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How can depression be associated with both instability and inertia of affect? Koval et al.

(2013, Emotion, 13, 1132) showed that this paradox can be solved by accounting for the

statistical overlap between measures of affect dynamics. Nevertheless, these measures

are still often studied in isolation. The present study is a replication of the Koval et al.

study.Weused experience sampling data (three times a day, 1 month) of 462 participants

from the general population and a subsample thereof (N = 100) selected to reflect a

uniform range of depressive symptoms. Dynamics measures were calculated for

momentary negative affect scores.When adjusting for the overlap among affect dynamics

measures, depression was associated with ‘dispersion’ (SD) but not ‘instability’ (RMSSD)

or ‘inertia’ (AR) of negative affect. The association between dispersion and depression

became non-significant when mean levels of negative affect were adjusted for. These

findings substantiate the evidence that the presumed association between depression and

instability is largely accounted for by the SD, while the association between dispersion and

depressionmay largely reflectmean levels of affect.Depressionmay thus not be related to

higher instability per se, which would be in line with theories on the adaptive function of

moment-to-moment fluctuations in affect.

Major depressive disorder is one of the mood (or affective) disorders and is characterized

by an alteration in mood or affect. Typically, this alteration involves heightened levels of

depressed mood and negative affect (American Psychiatric Association, 2013; Barge-
Schaapveld, Nicolson, Berkhof, & de Vries, 1999; Watson, Clark, & Carey, 1988). More

recently, depression research has also focused on the dynamic aspects of affect,

stimulated by technological advancements facilitating the repeated assessment of

variables in daily life (Csikszentmihalyi & Larson, 1987; Ebner-Priemer & Trull, 2009).

Such experience sampling studies have shown that depressed patients do not feel equally

bad all the time; affect levels fluctuate, even in peoplewith severe depression (Ben-Zeev&

Young, 2010; Thompson et al., 2012; Van Os et al., 2017).

Feelings probably fluctuate for a reason. Theories on the functions of affect and
emotions1 in non-depressed people suggest that fluctuations are adaptive, serving to help

the individual to adequately respond to environmental changes and demands (Carver,
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2015; Frijda & Mesquita, 1994; Panksepp, 2012) . Affective responses occur if an event is

appraised as relevant to the individual’s concerns, leading to changes in action readiness

and concomitant physiological changes. As a result, the individual may interact with the

environment, or not, depending on several regulation processes. In this way, changes in
affect and emotion serve to monitor and safeguard the individual’s needs, goals, and

generalwell-being (Frijda&Mesquita, 1994; Panksepp, 2012). These theories also suggest

that fluctuations in affect and emotions are functional only within certain boundaries;

regulatory forces serve to prevent them fromexceeding dysfunctional thresholds (Carver,

2015; Kuppens & Verduyn, 2017; Larsen, 2000).

If affect dynamics are adaptive and vital to well-being, structural alterations in these

dynamics may be related to psychological dysfunction. Indeed, recent studies in

depressed individuals have indicated that depression is not only related to alterations in
mean levels of affect, but also to altered dynamics of affect (Houben, van denNoortgate, &

Kuppens, 2015; Trull, Lane, Koval, & Ebner-Priemer, 2015; Wichers, Wigman, & Myin-

Germeys, 2015). The majority of these studies have focused on three measures of affect

dynamics. The firstmeasure is thewithin-person standard deviation (SD) or variance. This

is a measure of the general dispersion of the scores (Trull et al., 2015). The SD is often

referred to with the term ‘variability’ (Houben et al., 2015; Koval, Pe, Meers, & Kuppens,

2013), butwewill use the term ‘dispersion’, to avoid confusionwith the broader use of the

term ‘variability’ (as in ‘intra- and interindividual variability’, ‘heart-rate variability’, and
‘moment-to-moment variability’). The secondmeasure of affect dynamics is the first-order

autocorrelation (AR), which is a measure of the temporal dependency of affect, or its

resistance to change. This measure is referred to with the term ‘inertia of affect’ (Koval

et al., 2013; Trull et al., 2015). The third measure is the mean square successive

difference (MSSD or its square root: RMSSD), which captures moment-to-moment

fluctuations (Jahng, Wood, & Trull, 2008). This measure is often called ‘affective

instability’ (Koval et al., 2013; Trull et al., 2015). TheMSSD captures both themagnitude

and temporal dependency of affective fluctuations, in contrast to the SD (which captures
the magnitude but not the temporal dependency) and the AR (which captures the

temporal dependency but not the magnitude of fluctuations; Jahng et al., 2008).

Paradoxically, the studies done thus far have indicated that depression is associatedwith

higher dispersion, higher instability, and higher inertia of affect (see Houben et al., 2015;

Koval et al., 2013; Trull et al., 2015). This is a paradox, since inertia implies ‘resistance to

change’ and thus would be expected to go along with rigidity rather than instability and

variability. Koval et al. (2013) provided an elegant solution to this paradox, showing that

the threemeasures of affect dynamics arenot independent. They aremathematically related
to each other with the formula MSSD = 2*SD2(1 � AR) (see also Jahng et al., 2008). Most

studies have investigated these measures in isolation, which makes it hard to decide how

eachmeasure is independently related to depression. For example, the positive association

between the MSSD and depression may either be due to higher dispersion (SD) or lower

inertia of affect (AR) in depressives, or both. Therefore, Koval et al. used multiple

regression analyses to examine how each measure of affect dynamics was uniquely related

to depression while the other measures were adjusted for. Using experience sampling

measures of negative affect in a sample of 100 students, they found that depression was
indeed related to higher dispersion (SD), but not to inertia (AR) or instability (RMSSD) of

affect when adjusting for dispersion. If this finding can be replicated, it makes a strong case

for resolving the paradox of inertia versus instability. In that case, depressionwould not be

related to higher instability per se, but mainly to higher dispersion. This would be in line

with theories on the adaptive function of moment-to-moment fluctuations in affect.
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In this study, we aimed to replicate the findings by Koval et al. (2013) in a general

population sample. Our sample consisted of individuals who participated in the diary

study of the HowNutsAreTheDutch project (www.hownutsarethedutch.nl). Following

Koval et al. (2013), we selected 100 participants evenly distributed over the whole range
of baseline depression severity. We also analysed the full sample (N = 462), in which

depression scores were not evenly distributed but skewed to the right. We hypothesized

that higher depression scores are related to higher dispersion, but not to higher instability

or higher inertia of negative affect when adjusting for dispersion. We also examined to

what extent the observed associations are accounted for bymean levels of negative affect,

because affect dynamics measures may be confounded with the mean (Mestdagh et al.,

2018; Wagenmakers & Brown, 2007).

Method

Participants

Participants were sampled from an initial pool of 1,273 individuals from the general

population who took part in the online diary study of the project ‘HowNutsAreThe-

Dutch’ (www.hownutsarethedutch.nl; Van der Krieke et al., 2015, 2016). These 1,273
individuals were those who participated between 22 May 2014 (launching of the diary

study) and 19 December 2017 (end of 4-year wave of the ‘HowNutsAreTheDutch’

project). Inclusion criteria were age 18 years or older, having a smartphone, and

approval of use of their anonymized data for research purposes (all assessed online).

During the inclusion procedure, participants also stated not to be engaged in shift work

and not to anticipate a major disruption of daily routines during the study period (e.g., a

holiday). We first selected the participants who completed at least 75% of the diary

measurements (≥68 of the 90 observations), which were 462 participants. From these,
we sampled 100 participants with scores evenly distributed over the scale of depressive

symptoms. We did so to obtain a sample representing a wide and uniform range of

depression severity, replicating the procedure used by Koval et al. (2013). To this end,

we divided the baseline (pre-diary) depression score (Quick Inventory of Depressive

Symptoms, QIDS; Rush, Gullion, Basco, Jarrett, & Trivedi, 1996) into four roughly equal

segments, and selected a random sample of 25 participants from each segment. The

sample size of 100 was chosen by Koval to ensure sufficient power to detect moderate

effect sizes. We repeated the analyses in the full sample (N = 462). In this sample,
depression scores were skewed to the right. Median QIDS score of the full sample of 462

participants was 6.0 (interquartile range (IQR) = 6.0; range 0–24). Mean QIDS score of

the subsample of 100 randomly selected participants was 9.4 (SD = 5.5; median = 9.5,

IQR = 10.5; range 1–21). The N = 100 sample consisted of 83% females. Mean age was

42.7 years (SD = 13.9; range 20–75), and educational level was rather high (low 4.0%,

middle 9.0%, high 83.0%; missing 4.0%). These characteristics were similar to those of the

original HowNutsAreTheDutch sample and the sample of N = 462 participants (i.e.,

those who completed at least 75% of the measurements). The study was conducted in
accordance with the Declaration of Helsinki. The protocol was evaluated by the Medical

Ethics Committee of our institution and judged as exempt.

Materials and procedure

Dutch inhabitants were informed about the HowNutsAreTheDutch project by means of

articles in newspapers and magazines, public lectures, and radio broadcasts. They were
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invited to visit thewebsitewww.hoegekis.nl and toparticipate in a cross-sectional study, a

diary study, or both. In the diary study, participantsmonitored their affect, behaviour, and

cognitions three times a day for a period of 30 days (up to 90 measurements) by means of

an electronic diary. The three time points were separated by equidistant intervals of 6 hr
(e.g., 10.30 am, 4.30 pm, and 10.30 pm), the exact schedule depending on the

participants’ sleep–wake schedule. At each prompt, a text message with a link to

the diary questionnairewas sent to the participants. Participantswere instructed to fill out

the diary questionnaire immediately after the prompt, but at least within 1 hr. Median

response time was 10.4 min. For further details on the diary study, see Van der Krieke

et al. (2016). Data of the HowNutsAreTheDutch study are available upon request.

Depressive symptoms

The Quick Inventory of Depressive Symptoms (QIDS-SR16; Rush et al., 1996, 2006) was

used to measure baseline depressive symptoms. This questionnaire was filled out just

before the start of the diary study, during the online inclusion procedure. The QIDS-SR16

is a reliable and well-validated self-report questionnaire consisting of 16 items reflecting

the nine DSM-IV symptoms of major depressive disorder (sad mood, loss of interest,

concentration problems, self-criticism, suicidal ideation, energy/fatigue, sleep distur-

bance, appetite or weight change, and psychomotor agitation or retardation). Respon-
dents are asked to rate the severity and frequency of these symptoms over the last 7 days.

The total score can range from 0 to 27.

Momentary affect

Momentary negative affect was assessed using six items of the circumplexmodel of affect

(Barrett & Russell, 1998; Yik, Russell, & Barrett, 1999). The circumplex model aims to

assess both the valence (pleasantness) and activation (arousal) dimension of affect. In our
study, low-arousal negative affect was assessedwith the items ‘gloomy’, ‘dull’, and ‘tired’.

High-arousal negative affect was assessed with the items ‘anxious’, ‘nervous’, and

‘irritable’. Participants rated the extent to which they felt so on a continuous slider scale

ranging from 0 (not at all) to 100 (very much). For the purpose of the present study, we

pooled the negative affect items in a composite ‘negative affect’ score, in line with Koval

et al. (2013). The composite negative affect score was calculated by taking the mean of

the six items (range 0–100). Cronbach’s alpha for this measurewas 0.86, which is amix of

between-subject andwithin-subject reliability in longitudinal designs. Separating this mix
following the recommendations by Shrout and Lane (2012) yielded a between-subject

reliability of 0.99 and a within-subject reliability of 0.71.

Affect dynamics measures

We calculated the measures of affect dynamics separately for each individual. Following

Koval et al. (2013), thewithin-person SDwas used as ameasure of dispersion of affect. As

a measure of affective instability, the RMSSDwas calculated (the square root of the MSSD;
Jahng et al., 2008). A high RMSSD represents high moment-to-moment variability. The

first-order AR was calculated as a measure of temporal dependency or inertia of affect

(Kuppens, Oravecz, & Tuerlinckx, 2010). Alsomultilevelmethods have been proposed to

estimate the measures of affect dynamics (e.g., Bernstein, Curtiss, Wu, Barreira, &

McNally, 2018; Trull et al., 2008), but we did not use these for two reasons: First, we
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wanted to follow the procedure used in Koval et al. (2013) and most other studies done

on this topic (cf. Houben et al., 2015). Second, these multilevel methods do not allow for

the examination of all three measures of affect dynamics in one and the same model.

Statistical analyses

Mean number of completed observations of the 100 participants was 77.9 (range 68–90,
SD = 5.6). In the full sample ofN = 462, this was quite similar (77.6, SD = 5.6, range 68–
90). The total number of completed observations in theN = 100 samplewas 7,786; 1,214

of the 9,000 measurements were missing (13.5%). In the full sample, the total number of

completed observations was 35,842 (13.7% missing). In our main analyses, we did not

impute these missing values. In the calculation of the affect dynamics measures, missing
values were excluded by leaving an empty row in the data file, in order to maintain equal

intervals for the calculation of RMSSD and AR. First, we present Pearson’s correlations

between the baseline QIDS score and all affect dynamics measures (SD, RMSSD, AR).

Second, we examined the associations between the affect dynamics measures and

depression using three multiple regression models, adding two of the three measures

simultaneously in a model, following Koval et al. (2013). We adjusted these models for

mean levels of affect in a subsequent step. In view of the expected correlations between

the predictors, we checked the collinearity diagnostics to detect problematic multi-
collinearity; VIF values were all below 10, and condition indices were all below 30

(highest VIF was 4.48, and highest condition index was 20.3), suggesting no serious

problem with multicollinearity (Hair, Anderson, Tatham, & Black, 1998). The analyses

were performed in SPSS25, and a p-value of .05 was used as the significance level.

In the analysis of the full sample (N = 462), baseline QIDS scores were skewed to the

right. Also, the distributions of the predictor variables were somewhat skewed in this

larger sample, especially mean levels of negative affect. To prevent violation of model

assumptions and undue influence of the heavy tails, robust regression analysis with
bootstrapped confidence intervals was used for these analyses. These analyses were

performed in R, using the functions ‘lmrob’ from the robust package and ‘bootEst’ from

the complmrob package.

We also performed two sensitivity analyses in the N = 100 sample. First, we examined

the potential influence ofmissing data by repeating the analyses in an imputed data set.We

imputed the missing observations using Random Forest imputation (Stekhoven &

B€uhlmann, 2012), for each participant separately. Random Forest imputation is a non-

parametric machine learning method for imputation of multivariate data. For this
imputation, we used all diary questionnaires (except skip questions) and their lagged

versions, negative affect and its lagged version, a variable denoting the measurement point

and its square, daypart, day of week, baseline QIDS scores, age, and sex. Imputation was

done with the R package missForest (Stekhoven & B€uhlmann, 2012). Second, we

performed an analysis inwhich the interval from the evening to themorningmeasurement

was excluded from the calculation of the RMSSD and AR.We did so because this interval is

longer than the other intervals, since participants could not be assessed during the night.

Results

Correlations between depression severity and affect dynamics

Table 1 presents descriptive statistics and Pearson’s correlations between baseline

depression severity (QIDS score) and the measures of affect dynamics for the N = 100
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sample. Dispersion (SD) of negative affect was significantly and positively associated with

depression severity (r = .30, p = .003). Thus, more depressive symptoms went along

with higher dispersion of negative affect. Instability (RMSSD) was also positively

associated with depression severity (r = .25, p = .011). The correlation between inertia
(AR) of affect and depression was not significant (r = .09, p = .388). Mean levels of

negative affect were also positively associated with depression severity (r = .68,

p < .001). As could be expected given the formula MSSD = 2*SD2(1 � AR), there were

several significant intercorrelations among the affect dynamics measures. In particular,

the correlation between the SD and the RMSSD stands out; this correlation was large

(r = .88, p < .001). Noteworthy is also the moderate correlations between the mean and

the SD (r = .25, p = .013) and the mean and the RMSSD (r = .24, p = .017), reflecting

some floor effects in the negative affect variable (the distribution of this variable was a bit
skewed to the right).

Multiple regression analyses

To examine how depression severity was related to the affect dynamics measures while

accounting for the overlap among the latter, we performed multiple regression analyses.

Table 2 shows the results for theN = 100 sample. In eachmodel, we included two of the

three affect dynamicsmeasures as predictors (step 1). In step 2,we also included themean
level of negative affect. The betas from these models are the standardized regression

coefficients. These can be interpreted as effect sizes for the independent associations

between each measure of affect dynamics while adjusting for one of the other measures

(step 1) and while additionally adjusting for mean levels of affect (step 2).

In model 1, depression severity was regressed on dispersion (SD) and inertia (AR) of

affect. Only dispersion of affect was independently associatedwith depression severity in

this model. The effect size was moderate: 0.29. When mean level of negative affect was

added to the model in step 2, this effect size was substantially reduced (b = 0.13) and not
significant anymore. Mean level itself was a very strong predictor of depression severity

Table I. Descriptive statistics and Pearson’s correlations for depression severity and negative affect

dynamics (N = 100)

Measure Mean (SD)

Correlations

QIDS

negative affect dynamics

M SD AR RMSSD

QIDS 9.4 (5.5)

negative affect

Mean level (M) 31.1 (16.0) .68

Dispersion (SD) 10.8 (3.1) .30 .25

Inertia (AR) 0.29 (0.18) .09 .05 .19

Instability (RMSSD) 12.6 (3.7) .25 .24 .88 �.26

Notes. QIDS = Quick Inventory of Depressive Symptoms (baseline assessment); negative affect

dynamics are person-based measures calculated from momentary negative affect scores. AR = au-

tocorrelation; M = mean level; RMSSD = root mean square successive difference; SD = standard

deviation.

Correlations in bold are significant at p < .05 (two-tailed).
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(b = 0.65). The percentage of explained variance increased from7.1 to 46.7%whenmean

level was included in the model.

In model 2, depression severity was regressed on dispersion (SD) and instability
(RMSSD) of negative affect. Neither of these predictors were significant. The regression

coefficient for instability was almost zero in this model (b = �0.04), in contrast with the

positive significant correlation between instability and depression in Table 1. Instability

did not explain any extra variance above what was explained by dispersion in this model

(checked by entering the predictors one by one). So, the apparent association between

instability and depression seems to be accounted for by the ‘SD part’ of the RMSSD.

In model 3, depression severity was regressed on inertia (AR) and instability (RMSSD)

of affect. In this model, instability was a significant predictor of depression, inertia was
not. When mean level was included in the model, instability was not significantly related

to depression anymore. The effect size for instability dropped from 0.30 to 0.12 in this

second step.

We repeated these analyses in the full sample (N = 462; Table 3). The results were

highly similar, except that the effect of dispersion (SD)was now also significant in the first

step of model 2 and inertia (AR) was now significant in the first step of model 3. In the

mean-adjusted models, none of the dynamics measures were significant.

Sensitivity analyses

First,we repeated the analyses for theN = 100 sample in a data set inwhichmissing values

were imputed. The results were essentially the same; in all models, the same effects were

Table II. Results of multiple regression models predicting depression severity from dynamics andmean

level of negative affect (N = 100)

Step 1 Step 2 (including mean level)

B (SE) b p B (SE) b p

Model 1

Dispersion (SD) 0.52 (0.18) 0.29 .004 0.24 (0.14) 0.13 .089

Inertia (AR) 1.00 (2.98) 0.03 .736 0.87 (2.26) 0.03 .701

Mean level – – – 0.22 (0.03) 0.65 <.001

Adjusted R2 .071 .467

Model 2

Dispersion (SD) 0.60 (0.37) 0.33 .106 0.39 (0.28) 0.22 .160

Instability (RMSSD) �0.06 (0.30) �0.04 .843 �0.14 (0.23) �0.09 .544

Mean level – – – 0.22 (0.03) 0.65 <.001

Adjusted R2 .070 .468

Model 3

Inertia (AR) 4.99 (3.04) 0.17 .104 2.57 (2.33) 0.09 .271

Instability (RMSSD) 0.44 (0.15) 0.30 .004 0.18 (0.12) 0.12 .126

Mean level – – – 0.22 (0.03) 0.64 <.001

Adjusted R2 .071 .464

Notes. Linear regression analyses. Dependent variable = Quick Inventory of Depressive Symptoms

(QIDS) score at the baseline assessment. AR = autocorrelation; RMSSD = root mean square successive

difference; SD = standard deviation; SE = standard error. N = 100.

Effects with p < .05 in bold.
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significant as in the original models and the coefficients were only slightly different.
Second, we repeated the analyses excluding the interval from the evening to the morning

measurement in the calculation of the RMSSD and AR. The results of these analyses were

also highly similar, except that dispersion (SD) nowwas a significant predictor inmodel 2,

step 1 (B = .70, b = 0.39, p = .035). In step 2, when mean levels were adjusted for, this

effect was not significant anymore (B = .47, b = 0.26, p = .063). In sum, the sensitivity

analyses yielded highly similar results as the original analyses: When the affect dynamics

measures were adjusted for each other, only dispersion of affect (SD) was associated with

depression, and the latter effect in turn disappeared when mean levels were adjusted for.
Detailed results of all sensitivity analyses are available from the first author upon request.

Discussion

In this study, we aimed to replicate the study by Koval et al. (2013), who solved the

paradoxical finding that depression is positively associated with both instability and

inertia of affect. Koval et al. showed that when statistically adjusting for the overlap

among affect dynamics measures, depressive symptoms are associated with dispersion

(SD) but not with instability (RMSSD) or inertia (AR) of negative affect in daily life. Our

study showed the same; instability and inertia of negative affect were not associated with

Table III. Full sample (N = 462) results of multiple regression models predicting depression severity

from dynamics and mean level of negative affect

Step 1 Step 2 (including mean level)

B b

Bootstrapped

95% CI

B b

Bootstrapped

95% CI

Lower Upper Lower Upper

Model 1

Dispersion (SD) 0.40 0.28 0.28 0.51 0.10 0.07 �0.01 0.22

Inertia (AR) �0.51 �0.02 �2.42 1.44 �0.06 �0.002 �1.96 1.82

Mean level – – – – 0.20 0.58 0.17 0.23

Adjusted R2 0.087 0.37

Model 2

Dispersion (SD) 0.28 0.20 0.02 0.54 0.03 0.02 �0.23 0.32

Instability (RMSSD) 0.11 0.09 �0.10 0.33 0.06 0.05 �0.16 0.29

Mean level – – – 0.20 0.58 0.17 0.23

Adjusted R2 0.088 0.37

Model 3

Inertia (AR) 2.58 0.11 0.80 4.43 0.74 0.03 �1.22 2.72

Instability (RMSSD) 0.34 0.29 0.25 0.44 0.10 0.08 �0.0005 0.19

Mean level – – – 0.20 0.58 0.17 0.23

Adjusted R2 0.089 0.37

Notes. Robust regression analyses with bootstrapped 95% confidence intervals. Dependent

variable = Quick Inventory of Depressive Symptoms (QIDS) score at the baseline assessment.

AR = autocorrelation; CI = confidence interval; RMSSD = root mean square successive difference;

SD = standard deviation; SE = standard error. N = 462.

Effects with p < .05 in bold.
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depressive symptoms when dispersion was adjusted for. This replication of the Koval

et al. study substantiates the evidence that the presumed association between depression

and instability is mainly accounted for by the SD.

This resolution of the paradox may shed a different light on earlier results. In a recent
meta-analysis, Houben et al. (2015) reported an overall correlation of �0.21 between

instability of affect (MSSD/RMSSD) and psychological well-being (obtained from 146

associations found in 79 articles). However, this correlation was based on zero-order

correlations because most studies did not report associations adjusted for the overlap

among the affect dynamics measures. The authors mentioned this as an important

limitation and caveat in their discussion. It remains to be seen whether the association

between theMSSD and psychological well-being will hold true inmeta-analyses of studies

that do adjust for the overlap among dynamics measures.
If it is true that it is mainly the ‘SD part’ of the MSSD that accounts for its association

with depression, the term ‘instability’ to denote the MSSD may not be adequate and too

negative; the more neutral term ‘moment-to-moment variability’ might be more

appropriate, as fluctuations in affect do not seem to be unfavourable per se. Important

emotion theories suggest that some degree ofmoment-to-moment variability in affectmay

even be healthy and adaptive, because it enables us to adequately respond to

environmental demands (Carver, 2015; Frijda & Mesquita, 1994; Kashdan & Rottenberg,

2010; Panksepp, 2012). It is therefore not surprising that in some parts of the literature,
‘moment-to-moment variability’ is referred to with the term ‘flexibility’ (e.g., Hollenstein,

2015; Kashdan & Rottenberg, 2010), which has a positive connotation. Fluctuations in

affect may especially be functional at the shorter timescale, that is, seconds or minutes. At

this timescale, moment-to-moment variability may reflect functional responsiveness to

situational contingencies (Koval et al., 2016). At longer timescales (e.g., several hours or

days), moment-to-moment variability may rather reflect mood swings and may thus be

unfavourable (Koval et al., 2013). The fact that several different timescales are used in

studies on this topic may therefore be one reason for the existence of such contrasting
terms for the (R)MSSD. Remarkably, the meta-analysis by Houben et al. (2015) did not

show an effect of time interval on the association between the (R)MSSD and psychological

well-being (maximum interval of included studies was 1 week). This might be due to the

fact that the SD was not adjusted for and/or that studies with shorter timescales were

underrepresented in this meta-analysis.

Another reason for the use of both positive and negative terms for the (R)MSSDmay be

that both extremes inmoment-to-moment variabilitymight be deleterious. Both toomuch

instability and too much rigidity in affect are thought to be detrimental, and both are
observed in depression (Booij, Snippe, Jeronimus, Wichers, & Wigman, 2018; Peeters,

Nicolson, Berkhof, Delespaul, & de Vries, 2003; Rottenberg, 2005; Trull et al., 2008;

Wichers et al., 2010). When both excessive and blunted emotional reactivity are

associated with psychopathology, healthy emotion regulation is probably a matter of

achieving an optimum (Hollenstein, 2015; Kashdan & Rottenberg, 2010; Kuppens &

Verduyn, 2017). Thiswould imply an invertedU-shape as regards the association between

measures of variability of affect and depression. Most studies thus far have only examined

linear associations (Houben et al., 2015), and we did so as well because we wanted to
replicate Koval et al. (2013). What level of moment-to-moment variability is optimal will

also depend on the context: Whether or not an event has occurred and what was the

nature of that event (Houben et al., 2015; Thompson et al., 2012). Like many other

studies in this field, we did not consider this context in our analysis, which is a major

limitation.
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We did find a positive association between dispersion of affect (SD) and depression in

our study. However, adjusting for mean levels of affect substantially reduced this

association, rendering it non-significant. Also in the Koval et al. (2013) study, this

association became non-significant after mean adjustment. It is well known that the SD

(and also the MSSD/RMSSD) can be related to the mean, especially if variables have

skewed distributions or show a restriction of range (e.g., Mestdagh et al., 2018;

Wagenmakers & Brown, 2007). In ESM data, positively skewed distributions are quite

common, especially for negative affect or symptom variables assessed in general

population samples. Indeed, our negative affect variable showed some positive skewness,

and the mean and SD of this variable were correlated (r = .25). In the Koval et al. (2013)

study, this correlation was also substantial, even as high as r = .81. This potential mean-

level dependence of the SD may have consequences for the interpretation of earlier
studies. The meta-analysis by Houben et al. (2015), for example, showed an overall

correlation of �0.18 between dispersion of affect (SD) and measures of psychological

well-being, but this effect size was not adjusted for mean levels because most studies did

not report these. It may also explain why associations between dispersion in positive

emotions and psychological well-being are often absent or less strong (Houben et al.,

2015; Koval et al., 2013); ESM data of positive emotions are often not skewed, and the SD

of these variables will thus be less strongly related to themean. Future studies thus should

account for mean levels or use measures that are independent of the mean, for example,
the recently proposed relative variability index (Mestdagh et al., 2018), or use complex

dynamics system models in which several dynamics measures can be studied in concert

(e.g., Kuppens et al., 2010).

Nevertheless, in one of the models the association between dispersion of negative

affect and depression showed a trend in the expected direction even after adjustment for

mean levels of affect. The same trend was observed in the larger sample (N = 462).

However, the effect sizewas rather small (b = 0.13), five times smaller than the effect size

of mean levels of negative affect (b = 0.65), and the same was true in the larger sample
(b = 0.07 and 0.58 for SD and mean, respectively). Further, if this effect would be real, it

would tell us that depression goes along with a greater range or dispersion in negative

affect, which, after all, may not be a very surprising insight. Trull et al. (2015) have called

the SD ‘an inappropriate summary index to capture a dynamics process’ (p356), because

it does not account for the temporal dependencies between successive observations.

Shifting the temporal order of a series does not yield a different SD. Further, a high SDmay

reflect frequent fluctuations, slow but extreme fluctuations, or an extreme trend in affect

over time (Jahng et al., 2008; Larsen, 1987). If affective variability is to be an important
construct in our emotion theories, we need to discriminate individuals showing such

different patterns of affect dynamics.

In our study, the AR was not related to depression scores, except in the unadjusted

model 3 in the larger sample. This effect disappearedwhenmean levelswere adjusted for.

Interestingly, the ARhas been found to be related to depression in laboratory studies using

a film task, even after adjustment for dispersion and mean levels of affect (Koval et al.,

2013, 2016). In this film task, the emotional content to which people were exposed was

under the experimenter’s control. This may be a crucial difference with the present ESM
study, in which emotional exposure varied across participants. Also, the fact that in the

film task different emotional responses (positive, negative, neutral) were induced may be

relevant, since this may increase fluctuations in affective states and reduce floor and

ceiling effects, as a result of which differences in inertia of affect might become more

pronounced. Also, the very short timescale (seconds, minutes) of the film task may be a
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distinguishing feature here (Koval et al., 2013;Kuppens, 2015). Future research is needed

to shed more light on this issue.

Limitations of the present study include the following. First, generalizability of the

sample may have been limited. Although the source sample came from the general
population, themajority of the participantswere female and highly educated. Second, our

sampling frequency was lower than in the Koval et al. study (three vs. ten times a day).

Due to our larger interval, we may have missed rapid changes in affect (Trull et al., 2008,

2015) and may have tapped more into changes due to mood swings. Although the meta-

analysis by Houben et al. (2015) did not show an effect of time interval on the association

between the dynamics measures and psychological well-being, the longer time interval in

our studymay have impacted the size of our estimates. A third limitation is that the interval

between the evening and the morning measurement was longer than the other two
intervals. Although one could argue that ‘experienced time’ in this interval was actually

not longer because participants were asleep, we did perform a sensitivity analysis in

which we excluded this interval. This yielded highly similar results, and it did not change

our main conclusions. A final issue was the high correlation between the SD and the

RMSSD. This correlation was also very high in the Koval et al. (2013) study. In other

studies, this correlationmay be lower, depending on the nature of the studied variables. In

our study, it might have produced some multicollinearity in the regression models.

Although the collinearity diagnostics suggested no serious collinearity problems, there is
always some degree of multicollinearity if variables are correlated (Baguley, 2012).

Although this leaves the regression estimates unbiased, it does reduce the effective sample

size (Baguley, 2012). Indeed, in the larger sample the effect of the SD in the unadjusted

model 2 became significant. This effect was non-significant in the mean-adjusted model

and did not change the conclusions of the present paper. The high correlation between

the variables also reflects a logical problem: The SD is by definition part of the RMSSD. The

degree to which, however, is the point at stake. Two series may have the same SD but

different RMSSDs, if the AR component of these series is different (Jahng et al., 2008). The
major issue is that in many of the studies who found evidence for an association between

the RMSSD and depression or other outcomes, it is unclear towhat extent this effect could

just as well have been explained by the SD.

To conclude, this study showed that the presumed association between depression

and ‘instability’ (MSSD/RMSSD) of affect is merely accounted for by the SD and that the

association between ‘dispersion’ (SD) and depression is mainly accounted for by the

mean. Therewith, we replicated Koval et al. (2013) in their solution of the instability–
inertia paradox and additionally highlighted the potential confounding by mean levels in
this area of research.
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