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Abstract: Cottonseed contains many bioactive molecules including plant polyphenols. Cottonseed
value might be increased by providing high-value bioactive polyphenols for improving nutrition and
health. However, there was a lack of molecular evidence for cottonseed bioactivity in mammalian
cells. One widely used method for evaluating the bioactivity of natural products is quantitative
real-time-PCR (qPCR). The selection of stably expressed internal reference genes is a crucial task
of qPCR assay for data analysis. The rationale for reference gene selection is that a lower standard
deviation of the cycle of threshold (Cq) among the treatments indicates a more stable expression
of the gene. The objective of this study was to select reference genes in human colon cancer cells
(COLO 205) treated with cottonseed-derived gossypol and bioactive extracts along with bacterial
endotoxin lipopolysaccharides (LPS). SYBR Green qPCR was used to analyze the mRNA levels of a
wide range of biomarkers involved in glucose transport, lipid biosynthesis, inflammatory response,
and cancer development. qPCR data (10,560 Cq values) were generated from 55 genes analyzed from
64 treatments with triplicate per treatment for each gene. The data showed that B-cell lymphoma 2
(Bcl2) mRNA was the most stable among the 55 mRNAs analyzed in the human colon cancer cells.
Glyceraldehyde 3 phosphate dehydrogenase (Gapdh) and ribosome protein L32 (Rpl32) mRNAs were
not good qPCR references for the colon cancer cells. These observations were consistent regardless
of the treatment comparison between gossypol and LPS, glanded and glandless seed extracts, seed
coat and kernel extracts, or treatment for 8 and 24 h. These results suggest that Bcl2 is a preferable
reference gene for qPCR assays in human colon cancer cells treated with cottonseed-derived gossypol
and bioactive extracts as well as LPS. The extensive qPCR results firmly support the conclusion that
the Bcl2 gene is stably expressed at the mRNA level in the human colon cancer cells regardless of
the treatment, suggesting that Bcl2 gene expression is not regulated at the mRNA level but at the
post-transcriptional level. These results should facilitate studies designated to evaluate bioactivity on
gene expression regulation by cottonseed molecules and other natural and synthetic molecules for
nutrition and health uses.

Keywords: bioactivity; colon cancer cell; cottonseed extract; gene expression; gossypol; lipopolysaccharides;
quantitative real-time PCR; reference gene

1. Introduction

The cotton (Gossypium hirsutum L.) plant provides economically important fiber and
cottonseed but cottonseed only contributes to approximately 20% of the crop value. It
is either glanded or glandless depending on its seed with or without gossypol glands
(Figure 1A) [1,2]. Cottonseed contains many bioactive molecules including gossypol
(Figure 1B), quercetin, gallic acid, 3,4-dihydroxybenzoic acid, flavonoids, cyclopropenoid
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fatty acids, and peptides [3–10]. Most of these value-added products possess health pro-
motion and disease prevention potentials [6,11–15]. Cottonseed value could be potentially
increased by providing high-value bioactive products because plant-derived bioactive ma-
terials have been used for disease prevention and treatment since ancient history [16–20].

Molecules 2022, 27, x FOR PEER REVIEW 2 of 20 
 

 

acids, and peptides [3–10]. Most of these value-added products possess health promotion 
and disease prevention potentials [6,11–15]. Cottonseed value could be potentially in-
creased by providing high-value bioactive products because plant-derived bioactive ma-
terials have been used for disease prevention and treatment since ancient history [16–20]. 

 
Figure 1. Cottonseed, cottonseed-derived gossypol and polyphenolic extracts, bacteria-derived LPS, 
and human colon cancer cells. (A) Cottonseed (glanded and glandless seed). Glanded seed contains 
numerous dark-green-colored gossypol glands. (B) Cottonseed-derived gossypol (molar mass: 
518.56 g/mol). It contains 6 -OH groups and 6 -CH3 groups (image was taken from public domain, 
Gossypol—Wikipedia.) (C) Cottonseed-derived ethanol extracts. Cottonseed extracts were isolated 
by fractionation, defatting, and ethanol extraction from cottonseed coats and kernels of glanded and 
glandless seeds [1]. (D) Bacteria-derived endotoxin LPS. Intact LPS is made up of three structural 
components (10–20 kDa) [21]: a hydrophobic lipid section, lipid A, which is responsible for the toxic 
properties of the molecule; a hydrophilic core polysaccharide chain; and a repeating hydrophilic O-
antigenic oligosaccharide side chain that is specific to the bacterial serotype. (http://www.vet-
bact.org/popup/popup.php?id=73, accessed on 1 October 2022). (E) Human colon cancer cells 
used in the study. 

One of the bioactive materials derived from cottonseed is gossypol, a plant polyphe-
nol with a highly colored yellow pigment found in the leaves, stems, roots, and seeds of 
cotton plants (Figure 1B) [22]. Gossypol and related compounds are reported to have an-
ticancer activities associated with breast cancer [23–25], colon cancer [26,27], pancreatic 
cancer [28,29], and prostate cancer [30,31]. Gossypol has additional bioactivities such as 
antiobesity [25], anti-inflammatory [32], and antifungal activities [33]. These new discov-
eries have generated intensive interest in gossypol and related molecules in the biomedi-
cal field. 

The other bioactive materials derived from cottonseed are polyphenolic extracts (Fig-
ure 1C). Beneficial plant polyphenolic extracts are present in most diets [34]. They regulate 
gene expression in numerous studies [35–41]. We recently isolated bioactive ethanol ex-
tracts from glanded and glandless cottonseed which were shown to be essentially free of 
gossypol by HPLC-MS analysis [1]. These bioactive cottonseed extracts also regulate gene 
expression in mammalian cells [42,43]. 

Figure 1. Cottonseed, cottonseed-derived gossypol and polyphenolic extracts, bacteria-derived
LPS, and human colon cancer cells. (A) Cottonseed (glanded and glandless seed). Glanded seed
contains numerous dark-green-colored gossypol glands. (B) Cottonseed-derived gossypol (molar
mass: 518.56 g/mol). It contains 6 -OH groups and 6 -CH3 groups (image was taken from public
domain, Gossypol—Wikipedia.) (C) Cottonseed-derived ethanol extracts. Cottonseed extracts
were isolated by fractionation, defatting, and ethanol extraction from cottonseed coats and kernels
of glanded and glandless seeds [1]. (D) Bacteria-derived endotoxin LPS. Intact LPS is made up
of three structural components (10–20 kDa) [21]: a hydrophobic lipid section, lipid A, which is
responsible for the toxic properties of the molecule; a hydrophilic core polysaccharide chain; and a
repeating hydrophilic O-antigenic oligosaccharide side chain that is specific to the bacterial serotype.
(http://www.vetbact.org/popup/popup.php?id=73, accessed on 1 October 2022). (E) Human colon
cancer cells used in the study.

One of the bioactive materials derived from cottonseed is gossypol, a plant polyphe-
nol with a highly colored yellow pigment found in the leaves, stems, roots, and seeds
of cotton plants (Figure 1B) [22]. Gossypol and related compounds are reported to have
anticancer activities associated with breast cancer [23–25], colon cancer [26,27], pancreatic
cancer [28,29], and prostate cancer [30,31]. Gossypol has additional bioactivities such as an-
tiobesity [25], anti-inflammatory [32], and antifungal activities [33]. These new discoveries
have generated intensive interest in gossypol and related molecules in the biomedical field.

The other bioactive materials derived from cottonseed are polyphenolic extracts
(Figure 1C). Beneficial plant polyphenolic extracts are present in most diets [34]. They regu-
late gene expression in numerous studies [35–41]. We recently isolated bioactive ethanol
extracts from glanded and glandless cottonseed which were shown to be essentially free of
gossypol by HPLC-MS analysis [1]. These bioactive cottonseed extracts also regulate gene
expression in mammalian cells [42,43].

The long-term objective of our current research was to explore the potential anti-
colon cancer materials from natural sources, especially cottonseed. Colon cancer is one
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of the deadliest diseases in the world. The lifetime risk of developing colorectal cancer is
approximately 4.0% for men and women in 2022 (https://www.cancer.org/cancer/colon-
rectal-cancer/about/key-statistics.html, accessed on 1 October 2022). It is urgently needed.
access to fully understand the mechanism of developing colon cancer and explore ways to
ease the burden of the healthcare crisis. However, there was a lack of molecular evidence
for the bioactivity of cottonseed-derived materials in colon cancer cells.

Quantitative real-time-PCR (qPCR) for gene expression analysis is a widely used
method for evaluating the bioactivity of natural products. Some questions can be easily
answered by qPCR, e.g., the number of isoforms, the levels of gene expression, and the
expression patterns of genes regulated by various stimuli. However, the reliability and
reproducibility of qPCR results can be affected by many genetic, environmental, and
experimental factors because of the high sensitivity [44]. Therefore, one of the critical tasks
of qPCR assay design is to select stably expressed internal reference genes for data analysis
due to the inherited variations of gene expression among individual organisms, various
tissues, different experimental stages and RNA stability, experimental variations such as
RNA extraction methods and cDNA preparations, and human errors [45,46]. Carefully
selected internal reference mRNAs are used to normalize transcript levels of test genes
to more accurately detect the variations [47–50]. The rationale for qPCR reference gene
selection is that the reference gene should be stably expressed without much variation by
the experimental treatments. A lower standard deviation of the cycle of threshold (Cq)
among the treatments might be an indication of a more stable expression of the gene which
could serve as an internal reference.

The objective of this study was to characterize potential reference genes in human
colon cancer cells treated with cottonseed-derived gossypol and bioactive extracts. The
well-known bacterial endotoxin lipopolysaccharide (LPS) was selected for comparison with
cottonseed materials during the qPCR analysis of gene expression. LPS is a major cell wall
component of Gram-negative bacteria (Figure 1D). LPS is widely present in the gut and may
be derived from colonial bacteria and/or food contamination. LPS was proposed to have
an antitumor effect in several experimental models [51]. One study found that LPS induced
TGFβ and HGF production mediated by CD14/TLR-2 in cultured human colon cancer
cell lines [52]. Another study showed that LPS promoted NFkB activation in colon cancer
cells [53]. A third study demonstrated that LPS promoted the migratory capacity of colon
cancer cells with the activation of the SDF-1α/CXCR4 axis and epithelial–mesenchymal
transition occurrence [54].

In this study, human colon cancer cells (COLO 205) (Figure 1E) were treated with
cottonseed-derived gossypol and ethanol extracts, along with LPS. SYBR Green qPCR
was used to analyze the mRNA levels of a wide range of biomarkers involved in glucose
transport, lipid biosynthesis, inflammatory response, and cancer development. The data
showed that B-cell lymphoma 2 (Bcl2) mRNA was the most stable among the 55 mRNAs
analyzed in human colon cancer cells. Glyceraldehyde 3 phosphate dehydrogenase (Gapdh)
and ribosome protein L32 (Rpl32) mRNAs, two widely used references in mammalian
cells, were not good qPCR references for colon cancer cells. These results suggest that
Bcl2 is a preferable reference gene for qPCR assay of gene regulation by cottonseed and
bacterial products in human colon cancer cells. The extensive qPCR results firmly support
the conclusion that the Bcl2 gene is stably expressed at the mRNA level in the human
colon cancer cells regardless of the treatment, suggesting that Bcl2 gene expression is not
regulated at the mRNA level but at the post-transcriptional level.

2. Results
2.1. Cq mean Distribution in Colon Cancer Cells Treated with Gossypol, LPS, and Cottonseed Extracts

The ideal reference gene should not be expressed at extreme levels. In qPCR technology,
cDNA is doubled per cycle of PCR amplification, i.e., one Cq difference equates to a 2-fold
difference at the mRNA levels [48]. A lower Cq means a higher mRNA level and vice versa.
SYBR Green qPCR assay with the specific primers (Table 1) was used to measure the relative
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mRNA levels of 55 genes in the cells treated with plant toxin gossypol, bacterial toxin
LPS, and cottonseed extracts with 1% DMSO as the control. The qPCR assay showed that
Bcl2 Cq was 28.82 and Inos mRNA was undetectable (mean of 192 independent samples)
(Figure 2).

Table 1. Human mRNA targets analyzed by qPCR; these genes are regulated by TTP, plant toxin
gossypol, and plant nutrient cinnamon extract as indicated in the references.

ID mRNA Name Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) Regulator [Reference]

H1 Ahrr1 Aryl hydrocarbon receptor
repressor

AGGCTGCTGTT
GGAGTCTCTTAA

CGATCGTTGC
TGATGCATAAA TTP [55]

H2 Bcl2 B-cell lymphoma 2 CAGCATGCGG
CCTCTGTT

GGGCCAAAC
TGAGCAGAGTCT Gossypol [56]

H3 Bcl2l1 B-cell lymphoma 2 like 1 GTGCGTGGAA
AGCGTAGACA

ATTCAGGTAAG
TGGCCATCCAA TTP [57]

H4 Bnip3 BCL2 protein-interacting protein 3 GTCAAGTCGG
CCGGAAAATA

TGCGCTTCG
GGTGTTTAAAG Gossypol [27]

H5 Cd36 Cluster of differentiation 36/fatty
acid translocase

CTCTTTCCTG
CAGCCCAATG

TTGTCAGCCTCTG
TTCCAACTG TTP [58]

H6 Claudin1 Maintain tissue integrity and water
retention

GACAAAGTGA
AGAAGGCCCGTAT

CAAGACCTGCC
ACGATGAAA TTP [59]

H7 Cox1 Cyclooxygenase 1 CGCCCACG
CCAGTGA

AGGCCGAAG
CGGACACA TTP [60]

H8 Cox2 Cyclooxygenase 2 CGATTGTACC
CGGACAGGAT

TTGGAGTGGGTT
TCAGAAATAATTT TTP [61]

H9 Csnk2a1 Casein kinase 2 alpha 1 AGCGATGGGA
ACGCTTTG

AAGGCCTCAGG
GCTGACAA TTP [62]

H10 Ctsb Cathepsin B GACTTGTAGCTGCTGT
CTCTCTTTGT

CAAGAGTCGC
AAGAACATGCA TTP [63]

H11 Cxcl1 Chemokine (C-X-C motif) ligand 1 GCCCAAACCG
AAGTCATAGC

TGCAGGATTG
AGGCAAGCT TTP [64]

H12 Cyclind1 Cyclin D1 ACACGCGCAG
ACCTTCGT

CCATGGAG
GGCGGATTG Gossypol [65]

H13 Cyp19a1 Cytochrome P450 family 19
subfamily A member 1

GACATTGCAA
GGACAGTGTGTTG

AGTCTCATCTG
GGTGCAAGGA Gossypol [66]

H14 Dgat1 Diacylglycerol O-acyltransferase 1 ACCTCATCTGGCTCA
TCTTCTTCTA

CCCGGTCTC
CAAACTGCAT Cinnamon [40,67]

H15 Dgat2a Diacylglycerol O-acyltransferase 2a CCCAGGCAT
ACGGCCTTA

CAACACAGG
CATTCGGAAGTT Cinnamon [40,68]

H16 Dgat2b Diacylglycerol O-acyltransferase 2b ACTCTGGCCCTTC
TCTGTTTTTTA

TCCACCTTGG
TTGGGTGTGT Cinnamon [40,68]

H17 E2f1 E2F transcription factor 1 CGGCGCATCT
ATGACATCAC

CAGCCACTGG
ATGTGGTTCTT TTP [69]

H18 Elk1 ETS transcription factor CTCCTCCGCA
TCCCTCTTTAA

AGCGTCACAG
ATGGGTCCAT TTP [70]

H19 Fas Fas cell surface death receptor GAACTCCTTGGC
GGAAGAGA

AGGACCCCGT
GGAATGTCA Gossypol [71]

H20 Gapdh Glyceraldehyde-3-phosphate
dehydrogenase

GGGTGTGAAC
CATGAGAAGTATGA

GGTGCAGGA
GGCATTGCT [72]

H21 Glut1 Glucose transporter 1 TGCTCATGGGCT
TCTCGAA

AAGCGGCC
CAGGATCAG Cinnamon [39]

H22 Glut2 Glucose transporter 2 GCATTTTTCAG
ACGGCTGGTA

GCGCCAACT
CCAATGGTT Cinnamon [39]

H23 Glut3 Glucose transporter 3 GAGGATATCACA
CGGGCCTTT

CCATGACGCC
GTCCTTTC Cinnamon [39]
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Table 1. Cont.

ID mRNA Name Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) Regulator [Reference]

H24 Glut4 Glucose transporter 4 CGTGGGCG
GCATGATT

CCAGCATGG
CCCTTTTCC Cinnamon [39]

H25 Hif1a Hypoxia inducible factor 1
subunit alpha

GGTGGATATGT
CTGGGTTGAAAC

ATGCACTGTGGT
TGAGAATTCTTG TTP [73]

H26 Hmgr
3-Hydroxy-3-methylglutaryl-

CoA
reductase

AAGTGAAAG
CCTGGCTCGAA

CTAGTGCTGTCAA
ATGCCTCCTT [74]

H27 Hmox1 Heme oxygenase 1 CTTCTCCGATGG
GTCCTTACACT

TCACATGGCATA
AAGCCCTACA TTP [75]

H28 Hua Human antigen a GATCCTCTGG
CAGATGTTTGG

CGCGGATCAC
TTTCACATTG Gossypol [41]

H29 Icam1 Intercellular adhesion molecule
1/CD54

GGAGCTTCGTG
TCCTGTATGG

TTTCTGGC
CACGTCCAGTTT [76]

H30 Inos Inducible nitric oxide synthase AGATCCGGTTCA
CAGTCTTGGT

GCCATGACCT
TCCGCATTAG [77]

H31 Insr Insulin receptor CAACGGGCA
GTTTGTCGAA

TGGTCGGGCA
AACTTTCTG [38]

H32 Il2 Interleukin 2 TATGCAGATGAG
ACAGCAACCAT

TTGAGATGATGCT
TTGACAAAAGG TTP [78]

H33 IL6 Interleukin 6 CCCACACAGA
CAGCCACTCA

CCGTCGAGGA
TGTACCGAAT TTP [79]

H34 IL8 Interleukin 8 CCATCTCACTGTGTGTAA
ACATGACTT

ATCAGGAAGGC
TGCCAAGAG TTP [80]

H35 Il10 Interleukin 10 GCCGTGGAG
CAGGTGAAG

TGGCTTTGTAGA
TGCCTTTCTCT TTP [81]

H36 Il12 Interleukin 12 TGCCTTCAC
CACTCCCAAA

TGTCTGGCCT
TCTGGAGCAT TTP [82]

H37 Il16 Interleukin 16 CAGGGCC
TCACACGGTTT

GACAATCGTGAC
AGGTCCATCA TTP [83]

H38 Il17 Interleukin 17 CCCAAAAGGTCCT
CAGATTACTACA

TCATTGCGGTG
GAGATTCC TTP [84]

H39 Leptin Body fat and obesity hormone AGGGAGAC
CGAGCGCTTT

CACATCCCTCA
CCTCCTTCAAA [85]

H40 Map1lc3a Microtubule-associated proteins 1
light chain 3A

GTGAACCAG
CACAGCATGGT

CCTCGTCTTTCT
CCTGCTCGTA [86]

H41 Map1lc3b Microtubule-associated proteins 1
light chain 3B

AGGCGCTTA
CAGCTCAATGC

ACCATGCTGTG
TCCGTTCAC [86]

H42 Nfkb Nuclear factor kappa B GGTGCCTCTAGT
GAAAAGAACAAGA

GCTGGTCCCA
CATAGTTGCA [87]

H43 P53 Tumor suppressor CTTGCAATAGGT
GTGCGTCAGA

GGAGCCC
CGGGACAAA Gossypol [88]

H44 Pim1 Proto-oncogene
serine/threonine-protein kinase

TGCTCCACC
GCGACATC

TGAGCTCGC
CGCGATT TTP [89]

H45 Pparr Peroxisome proliferator-activated
receptor γ

GAACGACCAAGT
AACTCTCCTCAAA

CAAGGAGGCC
AGCATTGTGT Gossypol [90]

H46 Rab24 Ras-related oncogene 24 TCGGTCGGA
GACGCACTT

TGGCCTCAT
AGCGCTCAGA [91]

H47 Rpl32 Ribosomal protein L32 (60S
ribosomal unit)

CCTCCAAGAAC
CGCAAAGC

GGTGACTCTGA
TGGCCAGTTG [92]

H48 Tnf Tumor necrosis factor GGAGAAGGGT
GACCGACTCA

CAGACTCGGC
AAAGTCGAGAT TTP [79]

H49 Tnfsf10 Tumor necrosis factor superfamily,
member 10

GCTCTGGGCC
GCAAAAT

AGGAATGAATG
CCCACTCCTT Gossypol [93]
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Table 1. Cont.

ID mRNA Name Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) Regulator [Reference]

H50 Ulk2 Unc-51 like autophagy activating
kinase 2

ACAGCTCCTT
TCAAAATCCCTAAA

AGGCCCATGAC
GAGTAACCA [94]

H51 Vegf Vascular endothelial growth
factor

CCCACTGAG
GAGTCCAACATC

GGCCTTGGT
GAGGTTTGATC TTP [95]

H52 Zfand5 Zinc finger AN1-type containing 5 AGGGTTTGACT
GCCGATGTG

ACTGGATTCTCT
TTTCTGATTTTTGC TTP [96]

H53 Zfp36/Ttp Zinc finger protein
36/Tristetraprolin

GGCGACTCCCC
ATCTTCAA

GACCGGGCAGT
CACTTTGTC TTP [38]

H54 Zfp36l1 Zinc finger protein 36 like 1 TCTGCCACCATC
TTCGACTTG

TGGGAGCACTATA
GTTGAGCATCT TTP [38]

H55 Zfp36l2 Zinc finger protein 36 like 2 CCTTTCATACCAT
CGGCTTCTG

TCGTCCGC
GTTGTGGAT TTP [38]

Molecules 2022, 27, x FOR PEER REVIEW 6 of 20 
 

 

H41 Map1lc3b 
Microtubule-associated 
proteins 1 light chain 3B 

AG-
GCGCTTACAGCTCAA

TGC 

AC-
CATGCTGTGTCCGTTC

AC 
[86] 

H42 Nfkb Nuclear factor kappa B  GGTGCCTCTAG-
TGAAAAGAACAAGA 

GCTGGTCCCACATAG
TTGCA [87] 

H43 P53 Tumor suppressor 
CTTGCAA-

TAGGTGTGCGTCAGA 
GGAGCCCCGG-

GACAAA Gossypol [88] 

H44 Pim1 
Proto-oncogene ser-

ine/threonine-protein ki-
nase  

TGCTCCAC-
CGCGACATC 

TGAGCTCGCCGCGAT
T TTP [89] 

H45 Pparr Peroxisome proliferator-
activated receptor γ 

GAACGAC-
CAAGTAACTCTCCTC

AAA 

CAAGGAGGCCAG-
CATTGTGT 

Gossypol [90] 

H46 Rab24 Ras-related oncogene 24 
TCGGTCGGAGAC-

GCACTT 
TGGCCTCATAGCGCTC

AGA [91] 

H47 Rpl32 Ribosomal protein L32 
(60S ribosomal unit) 

CCTCCAAGAACCG-
CAAAGC 

GGTGACTCTGATGGC
CAGTTG 

[92] 

H48 Tnf Tumor necrosis factor GGAGAAGGGTGAC-
CGACTCA 

CAGACTCGG-
CAAAGTCGAGAT TTP [79] 

H49 Tnfsf10 Tumor necrosis factor su-
perfamily, member 10  

GCTCTGGGCCG-
CAAAAT 

AG-
GAATGAATGCCCAC-

TCCTT  
Gossypol [93] 

H50 Ulk2 Unc-51 like autophagy ac-
tivating kinase 2 

ACAGCTCCTTTCAAA
ATCCCTAAA 

AGGCCCATGACGAG-
TAACCA 

[94] 

H51 Vegf Vascular endothelial 
growth factor  

CCCACTGAGGAG-
TCCAACATC 

GGCCTT-
GGTGAGGTTTGATC TTP [95] 

H52 Zfand5 Zinc finger AN1-type con-
taining 5 

AGGGTTT-
GACTGCCGATGTG 

ACTGGAT-
TCTCTTTTCTGAT-

TTTTGC 
TTP [96] 

H53 Zfp36/Ttp Zinc finger protein 
36/Tristetraprolin 

GGCGACTCCCCATCTT
CAA 

GACCGGGCAGTCAC-
TTTGTC 

TTP [38] 

H54 Zfp36l1 Zinc finger protein 36 like 
1 

TCTGCCAC-
CATCTTCGACTTG 

TGGGAGCAC-
TATAGTTGAGCATCT TTP [38] 

H55 Zfp36l2 
Zinc finger protein 36 like 

2 
CCTTTCAT-

ACCATCGGCTTCTG 
TCGTCCGCGTTGTG-

GAT  TTP [38] 

 
Figure 2. Mean Cq distribution of 55 mRNAs in human colon cancer cells. The cancer cells were 
treated with multiple concentrations of gossypol (0, 0.1, 0.5, 1, 5, 10, 50, and 100 µg/mL), LPS (0, 5, 
10, 20, 50, 100, 500, and 1000 ng/mL) and cottonseed extracts (0, 5, 10, 20, 30, 40, 50, and 100 µg/mL) 

Figure 2. Mean Cq distribution of 55 mRNAs in human colon cancer cells. The cancer cells were
treated with multiple concentrations of gossypol (0, 0.1, 0.5, 1, 5, 10, 50, and 100 µg/mL), LPS
(0, 5, 10, 20, 50, 100, 500, and 1000 ng/mL) and cottonseed extracts (0, 5, 10, 20, 30, 40, 50, and
100 µg/mL) for 8 h and 24 h. Total mRNAs were extracted from the cells, converted into cDNAs, and
the relative abundance was analyzed by SYBR Green qPCR. The Cq values represent the mean of
192 independent samples.

The mean Cq values of 11 mRNAs (mean of 192 independent samples) were at least
one Cq less than Bcl2 Cq including Bcl2l1 (−1.00), Bnip3 (−1.75), Csnk2a1 (−2.43), Gapdh
(−4.17), Glut3 (−1.42), Hif1a (−1.13), Hmgr (−1.21), Map1lc3b (−2.17), Rpl32 (−3.92), Tnfsf10
(−1.19), and Zfand5 (−1.67) (Figure 2). The mean Cq values of 24 mRNAs (mean of
192 independent samples) were at least one Cq larger than Bcl2 Cq including Ahrr1 (5.15),
Claudin1 (1.92), Cox1 (10.99), Cox2 (1.29), Cxcl1 (7.07), Cyclind1 (5.71), Dgat2a (3.52), Dgat2b
(2.15), Elk1 (2.87), Fas (3.17), Glut4 (10.21), Hua (3.38), Icam1 (6.40), Inos (undetected), Insr
(2.59), Il2 (1.88), Il10 (2.79), Il12 (5.17), Nfkb (3.50), P53 (2.79), Rab24 (13.82), Tnf (1.23), Vegf
(2.35), Zfp36l1 (1.69), and Zfp36l2 (5.66) (Figure 2).

The above Cq data suggest that the Bcl2 mRNA level was within the middle range
of the tested 55 genes in the human colon cancer cells treated with gossypol, LPS, and
cottonseed extracts. The mRNA levels of Gapdh and Rpl32 were the most abundant in
the cells with approximately 18- and 15-fold of Bcl2 mRNA, respectively, whereas Inos
mRNA was undetectable and those of Ahrr1, Cox1, Cxcl1, Cyclind1, Dgat2a, Glut4, Hua,
Icam1, Il12, Nfkb, Rab24, and Zfp36l2 mRNAs were minimally detected with less than 10%
of Bcl2 mRNA in the colon cancer cells. These results suggest that the Bcl2 gene is modestly
expressed (i.e., not at an extreme level among the selected biomarkers analyzed) in the
human colon cancer cells treated with gossypol, LPS, and cottonseed extracts and that the
Bcl2 gene could serve as a good reference gene for qPCR analysis of gene expression in the
human colon cancer cells.
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2.2. Cq standard Deviation Distribution in Colon Cancer Cells Treated with Gossypol, LPS, and
Cottonseed Extracts

The qPCR assay showed that Bcl2 Cq was the least varied mRNA among the
55 genes analyzed. The standard deviation of Cq for Bcl2 was 1.09 (mean of 192 inde-
pendent samples) (Figure 3). The standard deviations of Cq for Gapdh and Rpl32 were
3.12 and 3.16 (mean of 192 independent samples), respectively (Figure 3). All of the other
mRNAs had larger standard deviations of Cq than Bcl2 (Figure 3). The mRNAs with closest
standard deviations of Bcl2 Cq (less than 1.50) included Bnip3 (1.21), Glut3 (1.30), Hmgr
(1.49), Il2 (1.12), Il6 (1.37), Il8 (1.32), Il17 (1.48), Pim1 (1.26), Pparr (1.32), Tnf (1.39), Tnfsf10
(1.40), Ulk2 (1.16), and Zfand5 (1.34) (Figure 3). These results suggest that Bcl2 is the most
stably expressed gene and therefore, could serve as a reliable reference for qPCR analysis
of gene expression in human colon cancer cells treated with gossypol, LPS, and cottonseed
extracts, regardless of the treatments.
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Figure 3. Mean standard deviation distribution of 55 mRNAs in human colon cancer cells. The cancer
cells were treated with multiple concentrations of gossypol (0, 0.1, 0.5, 1, 5, 10, 50, and 100 µg/mL),
LPS (0, 5, 10, 20, 50, 100, 500, and 1000 ng/mL) and cottonseed extracts (0, 5, 10, 20, 30, 40, 50, and
100 µg/mL) for 8 h and 24 h. Total mRNAs were extracted from the cells, converted into cDNAs, and
the relative abundance was analyzed by SYBR Green qPCR. The standard deviations of Cq values
represent the mean of 192 independent samples.

2.3. Variation of Gene Expression between Plant Toxin Gossypol and Bacterial Toxin LPS Treatment

To confirm the above conclusion that Bcl2 was a preferable reference gene for qPCR
analysis of gene expression in the human colon cancer cells treated with gossypol, LPS,
and cottonseed extracts, we selected subsets of data for comparison. We first compared
the variation of gene expression in the human colon cancer cells under the treatment with
plant toxin gossypol and bacterial toxin LPS. As shown in Figure 4, Bcl2 Cq was the least
varied among the 55 targets with a standard deviation of 1.08 and 1.16 for gossypol and
LPS treatment (mean of 24 independent samples), respectively. The standard deviations of
Gapdh Cq were 4.01 (gossypol treatment) and 3.15 (LPS treatment) and those of Rpl32 Cq were
3.68 (gossypol treatment) and 3.10 (LPS treatment) (mean of 24 independent samples)
(Figure 4). All of the other mRNAs had larger standard deviations of Cq than Bcl2 Cq
(Figure 4). The mRNA levels of genes regulated by gossypol that were at least 2-fold of
those regulated by LPS could be interpreted as gossypol regulation of gene expression being
significantly higher than LPS. There were 14 genes with more abundantly expressed mRNA
levels under gossypol treatment than LPS treatment including Ahrr1, Claudin1, Cox1, Cox2,
Cxcl1, Dgat2a, Fas, Glut1, Icam1, Insr, Nfkb, P53, Rab24, and Zfp36l1 (Figure 4). Similarly, the
mRNA levels of genes regulated by gossypol less than 0.5-fold of those regulated by LPS
could be interpreted as their expression being regulated by gossypol significantly less than the
LPS effect. There were 7 genes with less abundantly expressed mRNA levels under gossypol
treatment than under LPS treatment including Cyp19a1, Il6, Il10, Il12, Il16, Vegf, and Zfp36l2
(Figure 4). The above results of modest expression of the Bcl2 gene with minimal variation



Molecules 2022, 27, 7560 8 of 19

agree with the conclusion that Bcl2 is a suitable reference gene for qPCR analysis of gene
expression in human colon cancer cells regardless of treatments with gossypol or LPS.
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Figure 4. Variation of gene expression between gossypol and LPS treatment. The cancer cells were
treated with multiple concentrations of gossypol (0, 0.1, 0.5, 1, 5, 10, 50, and 100 µg/mL) and LPS
(0, 5, 10, 20, 50, 100, 500, and 1000 ng/mL) for 8 h. Total mRNAs were extracted from the cells,
converted into cDNAs, and the relative abundance was analyzed by SYBR Green qPCR. The Cq
values represented the mean and standard deviation of 24 independent samples.

2.4. Variation of Gene Expression between Glanded and Glandless Cottonseed Extract Treatment

We further compared the variation of gene expression in the human colon cancer cells
under the treatment with glanded and glandless cottonseed extracts. Again, Bcl2 Cq was
the least varied among the 55 targets with a standard deviation of 1.07 and 0.98 for glanded
seed extract and glandless seed extract (mean of 48 independent samples), respectively
(Figure 5). The standard deviations of Gapdh Cq were 3.34 (glanded seed extract) and
3.51 (glandless seed extract) and those of Rpl32 Cq were 3.22 (glanded seed extract) and
3.43 (glandless seed extract) (mean of 48 independent samples) (Figure 5). All of the other
mRNAs had larger standard deviations of Cq than Bcl2 Cq (Figure 5). There were only two
genes more abundantly expressed under glanded seed extract treatment than glandless
seed extract treatment including Vegf and Zfp36l1 (Figure 5). There were 15 genes with
lower mRNA levels under glanded seed extract treatment than under glandless seed extract
treatment including Claudin1, Cox1, Cyclind1, Elk1, Fas, Gapdh, Glut1, Insr, Il10, Il12, Nfkb,
P53, Rab24, Zfp36l1, and Zfp36l2 (Figure 5). These results support the conclusion that Bcl2 is
a suitable reference gene for qPCR analysis of gene expression in human colon cancer cells
regardless of treatment with glanded or glandless cottonseed extracts.
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The cancer cells were treated with multiple concentrations of cottonseed extracts (0, 5, 10, 20, 30, 40,
50, and 100 µg/mL) for 8 h. Total mRNAs were extracted from the cells, converted into cDNAs, and
the relative abundance was analyzed by SYBR Green qPCR. The Cq values represented the mean and
standard deviation of 48 independent samples.
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2.5. Variation of Gene Expression between Cottonseed Coat and Kernel Extract Treatment

We also compared the variation of gene expression under the treatment with seed coat
and kernel extracts in the human colon cancer cells. As shown in Figure 6, Bcl2 Cq was the
least varied mRNA among the 55 targets with a standard deviation of 1.06 and 0.96 for coat
extract and kernel extract (mean of 48 independent samples), respectively. The standard
deviations of Gapdh Cq were 3.05 (coat extract) and 3.83 (kernel extract) and those of Rpl32
Cq were 3.18 (coat extract) and 3.49 (kernel extract) (mean of 48 independent samples),
respectively (Figure 6). All of the other mRNAs had larger standard deviations of Cq than
Bcl2 Cq (Figure 6). There were none of the genes with more abundantly expressed mRNA
levels under the coat extract treatment than the kernel extract treatment (Figure 6). There
were 13 genes with less abundantly expressed mRNA levels under coat extract treatment
than kernel extract treatment including Ahrr1, Cox1, Elk1, Gapdh, Icam1, Insr, Il10, Il12, Nfkb,
Rab24, Vegf, Zfp36l1, and Zfp36l2 (Figure 6). The conclusion that Bcl2 is a suitable reference
gene for qPCR analysis of gene expression in human colon cancer cells is confirmed with
this comparison regardless of the cells treated with seed coat or kernel extract.
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Figure 6. Variation of gene expression between cottonseed coat and kernel extract treatment. The
cancer cells were treated with multiple concentrations of cottonseed extracts (0, 5, 10, 20, 30, 40, 50,
and 100 µg/mL) for 8 h. Total mRNAs were extracted from the cells, converted into cDNAs, and the
relative abundance was analyzed by SYBR Green qPCR. The Cq values represented the mean and
standard deviation of 48 independent samples.

2.6. Variation of Gene Expression between Cottonseed Extract Treatment Time

In addition, we compared the variation of gene expression in the human colon cancer
cells between 8 and 24 h treatment with seed coat extract. As shown in Figure 7, Bcl2 Cq
was the least varied mRNA among the 55 targets with a standard deviation of 1.06 and
0.95 for 8 h and 24 h (mean of 48 independent samples), respectively. The standard
deviations of Gapdh Cq were 3.05 (8 h) and 2.90 (24 h) and those of Rpl32 Cq were
3.18 (8 h) and 2.93 (24 h) (mean of 48 independent samples), respectively (Figure 7). All
of the other mRNAs had larger standard deviations of Cq than Bcl2 Cq (Figure 7). There
were 21 genes with more abundantly expressed mRNA levels under 8 h treatment than
24 h treatment including Bcl2l1, Claudin1, Cox1, Cox2, Cstb, Cxcl1, Cylind1, Dgat1, Elk1,
Fas, Gapdh, Glut1, Hua, Icam1, Insr, Il8, Nfkb, P53, Rpl32, Zfp36l1, and Zfp36l2 (Figure 7).
There were 5 genes with less abundantly expressed mRNA levels under 8 h treatment than
24 h treatment including Ahrr1, Glut4, Il12, Rab24, and Vegf (Figure 7). These results of gene
expression variation in the human colon cancer cells under 8 or 24 h treatment with seed
coat extract also support the conclusion that Bcl2 but not Gapdh or Rpl32 or any other gene
is a preferable reference gene for qPCR analysis
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Figure 7. Variation of gene expression between 8 and 24 h treatment of coat extract of cottonseed.
The cancer cells were treated with multiple concentrations of cottonseed extracts (0, 5, 10, 20, 30, 40,
50, and 100 µg/mL) for 8 h. Total mRNAs were extracted from the cells, converted into cDNAs, and
the relative abundance was analyzed by SYBR Green qPCR. The Cq values represented the mean and
standard deviation of 48 independent samples.

2.7. Variation of Gene Expression between DMSO Control and Various Treatments

Finally, we compared the variation of gene expression in the human colon cancer cells
under the 1% DMSO control and various treatments with plant toxin gossypol, bacterial
toxin LPS, and cottonseed-derived ethanol extracts. Figure 8 confirms that Bcl2 was the most
stable gene among the 55 targets with standard deviations of 1.08 and 1.08 for DMSO control
(mean of 24 independent samples) and treatment (mean of 168 independent samples). The
standard deviations of Gapdh Cq were 4.01 (DMSO control) and 3.57 (treatment) and those
of Rpl32 Cq were 3.68 (DMSO control) and 3.07 (treatment) (Figure 8). All of the other
mRNAs had larger standard deviations of Cq than Bcl2 Cq (Figure 8). These qPCR data
analyses further support the above conclusion that Bcl2 gene is stably expressed at the
mRNA level in human colon cancer cells regardless of the treatment.
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Figure 8. Variation of gene expression between DMSO control and treatment. The cancer cells were
treated with 1% DMSO and multiple concentrations of gossypol (0.1, 0.5, 1, 5, 10, 50, and 100 µg/mL),
LPS (5, 10, 20, 50, 100, 500, and 1000 ng/mL) and cottonseed extracts (5, 10, 20, 30, 40, 50, and
100 µg/mL) for 8 h and 24 h. Total mRNAs were extracted from the cells, converted into cDNAs, and
the relative abundance was analyzed by SYBR Green qPCR. The Cq values represented the mean and
standard deviation of 24 independent samples.

3. Discussion

Cottonseed is a low-value commodity and contributes to approximately 20% of the
cotton value. Cottonseed value could be increased by serving as a cheap source of high-
value bioactive materials for improving nutrition and preventing diseases. However,
molecular evidence to support cottonseed bioactivity in mammalian cells is not substantial.
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qPCR is widely used to evaluate the bioactivity of natural products at the gene expres-
sion level. However, many factors affect the calculation of gene expression data due to
the inherited variations of gene expression among individual organisms, various tissues,
different experimental stages, and RNA stability. It is also affected by experimental varia-
tions such as RNA extraction methods and cDNA preparations, and human errors [44,46].
Therefore, the selection of stably expressed internal reference genes is a critical task for
qPCR assay design for normalizing transcript levels of test genes during the post-qPCR
data analysis [48,49].

The hallmark of qPCR reference gene selection is that a reference gene should be stably
expressed without much variation by experimental conditions and ideally its expression
level is like those of the target genes [45,97]. A lower standard deviation of Cq among the
treatments indicates a more stable expression of the gene which could serve as a better
internal reference. In this study, we used the qPCR method to screen reference genes from
55 genes involved in glucose transport, lipid biosynthesis, inflammatory response, and
cancer development using human colon cancer cells treated with multiple concentrations
of plant toxin gossypol, bacterial toxin LPS, and bioactive cottonseed extracts. Our results
consistently showed that Bcl2 is a very stably expressed gene with minimal variation and
expressed at adequate mRNA levels similar to most of the other gene targets. On the
other hand, two widely used reference genes (Gapdh or Rpl32) were the most abundantly
expressed genes with much larger variations among the treatments. These expression
differences among them make Bcl2 rather than Gapdh or Rpl32 a preferable qPCR reference
for colon cancer cells. These conclusions were confirmed by various comparisons between
gossypol and LPS, glanded and glandless seed extracts, seed coat and kernel extracts,
or treatment for 8 and 24 h. A previous study analyzed the effect of gossypol on gene
expression in human colon cancer cells, using Bcl2 as the reference gene [26]. The current
study is technically oriented rather than looking at the regulation of specific genes with
specific agents. This study has analyzed much larger data sets with a broader new view.
The comparisons among the treatments are also much more comprehensive. All of the
data support the conclusion that Bcl2 is a preferable reference gene for qPCR assay of gene
expression in human colon cancer cells.

Our current results firmly support the conclusion that Bcl2 is a preferable reference
gene for qPCR assay of gene expression in human colon cancer cells treated with cottonseed
molecules and bacterial endotoxin LPS. This conclusion is drawn from extensive qPCR
data with 55 genes analyzed and 192 individual samples (64 treatments with triplicate
for each treatment) for each gene for a total of 10,560 Cq values. Since our study used
regulatory molecules ranging from plant toxin gossypol to bacterial endotoxin LPS as
well as bioactive cottonseed mixtures, it is expected that the technical advance should be
applicable to evaluating a wide range of biomolecules’ modulation of gene expression in
the human colon cancer cells. However, further research is required if Bcl2 is a preferable
reference gene for qPCR assay of gene expression in other cell lines since responses of
stimuli on gene expression are widely different in different cell types.

Our extensive qPCR results support the conclusion that the Bcl2 gene is stably ex-
pressed at the mRNA level in human colon cancer cells regardless of the treatment with
plant toxin gossypol, bacterial endotoxin LPS, or cottonseed-derived bioactive extracts.
However, a number of previous studies reported the regulation of Bcl2 gene expression
in other testing systems, even though the findings in those reports were mostly generated
by less sensitive methods such as immunoblotting, immunostaining, and end-point PCR
techniques. For example, Western blotting showed that Bcl2 protein levels in colorectal
cancer HCT-116 cells were reduced to less than half of the control by 5 days of treatment
with 25–100 µg/mL of 3,6-anhydro-L-galactose derived from red seaweed agarose [98].
Similarly, fermented Pu-erh tea (Xiaguan bowl tea [X]) decreased Bcl2 gene expression in
HT-29 colon cancer cells [99]. In situ hybridization and immunostaining showed that tea
polyphenol treatment significantly reduced the percentage of Bcl2 expressing cells and
reduced the level of Bcl2 mRNA and protein in the Bcl2 positive cells in lung preneoplastic
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lesions of Sprague Dawley rats [100]. Curcumin (diferuloylmethane), the yellow pigment in
turmeric (Curcuma longa), at 25 µM for 4 h suppressed NFκB-regulated gene products (Bcl2,
BclxL, Cox2, cyclin D1, and inhibitor of apoptosis protein-2) in HCT-116 cells [101]. Western
blotting showed that curcumin treatment at 20 µM for 24 h but not 6 h or 12 h inhibited
the expression of Bcl2 by about 50% in COLO 205 cells [102]. Regular end-point PCR
showed that methanol extract from the plant Drimia calcarata significantly downregulated
Bcl2 gene expression in both Caco-2 and HT-29 cells [103]. Finally, Western blot and qPCR
showed that treatment with berberine (40 µM), a natural isoquinoline alkaloid derived from
Berberis genus plants, decreased the expression of Bcl2 protein but not mRNA in human
colorectal cancer cell lines HT-29 and HCT-116 [104]. Taken together, all of the above results
strongly suggest that Bcl2 gene expression is not regulated at the mRNA level but at the
post-transcriptional level.

In conclusion, this study identified Bcl2 as a preferable reference gene for qPCR assays
in human colon cancer cells treated with cottonseed-derived gossypol and bioactive extracts
as well as LPS. Our extensive qPCR results firmly support the conclusion that the Bcl2
gene is stably expressed at the mRNA level in human colon cancer cells regardless of
the treatment with plant toxin gossypol, bacterial endotoxin LPS, or cottonseed-derived
bioactive extracts, suggesting that Bcl2 gene expression is not regulated at the mRNA level
but at the post-transcriptional level. These results should facilitate studies designated to
evaluate the bioactivity of cottonseed molecules and other natural and synthetic molecules
for nutrition and health uses.

4. Materials and Methods
4.1. Colon Cancer Cell Line

American Type Culture Collection (Manassas, VA, USA) provided the human colon
cancer cell line (COLO 205-ATCC CCL-222). For long-term storage, the cells were kept un-
der liquid nitrogen vapor in a cryogenic storage vessel (Thermo Fisher Scientific, Waltham,
MA, USA). During the experiment, the cells were maintained at 37 ◦C in a humidified
incubator with 5% CO2 in RPMI-1640 medium (Gibco, Life Technologies, Carlsbad, CA,
USA) supplemented with 10% (v:v) fetal bovine serum, 0.1 million units/L penicillin,
100 mg/L streptomycin, and 2 mmol/L L-glutamine.

4.2. Gossypol, LPS, and Cottonseed Extracts

Gossypol (molar mass: 518.56 g/mol) was purified from cottonseed by HPLC (Sigma,
St. Louis, MO, USA). LPS was extracted from E. coli serotype K235 and purified by gel
filtration (Sigma, St. Louis, MO, USA). Cottonseed extracts were isolated by fractiona-
tion, defatting, and ethanol extraction from cottonseed coats and kernels of glanded and
glandless seeds [1]. Briefly, the cottonseed coat or kernel was ground into a fine powder
and homogenized. The kernel fraction was defatted with chloroform and hexane. The
coat fraction was treated with acetic acid followed by autoclave and centrifugation. The
defatted materials were extracted with ethanol followed by evaporation to remove acetic
acid and ethanol. Ethanol extracts were reconstituted in 100% DMSO (100 mg/mL) (Sigma,
St. Louis, MO, USA) and analyzed by HPLC-MS. The ethanol extracts contained trace
amounts of gossypol (0.82 ng gossypol/mg extract in glanded seed coat, 0.03 ng gossy-
pol/mg extract in glanded seed kernel, 0.37 ng gossypol/mg extract in glandless seed coat,
and 0 ng gossypol/mg extract in glandless seed kernel) [1]. Gossypol, LPS, and cottonseed
extract stocks were prepared in 100% DMSO and diluted before use.

4.3. Reagents and Equipment

Tissue culture reagents (RPMI-1640, fetal bovine serum, penicillin, streptomycin, and
L-glutamine) were from Gibco BRL. The tissue culture incubator (water jacket CO2 incubator,
Forma Series II, Model 3100 Series) was from Thermo Fisher. The tissue culture workstation
(Logic+ A2 hood) was from Labconco (Kansas City, MO, USA). Tissue culture plastic (flasks,
plates, cell scraper) was from CytoOne (USA Scientific, Ocala, FL, USA). Cell counting
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reagent (trypsin blue dye), slides (dual chamber), counter (TC20 Automatic Cell Counter),
and microscope (Zoe Florescent Cell Imager) were from Bio-Rad (Hercules, CA, USA). The
microplate spectrophotometer (Epoch) was from BioTek Instruments (Winooski, VT, USA).

4.4. Cell Culture and Chemical Treatment

Cancer cells were dissociated from the T-75 flask with 0.25% (w/v) trypsin−0.53 mM
EDTA solution, stained with an equal volume of 0.4% trypsin blue dye before counting the
number of live cells with a TC20 Automatic Cell Counter. Cancer cells (0.5 mL) from trypsin-
dissociated flasks were subcultured at approximately 1 × 105 cells/mL density in 24-well
tissue culture plates. The cancer cells were routinely observed under a Zoe Florescent
Cell Imager before and during the treatment. Cancer cells in 24-well plates (triplicate for
every treatment) were treated with gossypol (0, 0.1, 0.5, 1, 5, 10, 50, and 100 µg/mL), LPS
(0, 5, 10, 20, 50, 100, 500, and 1000 ng/mL), or ethanol extracts (0, 5, 10, 20, 30, 40, 50, and
100 µg/mL) for 8 and 24 h. The experimental control “0” treatment corresponded to 1%
DMSO present in all of the culture mediums. Gossypol concentrations were in the range of
previously published concentrations for gossypol (up to 100 µM) [23,25,105], (-) gossypol
(up to 100 µM) [106], apogossypolone (up to 40 µM) [107], and gossypol derivatives (IC50
concentrations of 6–28 µM) [108].

4.5. Real-Time qPCR Primers and Probes

The selection of 55 genes for qPCR analysis was based on the literature showing
those gene expressions regulated by TTP, gossypol, or cinnamon extract in cancer cells
and macrophages (relevant references are listed in the right column in Table 1). RNA
sequences were obtained from the National Center for Biotechnology Information (NCBI)’s
non-redundant protein sequence databases (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The
qPCR primers were designed with Primer Express 3.0 software (Applied Biosystems,
Foster City, CA, USA) using the default parameter values including amplicon length
(50 to 150 bases for optimum PCR efficiency), optimal primer length (20 bases), Tm
(58 ◦C to 60 ◦C), % GC (30% to 80%), 3′ end (the last five nucleotides at the 3′ end contain
no more than two G + C residues), and repeating oligonucleotides (void runs of identical
nucleotides; if repeats are present, there must be fewer than four consecutive G residues).
The primers were synthesized by Biosearch Technologies, Inc. (Navato, CA, USA). The
names of mRNAs and their nucleotide sequences (5′ to 3′) of the forward primers and
reverse primers, and corresponding references are described in Table 1.

4.6. RNA Isolation and cDNA Synthesis

RNA isolation and cDNA synthesis were essentially as described [13]. Human colon
cancer cells in 24-well plates treated with various concentrations of gossypol, LPS, or
cottonseed extracts for 8 h (triplicate in every concentration). The dishes were washed twice
with 1 mL 0.9% NaCl and lysed directly with 1 mL of TRIZOL reagent (Invitrogen, Carlsbad,
CA, USA). RNA was isolated according to the manufacturer’s instructions without DNase
treatment and stored in a −80 ◦C freezer. RNA concentrations were quantified with
an Implen NanoPhotometer (Munchen, Germany). The mean and standard deviations
of A260/A280 for the 192 independent RNA samples was 1.73 ± 0.17, indicating some
contaminations of the RNA samples with protein, phenol, or other contaminants that
have an absorbance close to 280 nm. RNA quality was evaluated by electrophoretic gel
and electropherogram analyses. In our typical analysis, RNA isolated from mammalian
cells with the Trizol reagent without DNase treatment resulted in high-quality RNA as
evidenced by sharp 28S and 18S rRNA bands on electrophoretic gel and sharp peaks on
electropherogram [109]. The total RNA was used to synthesize cDNAs using SuperScript II
reverse transcriptase at 42 ◦C for 50 min. The cDNA synthesis mixture (20 µL) contained
5 µg total RNA, 2.4 µg oligo(dT)12–18 primer, 0.1 µg random primers, 500 µM dNTPs,
10 mM DTT, 40 u RNaseOUT and 200 u SuperScript II reverse transcriptase in 1X first-
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strand synthesis buffer (Life Technologies, Carlsbad, CA, USA). The cDNA was stored in a
−80 ◦C freezer and diluted with water to 1 ng/µL before qPCR analyses.

4.7. Quantitative Real-Time PCR Analysis

The qPCR assays followed the MIQE guidelines: minimum information for publication
of quantitative real-time PCR experiments [46]. The qPCR assays were described in detail
previously [26]. The qPCR efficiency was performed with variable amounts of template
cDNA concentrations (0, 0.05, 0.5, 2.5, 5, 12.5, and 25 ng) essentially as described [109]. The
correlation coefficiencies between Cq and cDNA concentration were over 0.99 for the BCL2
gene and tested genes. SYBR Green qPCR reaction mixture (12.5 µL) contained 5 ng of
total RNA-derived cDNA, 200 nM each of the forward primer and reverse primer, and
1× iQ SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA). The reactions in
96-well clear plates sealed by adhesives were performed with CFX96 real-time system-
C1000 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA). The thermal cycle
conditions were as follows: 3 min at 95 ◦C, followed by 40 cycles at 95 ◦C for 10 s, 65 ◦C
for 30 s and 72 ◦C for 30 s. The specificity of qPCR products was evaluated by melt curve
analysis and 3% agarose gel electrophoresis as described [109]. Primer pair specificity for
cDNA was evident from the analysis of qPCR products with sharp peaks on the melt curve
and a single band on the electrophoretic gel.

4.8. Data Analysis and Statistics

qPCR data (10,560 Cq values) were generated from 55 genes analyzed and 64 treat-
ments with triplicate per treatment for each gene. The data in the figures and tables
represent the mean and standard deviation of 24–192 independent samples.
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