengue dynamics
Applying the estimated parameters to the proposed model, we obtain the following estimation:
(1) The longitudinal number of infections in each district with the infection difference between
daytime and night is as shown in Fig 4, in which the time corresponds to when people are bit-
ten and get infected; (2) The longitudinal numbers of the incidences are as shown in Fig 5, in
which the reported cases are demonstrated as a part of them; (3) The levels of the remote and
local infections are as summarized in Table 3, in which the living areas and bit locations of the
patients are estimated; (4) The spatio-temporal incidence rates are as shown in Fig 6. From the
above Figures and Table, we observe heterogeneous and interesting patterns in dengue trans-
mission in these districts, which are specified from the following aspects.

First, the number of infections is estimated at about 113,108 cases from September 24 to
November 9, 2014, some of which are recorded in the surveillance system. Most of the unre-
ported cases are inapparent. We can classify the 12 districts into 3 classes.

Fig 4. Daily infections with the difference between daytime and nighttime in 12 districts, Guangzhou. The time span is from September 24 to
November 9, 2014. The time corresponds to the moments when people are bitten and get infected, so these patients are in a latent state. Some patients are
infected in other districts.

doi:10.1371/journal.pntd.0004633.g004
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Fig 5. Comparison of estimated cases and reported cases in 12 districts, Guangzhou. The time span is from September 28 to November 13, 2014. The
daily reported cases are available and demonstrated between September 28 and October 31 only.

doi:10.1371/journal.pntd.0004633.g005

Table 3. The number of dengue cases based on remote and local infection among 12 districts in Guangzhou, with the infections occurring from
September 24 to November 9, 2014.

Yuexiu Haizhu Liwan Tianhe Baiyun Panyu Huangpu Luogang Huadu Nansha Zengcheng Conghua Total

Yuexiu 14560 172 189 96 119 21 20 4 5 1 0 0 15187

Haizhu 401 16608 319 150 128 56 31 5 3 1 1 0 17703

Liwan 241 104 12471 45 61 12 10 1 1 0 0 0 12946

Tianhe 326 346 121 9612 247 40 38 5 2 1 0 0 10738

Baiyun 459 323 264 346 32814 52 60 20 17 2 1 1 34359

Panyu 150 439 114 87 71 10423 46 3 2 4 0 0 11294

Huangpu 15 23 7 40 11 4 3751 1 0 0 0 0 3852

Luogang 10 21 9 29 27 3 32 1026 0 0 0 0 1157

Huadu 37 36 29 35 340 5 7 3 2419 0 0 0 2911

Nansha 6 21 5 3 6 55 5 0 0 1261 0 0 1362

Zengcheng 22 36 19 61 79 13 60 30 2 1 680 0 1003

Conghua 8 11 4 9 39 2 4 4 1 0 1 513 596

Total 16190 18140 13551 10513 33942 10686 4064 1102 2452 1271 683 514 113108

The element (i, j) in this table corresponds to those people who live in district i but are infected in district j.

doi:10.1371/journal.pntd.0004633.t003
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• The areas with the highest incidence rates are around the urban center (i.e., Yuexiu, Haizhu,
Liwan, Tianhe, and Baiyun), where about 92,336 people (81.6% of the total cases) are
infected. The obvious hotspots can be observed in the areas around Liwan, Yuexiu, and
Baiyun. The primarily reasons for the high incidences in the urban center could be: (1) high
concentrations of people (about 57% of residents and 17% of the city’s area), (2) a highly
fluid population (with an estimated 81.7% daily mobility rate in these 5 districts), (3) abun-
dant initial infections, and (4) high vector density and frequent human biting.

• The areas with the second highest incidence rates make up one section of the suburban area
(i.e., Panyu and Huangpu). These two adjacent districts are close to the incidence hotspot,
and many residents work or study in the central areas.

• The five remaining districts demonstrate relatively small infection levels, (6,022 cases, 5.3%
of the total cases). These districts are located on the border of Guangzhou, where the human
mobility rate is quite low and the infection source is small. In this case, high vector indices do
not lead to high incidences.

Second, the patterns of infection differences between daytime and nighttime are shown in
Fig 4. A slightly higher infection rate can be observed at night for residents in the urban center,
which may be due to people returning to their living districts in late evening, and the infections
risk is relatively high in urban areas. However, in most suburban and exurban areas, the lower

Fig 6. The estimated spatio-temporal patterns of incidence rates. The incidence rate in a particular district is computed as the proportion between the
infection size and the number of people who physically stay in the region.

doi:10.1371/journal.pntd.0004633.g006
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infection risk creates a lower probability of getting infected at night. If the number of people
leaving a certain district each day is larger than the number moving in (i.e., in Baiyun, Panyun,
Huadu, Nansha, Zengcheng, and Conghua), then the incidence rate in the daytime could be
higher due to remote infections.

Third, typical temporal patterns of infection are summarized as follows:

• All 12 districts experience a fluctuation in terms of dengue incidences, but the peak time var-
ies, with the first October 11 (Yuexiu) and the last October 30 (Huadu). These phenomena
are due to the diverse levels of infection sources (i.e., infected people and vectors) and the
heterogeneous activities of Aedes mosquitoes.

• Population density and mobility play significant roles in dengue diffusion. For example,
based on surveillance data, Yuexiu, Baiyun, and Nansha are the first to report 100 cases, but
the transmission patterns are different. Low mobility yields a small incidence level in Nansha.
But Baiyun as the area with the largest numbers of residents and commuters, it has the most
incidences and a comparatively late peak.

• The continuing rapid decline of BI values results in a relatively rapid decline in the incidence
rate, in Yuexiu, Panyu, and Nansha, and particularly in Tianhe. This result also indicates that
intervention in these districts was timely and effective.

• Double peaks are observed in some districts, such as Tianhe and Nansha, due to the fluctua-
tion of vector densities and occurrence peak incidences in other districts. The latest peak inci-
dences occur in Huadu and Conghua, as they are the last districts involved in the
transmission, and the BI values are still high in late October.

The diffusion route
Based on the surveillance data, the weight of human mobility, the quantity of remote inci-
dences, and the arriving time of incidence peak, particularly the spatio-temporal incidence
rates, we are able to identify the primary route of dengue diffusion in Guangzhou.

• The first step refers to the spread through central areas: Local dengue infection initially takes
place in Yuexiu, the biggest remote infection source, which then triggers a rapid spreading of
the dengue virus through Liwan, Baiyun, and then invades Haizhu. Tianhe and Panyu are at
the same time involved in the transmission process, due to the interchange of infection
sources.

• The second step refers to the spreading process through the periphery of the central areas.
Remote infections from the central areas gradually cause widespread transmission in suburban
and exurban areas. Nansha, Zengcheng, Huangpu, and Luogang experience the infection pro-
cess at a similar rate, while Huadu and Conghua suffer infections slightly later. During trans-
mission, Nansha, Zengcheng, Huadu, and Conghua contribute few infections to other areas.

It should be noted that the effects of human mobility are not just reflected in the remote
infections, and by introducing infectivity to local Aedes mosquitoes, human mobility can lead
to large number of autochthonous dengue cases.

Discussion
In this study, we have developed an inference technique to identify dengue transmission pat-
terns and applied it to the 2014 dengue outbreak in Guangzhou, China. From this approach,
we can improve our understanding of the dengue burden, infection risk, and the transmission
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dynamics in Guangzhou. Our results can help policy makers formulate effective measures to
control and prevent dengue transmission.

Our model is based on the Ross-Macdonald theory, which can be viewed as an epidemiolog-
ical compartment model with an SEI infection process. The model closely combines four key
sub-models necessary for describing the integrated dynamics of the system, namely, those rep-
resenting mosquito population dynamics, human movement, virus transmission, and parame-
ters estimation. First, we present a novel method to estimate the quantities of adult female
mosquitoes from the BI data and environmental information. This approach differs from other
studies that directly use vector indices and involved factors (e.g., climate, sociodemographic
indicators, and land-cover types) to estimate the potential dengue risk from a statistical per-
spective [14, 16, 26]. Second, based on the available transportation data, we use a standard radi-
ation model to approximate the human mobility pattern [38]. As an inevitable component in
dengue spatial transmission, human mobility can also be tracked by many other methods, such
as GPS data [27], agent-based models, [25], and metapopulation models [10]. Next, we inte-
grate well-recognized formulas (e.g., the vectorial capacity [21–23] and the entomological incu-
bation rate [22, 24]) to elucidate the transmission process. We take into account the spatial
heterogeneity of vector-host interactions, and the corresponding biting rates are estimated by
MCMCmethods. Our model further explore the real dynamics of disease transmission behind
the observed incidences. The framework can also be applied to the space-time analysis of other
vector-borne diseases.

Based on our empirical study in Guangzhou, we find that the spatio-temporal distribution
of incidences is extremely heterogeneous, with 81.6% infections occurring in urban centers
with different shapes of peak existing in mid-October. By considering the underlying
dynamics, we observe temporal and spatial disagreement between infection cases and
reported cases. The rank of disease burden in 12 districts is also inconsistent with the surveil-
lance results.

Further, We find that, in Guangzhou, the basic reproduction number R0 as an indicator
of the infection risk decreases from the peak (3.45) on September 22 to the trough (0.73) on
November 9, 2014, with a mean value of 2.24. This estimated R0 can be applied to quantify
the infectivity in 12 districts and measure the effectiveness of the control strategies. From
September, the Guangzhou government began to adopt various measures to control dengue
transmission, such as disseminating knowledge about dengue through different media, ask-
ing every family to clean and clear their water containers, and organizing a sweep each Fri-
day and regular spring-cleaning throughout the city. Consequently, we find that R0 begins to
decrease from late September in most areas, particularly urban regions. However, due to a
large number of infectious sources, the incidences decreased in about mid-October. This
indicates that to control dengue transmission, intervention measures must be taken in a
timely fashion.

Due to the availability and validity of current surveillance data, the proposed models have
certain limitations, which are worthy of further improvement and discussion: (1) People in
Guangzhou are assumed to be without immunity against dengue; (2) The biological parameters
are extracted from the literature (see Table 1), which may show geographical disparities; (3)
The reported rate is used as the the proportion of symptomatic infections from [4]. Further
experiments and survey are necessary to validate these parameters.
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