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Background: The presence of microvascular invasion (MVI) is considered an
independent prognostic factor associated with early recurrence and poor survival in
hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly
consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs),
has been widely used for MVI prediction in medical imaging.

Aim: To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative
prediction of MVI based on imaging data.

Methods: Original studies reporting AI algorithms for non-invasive, preoperative
prediction of MVI based on quantitative imaging data were identified in the databases
PubMed, Embase, and Web of Science. The quality of the included studies was assessed
using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The
pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio
(NLR) were calculated using a random-effects model with 95% CIs. A summary receiver
operating characteristic curve and the area under the curve (AUC) were generated to
assess the diagnostic accuracy of the deep learning and non-deep learning models. In the
non-deep learning group, we further performed meta-regression and subgroup analyses
to identify the source of heterogeneity.

Results: Data from 16 included studies with 4,759 cases were available for meta-
analysis. Four studies on deep learning models, 12 studies on non-deep learning models,
and two studies compared the efficiency of the two types. For predictive performance of
deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were
0.84 [0.75–0.90], 0.84 [0.77–0.89], 5.14 [3.53–7.48], 0.2 [0.12–0.31], and 0.90 [0.87–
0.93]; and for non-deep learning models, they were 0.77 [0.71–0.82], 0.77 [0.73–0.80],
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3.30 [2.83–3.84], 0.30 [0.24–0.38], and 0.82 [0.79–0.85], respectively. Subgroup
analyses showed a significant difference between the single tumor subgroup and the
multiple tumor subgroup in the pooled sensitivity, NLR, and AUC.

Conclusion: This meta-analysis demonstrates the high diagnostic accuracy of non-deep
learning and deep learning methods for MVI status prediction and their promising potential
for clinical decision-making. Deep learning models perform better than non-deep learning
models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_
record.php? RecordID=260891, ID:CRD42021260891.
Keywords: hepatocellular carcinoma, artificial intelligence, deep learning, machine learning, microvascular
invasion (MVI), radiomics
INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary
liver malignancy and the fourth most common cause of cancer-
related deaths worldwide (1). Liver transplantation and resection
are the only potentially curative treatments (2). However, a high
risk of recurrence and metastasis after resection leads to a poor
prognosis for patients with HCC (3). HCC is highly
heterogeneous at the histological, molecular, and genetic levels,
making its prognostic stratification and personalized
management challenging.

The presence of microvascular invasion (MVI) is considered
an independent prognostic factor associated with HCC’s early
recurrence and poor survival after resection. For MVI-positive
patients, expanding resection margins can distinctly improve
patient survival by eradicating micrometastases (4, 5). In the
current era of precision medicine, a proportion of patients in
each stage do not fulfill the criteria for the treatment’s allocation
(6). In a recent article, Li et al. reported that surgical resection,
rather than ablation, is more effective in treating small HCC with
MVI. For the MVI patients, cumulative early recurrence rates
were significantly lower in the surgical resection group than in
the radiofrequency ablation group (22.8% vs. 52.5% after 1 year;
30.6% vs. 90.0% after 2 years) (7, 8). For HCC patients with MVI
present, a more aggressive treatment strategy may be preferred,
such as expanding the resection margin or anatomical
resectioning for patients undergoing hepatic resectioning,
minimizing the ablation margin to at least 0.5–1 cm for
patients receiving ablation, and neoadjuvant therapy before
surgery (9, 10). Hence, to better allocate treatment strategies,
predicting the risk of early recurrence of HCC before resection or
ablation is crucial. MVI is not similar to macrovascular invasion,
inoma; MVI, microvascular invasion;
, non-deep learning algorithms; US,
; NLR, negative likelihood ratio; DL,
DLC, the deep learning model with
n network; AFP, alpha fetoprotein;
ist; AP, arterial phase; PVP, portal
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which can be evaluated using radiologic images. MVI is defined
as the presence of a tumor in either the portal, hepatic venous
system or the branches surrounding the hepatic tissue lined by
endothelium, which is visible only by microscopy (11). Many
studies have shown that MVI is directly related to the outcomes
of HCC patients after surgery, and many researchers have
attempted to predict MVI using preoperative imaging analysis.

Recently, in the medical imaging domain, radiomics features
extracted through non-deep learning (NDL) algorithms
(NDLAs) have been proposed, which are effective for
predicting MVI (12). Moreover, artificial intelligence (AI)
algorithms have been widely applied in the classification of
skin cancer (13), diagnosis of eye diseases (14), identification
of prostate cancer (15), and brain metastasis detection (16). AI
algorithms show promising performance in the imaging
diagnosis of liver cancer (17–20).

Radiomics is a high-throughput extraction of large amounts
of quantitative imaging features with the assistance of NDLAs
(12). However, manual feature extraction is complicated and
time-consuming and lacks stability and consistent interpretation
(21). Compared with the NDL used by radiomics analysis, deep
learning (DL) algorithms (DLAs) have an advantage in learning
features from the images directly, rather than using artificially
defined features by human experience (22–24). DL in medical
imaging analysis has two properties: multiple layers of non-linear
processing units and supervised or unsupervised learning of
feature presentations on each layer (23). Input data for DLAs
consist of the imaging data itself such as different CT and MRI
sequence sets, whereas output data are the desired parameters
that should be extracted from the imaging data. In general, the
dataset is usually randomly divided into training and testing sets.
The former is used to train the DL model; the DLAs attempt to
calculate the complex relationship between input and output
data. The latter is then used to test the performance of the DL
model on a new dataset that had not been utilized to train the
DL model.

Recently, some reports have utilized DL methods based on
imaging data [MRI, CT, and ultrasound (US)] to predict MVI
with satisfactory performance. However, these reports were
limited to a small sample size. Huang et al. performed a meta-
analysis of radiomics and non-radiomics methods based on
February 2022 | Volume 12 | Article 763842
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medical image data for MVI prediction (25). Currently, there is
no systematic review or meta-analysis of DLmethods concerning
MVI prediction for HCC patients. In addition, studies
comparing DL and NDL methods for MVI prediction are rare.
Hence, to provide a more comprehensive and expansive
summary of these studies and further recognize the prediction
performance of DL for MVI prediction, we conducted a
systematic review and meta-analysis by comparing the
performance of DL and NDL methods for MVI prediction.

Therefore, the objective of this systematic review and meta-
analysis was to assess DL and NDL concerning MVI prediction
and compare their performances.
MATERIALS AND METHODS

This systemic review and meta-analysis was conducted in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement recommended
by the Cochrane Collaboration. This study was prospectively
registered in PROSPERO (ID: CRD42021260891).

Search Strategy
Papers describing the use of AI, NDL, and DL for the prediction
of HCC were reviewed. We searched the PubMed and Web of
Science databases. All English publications until June 14, 2021,
were searched without any restrictions on countries or article
types. Search terms are available in the Supplementary Search
Strategy and were included when they discussed the use of NDL
or DL methodologies on images in MVI prediction.

Eligibility Criteria
After the removal of duplicates, the articles were reviewed to
identify studies that satisfied the following criteria: 1) population:
pathologically confirmed HCC patients after surgical resection;
2) intervention: evaluation of MVI using AI algorithms based on
quantitative imaging data preoperatively; 3) outcome: diagnostic
accuracy of imaging analysis for diagnosing or predicting MVI in
HCC study; and 4) design: any type of study design, including
observational studies (retrospective or prospective) and clinical
trials. Studies were excluded according to the following criteria:
1) studies with duplicate patients and data; 2) case reports, review
articles, letters, conference abstracts, and editorials; and 3)
studies not in the field of interest. All identified articles were
first screened by title and abstract, and then full-text reviews of
potentially eligible articles were performed.

Data Extraction
The following information was extracted from the eligible
articles: a) study characteristics: authors (years of publication),
study type, study design, and study location; b) subject
characteristics: operation, interval image exam, number of
tumors, etiology of HCC [the number of hepatitis B virus
(HBV) or hepatitis C virus (HCV)], tumor size, the numbers
of MVI-present and MVI-absent, variables with p < 0.05 between
MVI(+) and MVI(−), and variables with p < 0.05 between the
Frontiers in Oncology | www.frontiersin.org 3
training and testing sets; c) model characteristics: image, region
segmentation, validation method, input data, feature selection,
and modeling method; and d) the performance of the DL or NDL
model: the area under the curve (AUC) value and the numbers of
true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN). The reference formulas were as follows:
sensitivity = TP/(TP + FN) and specificity = TN/(FP + TN). If
there was no sensitivity or specificity in one study, we used
Engauge Digitizer version 12.1 to calculate sensitivity and
specificity when Youden’s index was max based on the receiver
operating characteristic (ROC) curve in articles. If there were
more than two models in the same group of patients in one
study, the model with a higher AUC value was included in our
meta-analysis. If some models only analyzed imaging data and
others that analyzed both imaging data and clinical parameters,
then only the former were included in this study.

Assessment of Study Quality
Two reviewers independently assessed the quality of the eligible
articles using the Quality Assessment of Diagnostic Accuracy
Studies 2 (QUADAS-2) criteria and the four domains of patient
selection, index test, reference standard, and flow of patients
through the study (26).

Data Synthesis and Statistical Analysis
The pooled sensitivity, specificity, positive likelihood ratio (PLR),
negative likelihood ratio (NLR), and AUC value of the receiver
operating curve were computed. The results are shown in a
forest plot. The presence of a threshold effect was analyzed
by calculating Spearman’s correlation coefficient between
sensitivity and the false-positive rate (when p < 0.05, the
threshold was defined as present). When substantial
heterogeneity was noted, a meta-regression analysis was
performed to identify the causes. The random-effects model
was used to calculate the meta-analytic pooled AUC value, and
Higgins’s I2 test was used to assess the heterogeneity between
included studies with I2 > 75% deemed considerable
heterogeneity. An influence analysis was performed if I2 >
90%. For all NDL and DL models, excluding models using US,
to determine the source of heterogeneity, meta-regression
analysis based on the number of tumors (single or multiple),
image (CT or MRI), region segmentation (manual or
semiautomatic), set (validation or training set), least absolute
shrinkage and selection operator (LASSO), support vector
machine (SVM), convolutional neural network (CNN),
3D-CNN, arterial phase (AP), and portal venous phase
(PVP) sequence was performed. For all NDL models excluding
US, meta-regression analysis based on the number of tumors,
image, region segmentation, set , LASSO, and SVM
was performed.

Publication bias was evaluated using Deeks’ funnel plot and
Deeks’ asymmetry test. The AUC values of 0.5–0.7, 0.7–0.9, and
>0.9 indicate low, moderate, and high diagnostic power,
respectively. All statistical analyses were conducted using
STATA version 14.0 (StataCorp LP, College Station, TX, USA)
and Meta-DiSc version 1.4.
February 2022 | Volume 12 | Article 763842
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RESULTS

Search Results and
Qualitative Assessment
The PRISMA flow diagram systematically depicts the study
selection process (Figure 1). A total of 2,280 publications and
four articles identified through a meta-analysis were initially
retrieved through literature searches, 1,819 of them remaining
after the removal of duplicates. After title and abstract screening,
212 articles reported the use of AI in HCC. After a full-text
assessment, 16 studies were included in the systematic review and
meta-analysis. The quality of the included studies was assessed using
the QUADAS-2 scale (26). The results of the qualitative assessment
of the included studies are shown in Supplementary Figure S1.

Review of the Included Studies
Tables 1, 2 present the detailed characteristics of the 16 studies.
Fifteen of the studies were single-center and retrospective studies
that used an internal validation method (random splitting or
cross-validation) to assess the performance of the MVI
prediction model. One study was multicentered and
retrospective and used an external validation method. All
Frontiers in Oncology | www.frontiersin.org 4
patients were diagnosed with HCC based on postoperative
pathologic specimens and had available preoperative imaging
data including CT, MRI, or US. Fifteen studies were based on a
population from China 4 (27–41) and one from the United
States (42). Concerning the etiology of HCC, at least 78.46% of
patients had HBV or HCV of 4,657 patients across all included
studies. In patient selection, five articles only included HCC
patients with single tumors and excluded multiple tumors (27,
34, 39–41). Based on this diagnostic meta-analysis, 1,946
(40.89%) patients were pathologically diagnosed as MVI-
present and 2,813 patients as MVI-absent after surgical
resection or liver transplantation. In addition to tumor size in
the study by Feng et al. and the hypodense halo in the study by
Jiang et al., no significant differences in clinical variables were
observed between the training and validation groups. Other
characteristics of the included studies are presented in
Tables 1, 2, and the baseline characteristics of this meta-
analysis are presented in Table S1.

Chen et al. compared the predictive performance of five
classifiers in six different MRI sequences, and the analysis
showed that SVM, extreme gradient boosting (XGBoost), and
logistic regression (LR) classifiers in the validation cohort
FIGURE 1 | Flowchart of study selection.
February 2022 | Volume 12 | Article 763842
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showed greater diagnostic efficiency for predicting MVI and
NDL models based on delayed hepatobiliary phase (HBP). Due
to a lack of data, the study by Chen et al. was excluded from this
meta-analysis.

In the study by Nebbia et al., the imaging data were artificially
defined as the margin and tumor region before they were used for
training models. The results showed that the model combined with
margin radiomics and tumor radiomics performed generally worse
than single tumor radiomics, contradicting the conclusions of Feng
et al. (33). The probable causes included the small sample size, and
the tumor margin region may have included extrahepatic regions in
the margin segmentation process. Another important reason is that
features of the model that combine with margin radiomics and
tumor radiomics must be features from both margin and tumor
regions, preventing some predictive value features from being
learned. In addition, Xu et al. found that analyzing radiomics
features from peritumoral regions to calculate predictive
performance is not superior to using features from the
intratumoral region.

Owing to the high dimensionality and complexity of imaging
data using different sequences, feature selection was used to
reduce the computational power required to conduct such
complex analyses. The LASSO was frequently used for feature
selection (33, 34, 38–42). Other methods, which were frequently
used for classification, include LASSO regression (33, 34, 40, 43),
SVMs (32, 36, 38, 41), decision trees (27), k-nearest neighbor (30,
32), XGBoost (30, 33), and random forest (30, 35).
Frontiers in Oncology | www.frontiersin.org 5
In contrast to NDL, feature selection and classification of DL
occur simultaneously in the process of classifier training. Six of
the included studies reported the DL method for the prediction
of MVI. Table S2 summarizes the details of these six studies.
Three of the included studies, each a CNN, was used to build the
MVI prediction model (27, 29, 32). In three of the included
studies, the 3D-CNN model was developed to assess MVI in an
end-to-end training fashion, in which feature extraction and
predictive model construction were automatically processed by a
single neural network (28, 30, 31). While training the DL model,
Wu et al. and Wang et al. proposed a deep supervision network
(DSN) to reduce the loss function and improve the performance
of the DL model by directly supervising the features of the
hidden layer and improving the effectiveness of the hidden layer
during the CNN learning process (29, 30).

It is worth mentioning that Song et al. proposed a CNN model
through MRI analysis of 601 HCC patients with single tumors and
then compared the performances of the CNNmodel and radiomics
model based on the same group. The results showed that the CNN
model achieved an AUC of 0.915 (0.868–0.963) in the testing
cohort as compared to the radiomics model with an AUC of 0.731
(0.645–0.817). In addition, survival analysis demonstrated that
patients with DLC-predicted MVI status were associated with
poor overall survival and recurrence-free survival, suggesting the
strong clinical value of the DLCmodel in preoperatively identifying
HCC patients with poor prognosis and guiding the resection range.
Similarly, through CT imaging analysis of 405 HCC patients, Jiang
TABLE 1 | Characteristics of the included studies.

Authors
(year of
publication)

Study
type

Study
design

Study
location

Operation Interval
image
exam

Number
of

tumors

Validation Image Region
segmentation

Input data Feature
selection

Modeling
method

Song et al.
(2021) (27)

Retro. Single
center

China SR Within 1
month

Single Randomly
split at a
ratio

MRI Manually
drawn

ADC, DWI (b =
0), DWI (b =
500), AP, PVP,
DP, T1WI, T2WI

NA Radiomics
model,
CNN

Jiang et al.
(2021) (28)

Retro. Single
center

China SR or TL Within 2
months

Multiple Randomly
split at a
ratio

CT Manually
drawn with
ITK-SNAP
software

AP, PVP, and DP NA XGBoost,
3D-CNN

Wang et al.
(2020) (29)

Retro. Single
center

China SR Unclear Multiple Randomly
split at a
ratio

MRI Manually
drawn

DWI (b0, b100,
b600, and ADC
images)

CNN CNN with
DSN

Zhou et al.
(2021) (30)

Retro. Single
center

China SR Within 1
month

Multiple Randomly
split at a
ratio

Gd-EOB-
DTPA-
enhanced
MRI

Manually
drawn

Pre-contrast, AP,
PVP

3D-CNN 3D-CNN
with DSN

Zhang et al.
(2021) (31)

Retro. Single
center

China SR Within 1
week

Multiple Randomly
split at a
ratio

MRI Manually
drawn with
ITK-SNAP
software

T2WI, T2-SPIR,
and PVP images

3D-CNN 3D-CNN

Wei et al.
(2021) (32)

T:
Retro.
V: Pro.

Multicenter China SR Within 1
month

Multiple External
validation

MRI Manually
drawn

CT: AP, PVP
MRI: T2W1,
T1WI, AP, PVP,
HBP

CNN CNN
Fe
bruary 2022 | Volu
me 12 | Art
Retro, retrospective; Pro, prospective; CNN, convolutional neural network; AP, arterial phase; PVP, portal venous phase; DP, delayed phase; DSN, deep supervision network; V, validation
set; T, training set; SR, surgical resection; TL, liver transplantation; LASSO, least absolute shrinkage and selection operation; SVM, support vector machine; BPNet, back-propagation
neural network; KNN, k-nearest neighbors; RF, random forest; DT, decision tree; GBDT, gradient boosting decision tree; NRS, neighborhood rough set; PCA, principal component
analysis; XGBoost, extreme gradient boosting; ADC, apparent diffusion coefficient.
NA, not available.
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et al. proposed and compared the 3D-CNN model, radiomics
model, radiological model, and RRC model (model combining
radiological features, radiomics features, and clinical variables),
with the results showing that the DL model achieved the highest
AUC of 0.906 in the validation set. Survival analysis showed that
recurrence-free survival was significantly better in the predicted
MVI-negative group than in the predicted MVI-positive group.
Furthermore, in one multicenter retrospective study, 750 HCCs
were enrolled from five Chinese hospitals, and a CNN model (n =
309) based on CT imaging analysis and another (n = 329) based on
Frontiers in Oncology | www.frontiersin.org 6
MRI analysis were trained. In the external validation cohort (n =
115), the findings revealed that the MRI-based CNN model
achieved superior prediction performance (AUC: 0.812 vs. 0.736,
p = 0.038; sensitivity: 70.4% vs. 57.4%, p = 0.015; specificity: 80.3%
vs. 86.9%, p = 0.052). Survival analysis showed that both DLmodels
could stratify groups with both high and low risk in terms of
progression-free survival and overall survival. From the three
studies, the high diagnostic power of the CNN model was
validated, and consistent results indicated the potential value in
clinical decision-making.
TABLE 2 | Characteristics of the included studies.

Authors
(year of
publication)

Study
type

Study
design

Study
location

Operation Interval
image
exam

Number
of

tumors

Validation Image Region
segmentation

Input data Feature
selection

Modeling
Method

Feng et al.
(2019) (33)

Retro. Single
center

China SR Within 1
month

Multiple Randomly
split at a
ratio

Gd-EOB-
DTPA-
enhanced
MRI

Manually drawn
with ITK-Snap
software

T1WI in/out
phase,
T1WI-FS,
T1WI+c,
T2WI+c,
T1WI (HBP)

LASSO LASSO
regression
model

Nebbia et al.
(2020) (42)

Retro. Single
center

USA SR Within a
week

Multiple Stratified
5-fold
cross-
validation

MRI Manually drawn DWI, T1,
T2, late AP,
and PVP

LASSO,
feature
stability
analysis

SVM,
decision
trees, KNN,
Bayes

Liu et al.
(2021) (34)

Retro. Single
center

China SR Unclear Single Randomly
split at a
ratio

CT Manually drawn
with 3D-Slice
software

AP Intraclass
correlation
coefficient,
LASSO

logistics
regression

Dong et al.
(2020) (35)

Retro. Single
center

China SR Within 2
weeks

Multiple Split at a
ratio

Ultrasound Manually drawn
with MITK

NA Pearson
correlation
analysis,
minimum
redundancy
maximum
relevance

RF

Xu et al.
(2019) (36)

Retro. Single
center

China SR or TL n
(n = 16)

Unclear Multiple Split at a
ratio

CT Semiautomatically
drawn with
Python

AP, PVP recursive
feature
selection
SVM, step-
wise
multivariate
analysis

Ref-SVM,
multivariate
regression

Hu et al.
(2018) (40)

Retro. Single
center

China SR Within 2
weeks

Single Split at a
ratio

Ultrasound Manually drawn
with the A.K.
software

NA LASSO Logistic
regression

Yao et al.
(2018) (37)

Retro. Single
center

China SR Unclear Unclear Cross-
validation

Ultrasound Manually drawn NA Sparse
representation

SVM

Ni et al.
(2019) (38)

Retro. Single
center

China SR or TL Within 1
month

Unclear Split at a
ratio

CT Manually drawn
with the A.K.
software

PVP LASSO, NRS,
PCA

BPNet,
KNN, SVM,
RF, DT,
Bayes,
GBDT

Peng et al.
(2018) (39)

Retro. Single
center

China SR Within 1
week

Single Split at a
ratio

CT Semiautomatically
drawn with
MATLAB

AP, PVP LASSO logistic
model

Ma et al.
(2018) (41)

Retro. Single
center

China SR Unclear Single Split at a
ratio

CT Manually drawn
with ITK-SNAP
software

AP, PVP,
DP

LASSO SVM
Feb
ruary 2022 |
 Volume 12 | Ar
Retro, retrospective; AP, arterial phase; PVP, portal venous phase; DP, delayed phase; SR, surgical resection; TL, liver transplantation; LASSO, least absolute shrinkage and selection
operation; SVM, support vector machine; BPNet, back-propagation neural network; KNN, k-nearest neighbors; RF, random forest; DT, decision tree; GBDT, gradient boosting decision
tree; NRS, neighborhood rough set; PCA, principal component analysis.
NA, not available.
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Meta-Analysis of the Included Studies
In total, 18 NDL models and 11 DL models with 4,759 cases
described in 16 individual studies were retrieved. Meta-analysis
was performed separately in the subgroups for different
modeling methods in different cohorts.

Deep Learning Model for Preoperative
Microvascular Invasion Evaluation
Based on 11 DL models in all cohorts, there were 2,073 HCC
patients, including 843 MVI-present and 1,230 MVI-absent. The
diagnostic meta-analysis forest plots and the combined results are
shown in Figure 2. Diagnostic threshold analysis showed that there
was no significant threshold effect (Spearman’s correlation coefficient
= −0.082 p = 0.811). The pooled sensitivity, specificity, PLR, and
NLR of the DL model were 0.84 [95% CI: 0.75–0.90, I2 = 85.81%],
0.84 [95% CI: 0.77–0.89, I2 = 91.92%], 5.14 [95% CI: 3.53–7.48, I2 =
88.05%], and 0.2 [95% CI: 0.12–0.31, I2 = 84.83%], respectively. The
Frontiers in Oncology | www.frontiersin.org 7
AUC based on the summary ROC (sROC) curve was 0.90 [95% CI:
0.87–0.93; Figure 4]. The I2 values of sensitivity, specificity, PLR, and
NLR indicated high heterogeneity. Influence analysis showed that
the models of Jiang et al. andWei et al. in their training sets could be
the cause of the high heterogeneity. After the two models were
excluded, I2 values markedly decreased (Table 3). Based on 9 DL
models, there were 1,443 HCC patients, including 565 MVI-present
and 878 MVI-absent. Analysis of diagnostic threshold showed that
there was no significant threshold effect (Spearman’s correlation
coefficient = −0.150 p = 0.700). The pooled sensitivity, specificity,
PLR, and NLR of the DL model were 0.79 [95% CI: 0.71–0.85, I2 =
70.54%], 0.85 [95% CI: 0.80–0.89, I2 = 69.44%], 5.34 [95% CI: 3.79–
7.52, I2 = 48.71%], and 0.25 [95% CI: 0.18–0.35, I2 = 74.00%],
respectively. The AUC based on the sROC curve was 0.89 [95% CI:
0.86–0.92; Figure 3], which showed moderate diagnostic value.
Studies in the DL group numbered less than ten, and thus meta-
regression analysis could not be performed.
A B

DC

FIGURE 2 | Forest plots based on DL model for preoperative prediction of MVI in HCC. DL, deep learning; MVI, microvascular invasion; HCC, hepatocellular
carcinoma; DL, deep learning; MVI, microvascular invasion; HCC, hepatocellular carcinoma; T, training set; V, validationset; Wei (2021)-T1,model in training set based
on MRI; Wei (2021)-T2, model in validation set based on CT.
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Non-Deep Learning Model for
Preoperative Microvascular
Invasion Evaluation

For the NDL model across all cohorts, there were 2,685 HCC
patients, including 1,128 MVI-present and 1,557 MVI-absent.
The diagnostic meta-analysis forest plots and combined results
are shown in Figure 3. Diagnostic threshold analysis showed that
there was no significant threshold effect (Spearman’s correlation
coefficient = −0.089, p = 0.726). The pooled sensitivity,
specificity, PLR, and NLR of the NDL model were 0.77 [95%
CI: 0.71–0.82, I2 = 73.72%], 0.77 [95% CI: 0.73–0.80, I2 =
48.35%], 3.30 [95% CI: 2.83–3.84, I2 = 33.64%], and 0.30 [95%
CI: 0.24–0.38, I2 = 73.89%], respectively. The AUC based on the
sROC curve was 0.82 [95% CI: 0.79–0.85; Figure 4], which
Frontiers in Oncology | www.frontiersin.org 8
showed moderate diagnostic value. Heterogeneity between
groups was considered moderate.

US is operator-dependent, and its imaging techniques are
different from those of CT and MRI. To reduce the bias, studies
(Hu, Yao, and Dong) using US were excluded, and a meta-analysis
based on 14 NDL models using CT or MRI was performed. There
were 2,059 HCC patients, consisting of 875 MVI-present and 1,184
MVI-absent. The diagnostic meta-analysis forest plots and
combined results are shown in Supplementary Figure S4 and
Table 3. Diagnostic threshold analysis showed that there was no
significant threshold effect (Spearman’s correlation coefficient =
−0.089, p = 0.726). The pooled sensitivity, specificity, PLR, and
NLR of the NDLmodel were 0.77 [95% CI: 0.71–0.83, I2 = 74.70%],
0.77 [95% CI: 0.75–0.80, I2 = 13.48%], 3.42 [95% CI: 2.98–3.93, I2 =
6.36%], and 0.29 [95% CI: 0.22–0.38, I2 = 76.24%], respectively.
A B

DC

FIGURE 3 | Forest plots based on NDL model for preoperative prediction of MVI in HCC. NDL, non-deep learning; MVI, microvascular invasion; HCC, hepatocellular
carcinoma; T, training set; V, validation set.
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The AUC based on the sROC curve was 0.79 [95% CI: 0.75–0.82;
Figure 4], which showed a moderate diagnostic value.
Heterogeneity between groups was considered moderate. After
studies using US were excluded, the I2 values of PLR were
markedly decreased, but the I2 values of sensitivity, specificity,
and NLR did not noticeably decrease.

Deep Learning Model for Preoperative
Microvascular Invasion Evaluation in
Validation Set
Considering the effect of overfitting in the model training process,
a meta-analysis based on DL models in the validation set was
performed after removing the training set. Within the six included
DL models in the validation set, there were 495 HCC patients,
including 216 MVI-present and 279 MVI-absent. The diagnostic
meta-analysis forest plots and combined results are shown in
Supplementary Figure S2. Diagnostic threshold analysis showed
that there was no significant threshold effect (Spearman’s
correlation coefficient = 0.086, p = 0.872). The pooled
sensitivity, specificity, PLR, and NLR of the DL model were 0.79
[95% CI: 0.67–0.88, I2 = 74.90%], 0.83 [95% CI: 0.78–0.87, I2 =
0.00%], 4.72 [95% CI: 3.46–6.44, I2 = 0.00%], and 0.25 [95% CI:
0.15–0.42, I2 = 76.72%], respectively. The AUC based on the sROC
curve was 0.85 [95% CI: 0.81–0.88; Figure 4], which showed
moderate diagnostic value. After the removal of the training set,
Frontiers in Oncology | www.frontiersin.org 9
the I2 values were markedly decreased, while heterogeneity
between included models was still considered notable in terms
of NLR. There was no significant difference in all effect sizes
between the models in all cohorts and models in the validation set.

Non-Deep Learning Model for
Preoperative Microvascular Invasion
Evaluation in Validation Set
Considering the effect of overfitting in the model training process, a
meta-analysis based on an NDL model in the validation set was
performed. Of the nine included NDL models in the validation set,
there were 926 HCC patients, composing 381 MVI-present and 545
MVI-absent. The diagnostic meta-analysis forest plots and
combined results are shown in Supplementary Figure S3.
Diagnostic threshold analysis showed that there was no significant
threshold effect (Spearman’s correlation coefficient = 0.192, p =
0.620). The pooled sensitivity, specificity, PLR, and NLR of the NDL
model were 0.77 [95% CI: 0.70–0.83, I2 = 61.59%], 0.77 [95% CI:
0.70–0.83, I2 = 72.85%], 3.42 [95% CI: 2.54–4.62, I2 = 53.76%], and
0.29 [95% CI: 0.22–0.40, I2 = 63.21%], respectively. The AUC based
on the sROC curve was 0.84 [95% CI: 0.81–0.87], which showed
moderate diagnostic value. After the removal of the training set,
heterogeneity between groups was considered moderate. There was
no significant difference in all effect sizes between the models from
all cohorts and models in the validation set.
TABLE 3 | Sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio with subgroup analysis according to the number of tumors in NDL model group.

Analysis No. of
models

Pooled SE
(95% CI)

I2

(%)
Pooled SP
(95% CI)

I2

(%)
Pooled PLR
(95% CI)

I2

(%)
Pooled NLR
(95% CI)

I2

(%)
AUC

NDL model group 18 0.77 [0.71–0.82] 73.72 0.77 [0.73–0.80] 48.35 3.30 [2.83–3.84] 33.64 0.30 [0.24–0.38 73.90 0.82 [0.79–0.85]
NDL model in validation

set
9 0.77 [0.70–0.83] 61.59 0.77 [[0.70–0.83] 72.85 3.42 [2.54–4.62] 53.76 0.29 [0.22–040] 63.21 0.84 [0.81–0.87]

DL model group 11 0.84 [0.75–0.90] 85.81 0.84 [0.77–0.89] 91.92 5.14 [3.53–7.48] 88.05 0.2 [0.12–0.31] 84.83 0.90 [0.87–0.93]
DL model in validation set 6 0.79 [0.56–0.86] 74.90 0.83 [0.78–0.87] 0.00 4.72 [3.46–6.44] 0.00 0.25 [0.15–0.42] 76.72 0.85 [0.81–0.88]

Influence analysis in DL
model group
Without Jiang-T 10 0.80 [0.73–0.86] 74.64 0.83 [0.75–0.88] 91.76 4.69 [3.24–6.78] 85.71 0.24 [0.17–0.33] 74.01 0.88 [0.85–0.91]
Without Wei-T2 10 0.83 [0.73–0.90] 85.95 0.86 [0.81–0.90] 68.70 5.88 [4.19–8.24] 56.24 0.20 [0.12–0.33] 85.23 0.91 [0.88–0.93]
Without both 9 0.79 [0.71–0.85] 70.54 0.85 [0.80–0.89] 69.44 5.34 [3.79–7.52] 48.71 0.25 [0.18–0.35] 74.00 0.89 [0.86–0.92]

Subgroup analysis in
NDL model group
Single tumor 8 0.69 [0.65–0.73] 43.26 0.77 [0.74–0.80] 32.54 2.98 [2.54–3.45] 0.00 0.41 [0.35–0.48] 39.30 0.79 [0.75–0.82]
Multiple tumor 10 0.84 [0.78–0.88] 0.00 0.78 [0.72–0.83] 60.09 3.67 [2.82–4.78] 35.97 0.17 [0.13–0.23] 0.00 0.88 [0.85–0.91]

Subgroup analysis in
NDL without ultrasound

14 0.77 [0.71–0.83] 74.70 0.77 [0.75–0.80 13.48 3.42 [2.98–3.93] 6.36 0.29 [0.22–0.38] 76.24 0.79 [0.75–0.82]

Single tumor 8 0.70 [0.63–0.75] 52 0.78 [0.73–0.82] 44.46 3.10 [2.49–3.86] 4.84 0.39 [0.32–0.48] 51.80 0.81 [0.77–0.84]
Multiple tumor 6 0.87 [0.83–0.90] 0.00 0.78 [0.74–0.81] 0.00 3.93 [3.31–4.68] 0.00 0.17 [0.13–0.23] 0.00 0.90 [0.87–0.92]

Subgroup analysis by AI
algorithms
LASSO 8 0.75 [0.67–0.81] 72.72 0.76 [0.72–0.79] 10.70 3.05 [2.55–3.64] 0.00 0.34 [0.25–0.45] 70.09 0.77 [0.73–0.80]
SVM 6 0.81 [0.71–0.88] 72.65 0.81 [0.76–0.85] 3.48 4.14 [3.33–5.16] 0.00 0.24 [0.16–0.36] 77.04 0.85 [0.81–0.88]
CNN 6 0.82 [0.78–0.86] 57.42 0.84 [0.73–0.92] 95.38 5.28 [3.04–9.19] 91.72 0.21 [0.17–0.25] 40.47 0.87 [0.84–0.90]
3D-CNN 5 0.87 [0.67–0.96] 93.29 0.84 [0.78–0.88] 48.01 5.30 [3.44–8.16] 49.39 0.16 [0.05–0.46] 93.65 0.88 [0.85–0.90]

Subgroup analysis by
image
MRI 5 0.78 [0.67–0.87] 80.99 0.76 [0.70–0.81] 27.70 3.22 [2.48–4.19] 27.90 0.28 [0.18–0.45] 82.36 0.78 [0.74–0.81]
CT 9 0.76 [0.68–0.83] 72.36 0.80 [0.76, 0.83] 13.11 3.73 [3.12–4.45] 0.00 0.30 [0.22–0.41] 73.85 0.82 [0.78–0.85]
February 2022 | V
olume 1
Jiang-T: DL model proposed by Jiang et al. in training set; Wei-T2: DL model based on CT proposed by Wei et al. in validation set; SE, sensitivity; SP, specificity; PLR, positive likelihood
ratio; NLR, negative likelihood ratio; AUC, area under the curve; NDL, non-deep learning; DL, deep learning; AI, artificial intelligence; LASSO, least absolute shrinkage and selection
operator; SVM, support vector machine; CNN, convolutional neural network.
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Meta-Regression Analysis and
Subgroup Analysis
We observed substantial heterogeneity in the performance of the
NDL group, with I2 being 73.72%, 48.35%, 33.64%, and 73.89% for
the pooled sensitivity, specificity, PLR, and NLR, respectively. As US
may result in a noticeable bias, we excluded studies using US and
then performed the meta-regression analysis. The results of meta-
regression analysis are presented in Tables S4, S5. The results
showed that in the univariate meta-regression model, 10 covariates
were significantly associated with study heterogeneity. Therefore, we
believe that these variates may influence prediction accuracy in the
NDL group. In the multivariate meta-regression model, the number
of tumors was strongly associated with study heterogeneity.

We conducted an additional subgroup analysis based on the
number of tumors (Table 3). In it, I2 values of the two subgroups
were markedly decreased. The I2 of the single tumor subgroup was
43.26%, 0%, and 39.28% for the pooled sensitivity, PLR, and NLR,
respectively. The I2 of the multiple tumor subgroup was 0% and 0%
for the pooled sensitivity and NLR, respectively. Except for the
pooled specificity and PLR, significant differences between the two
subgroups were observed in the pooled sensitivity, AUC, and NLR.
The results of subgroup analysis using the AI algorithm (LASSO
and SVM) and image (CT and MRI) are shown in Table 3. There
was no significant difference between the image and AI algorithms
in the NDL group. For AI algorithms in the NDL group, SVM is
significantly superior to LASSO for the pooled AUC (0.77 [0.73–
0.80] vs. 0.85 [0.81–0.88]). There was no significant difference
between CNN and 3D-CNN. Generally, DL models (3D-CNN
and CNN) are significantly superior to LASSO, and there was no
significant difference between DLAs and SVM.

Testing for Publication Bias
Deeks’ funnel plot asymmetry test showed no significant
publication bias with p-values of 0.42 and 0.22 for the DL
group and NDL group, respectively.
Frontiers in Oncology | www.frontiersin.org 10
DISCUSSION

Performance of Deep Learning and
Non-Deep Learning Models
In this study, NDL models and DL models were compared. The
NDL models had a moderate diagnostic value for MVI
prediction in HCC, with pooled sensitivity, specificity, PLR,
NLR, and AUC values of 0.77, 0.77, 3.30, 0.30, and 0.82,
respectively. The DL models, including the CNN model and
3D-CNN model, had moderate diagnostic values that were
similar to those of the NDL models, with pooled sensitivity,
specificity, PLR, NLR, and AUC values of 0.84, 0.84, 5.14, 0.2,
and 0.90, respectively. All these effect sizes showed that models
using the DL method had a higher performance for preoperative
prediction of MVI in HCC and had a statistically significant
difference in diagnostic value in terms of AUC. When comparing
DL models with NDL models in the validation set, there was no
significant difference in any of these factors. A reasonable
interpretation is that the sample sizes of the DL model group
were too small, and the heterogeneity in both the NDL and DL
model groups was notable. However, there is reliable evidence to
support that the model using the DL method may have a higher
performance and be more suitable for preoperative
MVI prediction.

By analyzing radiomics features from images, building a
prediction model using NDL methods had been widely applied
in MVI prediction (44–48) and prediction domain of other
cancers (13–16). NDL models based on radiomics features had
been proved to be better than a model based on radiological
characteristics or clinical characteristics (44, 45). For the NDL
models included in this study, analyzing radiomics features
assisted by NDLAs is an advanced technique for MVI
prediction, but one of the shortcomings of radiomics is that
the method is based on handcrafted feature extractors, which
require extensive work and manpower. In addition, the main
A B

FIGURE 4 | The pooled sROC curve of DL model (A) and NDL model (B). sROC, summary receiver operating characteristic; DL, deep learning; NDL, non-deep
learning.
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limitation is that radiomics features are human-designed and
dependent on domain-specific expertise.

A DLmethod, CNN, was proven powerful in medical imaging
(49), with superior performance as compared to NDL based on
radiomics features. The advantage of DL is that feature extraction
in the learning process is not required, avoiding defects in
human-designed features in radiomics analysis. Since classifier
training, feature selection, and classification of DL occur
simultaneously, we needed only input images, rather than
clinical data, radiological features, or radiomics features.
Feature selection and classification of DL occur simultaneously
during classifier training. The main power of a CNN lies in a
CNN architecture consisting of a series of layers of convolution
filters, akin to low-level vision processing in the human brain,
which allows for the extraction of a set of discriminating features
at multiple levels of abstraction. However, training a deep CNN
is challenging. The main difficulties are that CNNs require a large
amount of labeled training data and large computational and
memory requirements and that training a deep CNN is often
complicated by overfitting and convergence issues and the lack of
interpretability. Jiang et al. provided a new means to partly
explain how DL can identify MVI status.

The main difference in 3D-CNNs is that the input data are
three-dimensional image data. In the included studies, Wu et al.
proposed a 3D-CNN model with a DSN based on pre-contrast,
APs, and PVPs in MR images with an AUC value of 0.9255. A
3D-CNNmodel proposed by Song et al. with DSN based on eight
MRI sequences obtained the highest AUC value of 0.915 in the
testing cohort. Another 3D-CNN model proposed by Jiang et al.
based on AP, PVP, and DP CT sequences in the validation set
achieved 0.906 [95% CI: 0.821–0.960]. In the studies by Song
et al. and Jiang et al., the two 3D-CNN models performed
excellently in MVI prediction.

The Value of Artificial Intelligence
Algorithms for Microvascular
Invasion Prediction
For AI algorithms, we performed a subgroup analysis, and results
showed that DL is generally superior to NDL and that in NDL,
SVM is significantly superior to LASSO. The advantage of DL
has been previously discussed. The reason for the better
performance of SVM than LASSO may be that the
combination of modeling by SVM, and feature selection by
LASSO has an advantage over than LASSO regression model
only using LASSO for feature selection. SVM is a good classifier,
but it may not get good performance when it is directly used for
classification, but if it can be combined with a good feature
selection algorithm, the classification performance will be
greatly improved.

The Potential Clinical Value of
Convolutional Neural Network Models
A CNN model proposed by Wei et al. based on T2W1, T1WI,
AP, PVP, and HBP MRI sequences achieved an AUC value of
0.802 in an independent external validation cohort. Furthermore,
in the study by Song et al., survival analysis demonstrated that
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patients with DLC-predicted MVI status were associated with
poor overall survival and recurrence-free survival, whereas in a
study by Jiang et al., based on the MVI status predicted by the
3D-CNN model, the mean recurrence-free survival was
significantly better in the predicted MVI-negative group than
in the predicted MVI-positive group [64.06 vs. 31.05 months, p =
0.027]. In the study by Wei et al., survival analysis indicated that
CNN models could stratify groups with high and low risks in
terms of progression-free survival and overall survival (p < 0.05).
These key findings indicate that the DL model can provide a
non-invasive approach to accurately evaluate MVI, with the
potential to facilitate clinical decision-making and assess
patient prognosis.

Prediction Values of Various Types of
Input Data
CT or MRI data from arterial and portal phases were used to
build the prediction model and proved powerful for MVI
prediction in 13 of the included studies. Jiang et al. proposed a
3D-CNNmodel based on AP, PVP, and DP of CT images, which
achieved an AUC value of 0.906. For five of the included studies,
the AUC value of the prediction model based on AP and PVP of
MR images ranged from 0.80 to 0.94. Five of the included studies
in the DL group used MR images, and three studies in NDL used
MR images. Among them, Wu et al. proposed a 3D-CNN model
with DSN based on pre-contrast, AP, and PVP phases in MR
images with an AUC value of 0.925. A meta-analysis of MRI
features for predicting MVI of HCC performed by Hong et al.
showed a similar conclusion that arterial enhancement and
arterial peritumoral enhancement were significant predictors
for MVI of HCC (50). However, in this study, the results of
meta-regression showed no significant difference in the AP or
PVP. The probable reasons for this were high heterogeneity and
that the number of relevant original studies was small. Diffusion-
weighted imaging (DWI) is an MRI sequence that can reflect the
motion state of water molecules in vivo (51). Nebbia et al. built an
SVM model based on a DWI sequence and performed worse
than the AP or PVP sequence. However, in the study by Song
et al., a CNN model based on eight MRI sequences, including
DWI, AP, and PVP, achieved an AUC value of 0.915. Features
from the DWI sequence, as complementary to AP and PVP,
could further improve the performance of MVI prediction.
Wang et al. suggested that deep features derived from higher b
values yield better performance for MVI prediction, implying
that DWI with a higher b value might be better for MVI
prediction. Chen et al. indicated that the ADC value can also
be used to evaluate MVI and has a diagnostic efficacy similar to
the 20-min T1 relaxation time [AUC, 0.850 vs. 0.846]. Wu et al.
indicated that due to the overflow of contrast agents from the
tumor region in the delayed phase, and the tissue cellularity and
vascularity within the tumor becoming unclear, information
from the delayed phase sequence has worse predictive
performance and may not fit MVI prediction. US was mainly
used for MVI prediction in NDL models, and the results showed
that the AUC value of models based on US ranged from 0.726 to
0.731, lower than that based on CT and MRI (35, 37, 40).
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The HBP of contrast-enhanced liver MRI with gadoxetate
disodium (Gd-EOB-DTPA) has the value of significantly
increasing sensitivity and specificity in liver diagnosis (51, 52)
and predicting MVI in HCC (33). Hong et al. performed a
meta-analysis based on MRI features for MVI prediction, with
the results showing that peritumoral hypointensity on HBP was
the MRI feature most suggestive of MVI with the pooled
diagnostic odds ratio (DOR) and pooled positive LR being 8.2
and 5.0, respectively (50). Chen et al. built an SVMmodel based
on the hepatobiliary phase sequence of Gd-EOB-DTPA MRI,
with a performance of 0.942 AUC value, higher than the AP
and PVP sequences for MVI prediction. In this study, since the
results showed that there was no significant difference between
MRI and CT, analysis based on MRI features for MVI
prediction did not yield significant results.

Within the DL group, the models proposed by Wang et al. and
Zhang et al. obtained lower performance with AUC values of 0.79
and 0.72, respectively. The possible reasons are the differences in
the types of input data. Notably, the input data of the two DL
models did not include the imaging data in AP and PVP.
However, further studies are needed to confirm this hypothesis.

CT vs. MRI in Artificial Intelligence
Algorithms for Microvascular
Invasion Prediction
Compared with CT, MRI can better describe the characteristics
of soft tissue, atomic signal intensity, and lesion enhancement, as
well as provide more information on tissue function.

For models using 3D-CNN algorithms in the DL group, two
studies used MRI techniques (Wu and Zhang), and one study
used a CT imaging technique (Jiang). We observed that the
training set containing 3D-CNN models using CT by Jiang et al.
achieved the highest AUC value of 0.98. In the validation set, Wu
et al. proposed 3D-CNN models using MRI, which had the
highest AUC value of 0.926. Since the number of studies was too
small, a meta-analysis could not be performed. For models using
CNN algorithms in the DL group, two studies used MRI (Song
and Wang), and one study used CT and MRI (Wei). Wei et al.
built DL models for preoperative prediction of MVI based on CT
and MR images. The results of the meta-analysis showed
superior predictive power from MRI compared to CT (AUC:
0.812 vs. 0.736, p = 0.039).

In this study, meta-regression analysis was performed for
models in the NDL group. The results showed that imaging
techniques may be influencing factors of prediction power in the
NDL group but not independently influencing factors. There was
no significant consequence of the predictive power of MRI being
superior to CT (AUC: 0.78 [0.74–0.81] vs. 0.82 [0.78–0.85]).

Overall, our results showed that, in the DL model group,
especially the CNN model, MRI was superior to CT in the
prediction of MVI. However, there was no significant
advantage that MRI had in MVI prediction, compared with
CT. Recently, Meng et al. compared the performance of
radiomics models based on CT and MRI for MVI prediction
(53). The results showed that CT and MRI had a comparable
performance for MVI prediction in a single HCC. Studies
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comparing the performance of AI algorithms based on CT and
MRI for MVI prediction are too small and can be excluded.

Deep Learning Models Combined With
Clinical Characteristics
Previous studies have predicted MVI using clinical
characteristics, such as tumor number and size, alpha
fetoprotein (AFP), protein induced by vitamin K absence or
antagonist (PIVKAII), and serum component index. The AUC of
these predictors varies from 0.529 to 0.81 (18–23). In this study,
some clinical variables [tumor size, AFP, tumor margin, internal
arteries, and International normalized ratio (INR)] that were
recognized as predictive values were selected by statistical
analysis and then integrated with the DL model to further
improve predictive performance. Clinical variables recognized
as MVI-prediction values were tumor size in 11 studies and AFP
in nine studies; others are shown in Table S3. Some studies using
radiomics combined with clinical parameters achieved better
outcomes, ranging from 0.796 to 0.899 for AUC (36, 41, 54).

Number of Tumors as One Source
of Heterogeneity
In addition, we performed a subgroup analysis according to the
number of tumors, and the results showed that the number of
tumors was one of the sources of heterogeneity. Models based
on HCC patients with multiple tumors performed better with
the pooled AUC value of 0.88 [0.85–0.91] and sensitivity of 0.84
[0.78–0.88] than single tumors with 0.79 [0.75–0.82] and 0.69
[0.65–0.73], respectively. In HCC patients, having multiple
tumors was regarded as a variable that had strong
associations with a high risk of MVI. This could cause these
models to more easily identify the MVI status in HCC patients
with multiple tumors than single tumors. However, because the
number of models in the meta-analysis was relatively small, the
results of the subgroup analysis need to be interpreted
with caution.

Trends, Challenges, and Suggestions
According to the analysis of the existing MVI prediction models
presented above, the diagnostic accuracy of CNNs for
preoperative MVI prediction has achieved spectacular progress
in terms of sensitivity, specificity, PLR, NLR, and AUC.
However, there is much room for improvement due to existing
challenges, as well as many options for future research.

Methodological Trends
In six studies using DL in this meta-analysis, CNNs have been
the main methods for MVI prediction. The six studies used
ensemble learners of CNNs, which is an approach for integrating
multiple learner branches into a single fusion model to improve
the prediction of MVI in HCC (55). In each learner branch, fully
convolutional networks and softmax layers were employed to
calculate the predicted results. In the studies by Wang et al. and
Wu et al., a DSN that combines the loss functions of each CNN
learner branch was designed for the proposed DL network. Jiang
et al. and Song et al. designed specific architectures as CNN
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branches for feature extraction, with their final DL models
achieving AUCs of 0.906 and 0.915, respectively.

Challenges and Suggestions
Lack of Datasets With Large Numbers of Cases
One of the critical barriers in the application of DL for MVI
prediction based on medical imaging data is the lack of
datasets with large numbers of samples. It is noted that the
process of training DL models using CNNs requires a huge
amount of data. However, their collection is still very difficult in
clinical practice.

To mitigate this problem, new techniques for generating
synthetic medical images could be developed. For instance,
Zhang et al. generated an augmented training set by randomly
rotating the original imaging dataset at a full 360° angle.
Moreover, Wang et al. used an image resampling method to
generate more samples for training a DL network.

Generalizability
Typically, a specific model that performs very well on a specific
task may not be generalized to other tasks. Heterogeneity could
be one of the major reasons why a specific model cannot be
generalized to other tasks. The sources of heterogeneity are
various imaging modalities, and different medical scanners
operate under different settings and datasets. This issue could
also be alleviated by developing methods that can be validated on
images of different types. In addition, research on the effect of
scanner settings (reconstruction techniques, parameters, etc.) on
MVI prediction is expected.

Lack of Interpretability
The black box problem has been one of the major criticisms of
the deep CNN approach, implying that the system struggles to
provide evidence to support clinical decisions. Better
interpretability would contribute to understanding how the
MVI status is generated. This may lead to more accurate and
reliable clinical decisions.

To improve the accuracy of diagnosis and interpretability of
DL models, new approaches for both radiomics and semantic
feature analysis in screening data can be developed. For example,
to improve the interpretability of the 3D-CNNmodel, Jiang et al.
attempted to predict the 15 most important variables selected by
the XGBoost method, and the results indicated that the CNN
model could predict the status of MVI partly based on the
explainable features utilized in clinical practice.

Potential Value of Clinical Application
Several studies (Song et al., Jiang et al., and Wei et al.) performed
survival analysis that showed that the patients with CNN-
predicted MVI status were associated with poor survival after
resection, suggesting the strong clinical value of the CNN model
in preoperatively identifying HCC patients with poor prognosis
and guiding the resection range. However, there is no evidence
from prospective studies or clinical trials. Thus, in the future,
some prospective research and clinical trials concerning CNN
models for MVI prediction that guide clinical decisions
are expected.
Frontiers in Oncology | www.frontiersin.org 13
Contributions and Limitations
Our meta-analysis of DL methods and NDL methods for
preoperative MVI prediction in HCC patients has several
advantages. First, this study involving 16 studies and 4,759
HCC cases is the first systematic review and meta-analysis of
preoperative MVI prediction in HCC patients by comparing DL
and NDLmethods. Second, DL models perform better than NDL
models in terms of the accuracy of MVI prediction,
methodology, and cost-effectiveness.

This study has some limitations. First, all included studies
were retrospective, inevitably causing a patient selection bias.
Second, this study only included six studies for DL methods in
MVI prediction because CNNs are powerful tools for a broad
range of computer vision tasks applied in medical imaging in
recent years, and training a CNN requires a large sample size,
which is difficult in clinical tasks. Third, only one included study
used an independent external validation cohort to assess the
performance of DL models. Finally, study heterogeneity was
significant across the included studies.
CONCLUSIONS

This meta-analysis demonstrates the high diagnostic accuracy of
NDL and DL methods for the prediction of MVI and their
promising potential for application in clinical decision-making.
Multicentral validation and larger sample sizes are required for
more definitive conclusions. DL models perform better than
NDL models in terms of the accuracy of MVI prediction,
methodology, and cost-effectiveness. CT or MRI data from the
arterial and portal phases were used to build a prediction model
and were proved effective for MVI prediction. Clinical variables,
such as tumor size and AFP, were recognized as MVI prediction
values. Studies of DL models for MVI prediction for HCC
patients with single tumors are expected.
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