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Abstract
Sound waveforms convey information largely via amplitude modulations (AM). A large body

of experimental evidence has provided support for a modulation (bandpass) filterbank.

Details of this model have varied over time partly reflecting different experimental conditions

and diverse datasets from distinct task strategies, contributing uncertainty to the bandwidth

measurements and leaving important issues unresolved. We adopt here a solely data-

driven measurement approach in which we first demonstrate how different models can be

subsumed within a common ‘cascade’ framework, and then proceed to characterize the

cascade via system identification analysis using a single stimulus/task specification and

hence stable task rules largely unconstrained by any model or parameters. Observers were

required to detect a brief change in level superimposed onto random level changes that

served as AM noise; the relationship between trial-by-trial noisy fluctuations and corre-

sponding human responses enables targeted identification of distinct cascade elements.

The resulting measurements exhibit a dynamic complex picture in which human perception

of auditory modulations appears adaptive in nature, evolving from an initial lowpass to band-

pass modes (with broad tuning, Q*1) following repeated stimulus exposure.

Author Summary

Amplitude modulations are considered the key carriers of intelligible information in audi-
tory signals, and consequently it is of significant interest to discover how they are neurally
analyzed and perceptually encoded. A dominant model has emerged from extensive exper-
imental and theoretical studies of this phenomenon. This model posits that amplitude
modulations are parsed into channels of different temporal rates via a bank of bandpass
filters. Using exclusively data driven approaches with minimal assumptions about the
structure of the model, the picture that emerges is of an adaptive process. Initially, human
listeners in these tasks perceive modulations as if through a lowpass filter with very low
cutoff frequency, which gradually evolves to become a broadly tuned bandpass process at
higher modulation frequencies, reflecting the modulations of the target stimuli. This
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surprising dynamic characteristic emphasizes the plastic nature of modulation analysis in
sensory perception.

Introduction
Natural sounds carry salient amplitude modulations (AM) essential for successful interpreta-
tion of auditory landscapes and robust source identification [1–5]. The human auditory system
is exquisitely sensitive to relatively slow AM cues, prompting extensive investigation of this
ability over several decades [6, 7]. Recent success in modeling recognition of environmental
sound textures [8], speech [9–11] and music material [12–14] has now prompted the need to
consolidate the exact nature of modulation filtering [15–18].

Early measurements of sensitivity across AM rates seemed consistent with low-pass charac-
teristics (running average over time) as envisaged by the ‘linear envelope detector’ (LED)
model [6, 19, 20]. However, this class of experiments often posed interpretational challenges.
For example, under some stimulus and experimental conditions only parts of the dataset con-
formed to low-pass characteristics [6, 15, 21–23] but not others [16, 24, 25]. Plausible accounts
of these apparent inconsistencies involved shifts in task strategies and/or decision statistics [15,
21], whereby listeners would rely on different cues under conditions associated with different
portions of the dataset and/or subtle stimulus alterations [26–28]. Strategy shifts of this kind
are relatively common [29] (e.g. off-frequency listening [30]). Therefore, our first goal was to
assess the extent to which endogenous adaptive strategies can influence the measurements of
the modulation filter when no stimulus and/or task-related factors are concomitantly modified.
Specifically, we sought to adopt a single stable measurement approach throughout (the reverse
correlationmethod), reasoning that systematic changes in the subjects’ detection strategies
would be unveiled as a dynamic evolution of the filter estimates during the experimental ses-
sion [31–33].

The shortcomings of the low-pass AM filter model have since spurred development of alter-
native models which augmented it with, for example, an autocorrelation stage [34], or the cur-
rent dominant framework of the modulation filterbank (MFB) [16, 35]. This latter model
consists of a low-pass filter (up to 2.5 Hz) and a bank of band-pass filters spanning the*5–
100 Hz range. Thanks to its increased sophistication and flexibility, the MFB is able to account
for a wide range of psychophysical [16, 24, 36–39] and physiological [35, 40–42] results. Never-
theless, there remain several important details of these hypothesized filters that have not been
adequately constrained by available data. For instance, filter tuning (Q-value) has often been
assumed to measure*2 [35], yet other studies have indicated a significantly lower value (<1)
[25]. Furthermore, another study set out to test the ability of the modulation filter bank model
to account for dependence of AM envelope detection on the nature of the carrier. It reported
that the model significantly underestimated the detrimental effects of carrier periodicity on
modulation detection, a finding that has cast a shadow of uncertainty on certain aspects of the
filterbank model [34]. Another unexplained finding concerns the lack of persistent low-level
adaptive effects in these postulated filters [18], suggesting that they are more dynamic and
likely more susceptible to cognitive control (e.g. by the details of the measurement task [43]).
With specific relation to psychoacoustical literature using decision weights [44] (a technique
related to the reverse correlation approach used here), the bandpass signatures expected of the
MFB model are not directly evident through previous filter estimates [45–48] (we return to this
issue in Discussion). Consequently, the second goal of the present study is to measure these
bandpass filters in an unconstrained manner to allow for data-driven conclusions that are
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largely independent of model specifics. To do so, we relied on a combination of powerful sys-
tem identification tools and AM-tailored stimulus perturbations that enabled us to describe a
more dynamic picture of the underlying process encompassing both LED and MFB modes of
operation.

Our findings largely confirm the three critical questions we sought to address: (1) the mea-
sured bandpass channels undergo characteristic changes to reflect listeners’ strategy shifts from
using a combination of loudness and spectral-profile cues (both existing in the presented sti-
muli) in the early part of the experiment, to relying primarily on the spectral-profile cue during
later phases; (2) the Q-values associated with these channels are*1, although this characteris-
tic is itself subject to recalibration as assessed by our measurement task and analysis; and (3)
the modulation filter bank (augmented by a low-pass characteristic with a low cut-off [35])
remains the most parsimonious model for auditory modulation processing.

Materials and Methods

Ethics statement
Ethics approval was obtained from the College Ethics Review Board (CERB) at Aberdeen Uni-
versity (http://www.abdn.ac.uk/clsm/working-here/cerb.php). All listeners gave written
informed consent.

Stimulus and task
The auditory stimuli (delivered binaurally via Sennheiser HD202 headphones) were specifi-
cally designed to encode task-relevant AM modulations into the envelope of the acoustic sig-
nal in a manner suitable for experimental characterization using psychophysical reverse
correlation [49], and their parameters were specified to lie in the perceptually salient range for
AM processing (<30 Hz). The 300-ms carrier was a segment of white noise (5 kHz bandwidth,
10 kHz sampling rate) that was generated once at the beginning of each block and identically
replicated throughout the entire block; on any given block, no variability/perturbation was
therefore introduced by the fine temporal structure of the stimulus (see further below and S6
Fig for additional analyses demonstrating that carrier-induced AM deviations had no impact
on our results). Stimulus perturbation was instead applied to the overall amplitude of the car-
rier in a stepwise fashion: the stimulus waveform was subdivided into 9 temporal segments
(each lasting*30-ms) and the amplitude of each segment was controlled independently [46].
In the absence of an applied increment/decrement (signal), a given segment was assigned a
fixed baseline level (indicated by leading and trailing ends of red line in Fig 1A) of*62 dB
SPL. The ‘increment’ signal was generated by increasing the amplitude of the central segment
within the stimulus waveform (peak of red line in Fig 1A) to*68 dB SPL (we use* because
the exact values were tailored to each listener to target individual threshold performance and
therefore differed across listeners); the temporal scale of this modulation was chosen to match
ecologically relevant AM cues [1, 50], and its AM pulse-like specification was chosen to ease
application of analytical/theoretical results dependent on signal shape [51]. The target signal
was then added to a noise waveform generated by applying a random Gaussian-distributed
increment/decrement to the overall amplitude of each segment, independently for different
segments (Fig 1C); the resulting signal+noise trace (Fig 1E) was presented together with a
noise-only trace on every trial, and listeners were asked to detect the former in a two-interval-
forced-choice (2IFC) protocol. The jitter introduced by the noisy modulation was approxi-
mately ±2.2 dB standard deviation around baseline level. In a separate series of experiments
we asked the same listeners to detect a signal defined by a decrement (rather than an
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increment) in the amplitude of the central segment (Fig 1B) from a baseline level of*68 dB
to*62 dB. Some previous studies on AMminimized the role of loudness cues by roving the
absolute levels of individual stimuli [44, 52]; we deliberately avoided this manipulation
because it amplifies the role of gain control [53], a nonlinear effect that may have compro-
mised interpretation of the nonlinear kernels [51, 54]: roving stimuli span a wide level range
for the purpose of rendering overall absolute level ineffective as a cue for performing discrimi-
nation, however they also require listeners to factor out overall level via gain control (or analo-
gous mechanisms) to compute relative filter outputs; this dynamic nonlinear operation is
difficult to incorporate into the cascade models that form the theoretical underpinnings of the
present study [51, 58], potentially complicating kernel analysis beyond the level of interpret-
ability afforded by analyses like those favoured here that do not involve parameter fitting. Fol-
lowing their response (via button press), auditory feedback (correct/incorrect) was provided
immediately; the next trial automatically initiated after a 1-second delay. At the end of each
block, listeners received an auditory summary (via an automated system based on segments of
human voice) detailing the total number of collected trials and the percentage of correct
responses on the last block as well as averaged across all blocks.

Fig 1. AMmodulations as targets and interferers. The signal to be detected consisted of a centered 33-ms
square-pulse change in AM envelope that was either larger (A) or smaller (B) than baseline modulation
depending on whether listeners were engaged in the increment or decrement task respectively. (C,D) Noise
was applied in the form of Gaussian modulations around baseline value every 33-ms to generate signal
+noise stimuli (E-F). Black traces show sound waves, red traces show amplitude modulations. See Materials
and Methods for details.

doi:10.1371/journal.pcbi.1005019.g001
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Targeting optimal performance regimes
We tested 10 listeners, all naive except author EJ (indicated by square symbol in all Figures),
with ages 28±9 years (mean±SD across listeners). Listeners were initially familiarized with the
task during preliminary training sessions consisting of*20 trials without noise. They were
presented with noiseless versions of both signal+noise and noise-only stimuli, preceded by
explicit verbal indication of whether they would hear the former or the latter. They were then
asked to indicate the signal+noise interval and provided with trial-by-trial feedback (correct/
incorrect). After this preliminary phase, we adjusted noise levels individually to target optimal
threshold regimes for the deployment of reverse correlation [55] (S1 Fig). Percent correct was
74%±6% (increment detection, 5.5k±2.8k trials per listener) and 76%±7% (decrement detec-
tion, 3.6k±3.3k trials per listener). We successfully minimized response bias across listeners
(S1B Fig); this is particularly important when attempting nonlinear system identification to
avoid bias-induced modulations within nonlinear kernels: in the presence of bias, 2nd order
kernels (see below for detailed description/definition) may contain modulations that do not
reflect the structure of the perceptual machinery preceding the binary behavioural decision,
but are instead produced by the nonlinear nature of the conversion from decision variable to
binary output which, in general, is not relevant for characterizing the perceptual machinery
itself as it is protocol-specific [51] (i.e. it depends on the arbitrary way in which listeners are
asked to express their percept, whether via binary choice (‘yes’/‘no’, ‘present’/‘absent’) or rating
scale, for example). Internal noise was within the expected range for human psychophysics
[56] (S1C Fig), indicating that listeners adopted a robust task strategy, as also evidenced by the
relatively high absolute efficiency (within the normal range for detection [57] and much higher
than observed for other auditory tasks [58], see S1D Fig). All aspects of performance metric
analysis indicate that 1) listeners performed the above-detailed tasks in a stable and efficient
manner, with no discernible difference in overall performance metrics between increment and
decrement experiments (data points fall around diagonal unity line in S1 Fig); 2) our protocols
successfully established optimal conditions for the application of behavioural reverse correla-
tion [49, 51, 56].

LED/MFBmodels recast as LNL cascades
The modulation filtering models are referred to as LED/MFB models. They are normally
implemented as illustrated in Fig 2. For the purpose of examining how these models relate to
our protocols, we treat the incoming stimulus as defined in AM space (i.e. as a 9-element vector
where individual entries indicate the amplitude of each segment) because this is the stimulus
subspace within which input noise was applied (see Fig 1); in other words, cochlear filtering
(top in Fig 2) is reduced by our stimulus generation protocols, because noise is applied not to
the fine structure of the stimulus waveform but to its AM profile. The LED involves application
of a low-pass filter [6] to the (modulation) envelope, while the MFB applies primarily band-
pass filtering [16]. This front-end stage is illustrated in Fig 2A and 2B for LED and MFB respec-
tively. With reference to the 9-element input vector where each entry refers to a different time
point, this filtering stage consists of convolution between this input vector and a temporal
impulse response L1. We represent the filter frequency characteristics in Fig 2 (blue) because
they are easier to interpret as lowpass/bandpass, but our L1 estimates are initially recovered as
temporal impulse responses (Fig 3B) because they are obtained via direct reverse-correlation of
the input stimulus (defined across time). The output from the L1 layer (which is itself a func-
tion of time) is then passed onto a decision stage that generates a psychophysical response (red
rectangle in Fig 2). The details of how this stage operates are still unclear [15, 21]. We can
describe the sequence of operations carried out by LED/MFB models using the same general
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cascade, as illustrated in Fig 2C. In this formulation, the LED/MFB filters correspond to differ-
ent characteristics for the first filtering stage L1. Subsequent decision stages are approximated
by a combined nonlinear-linear operation (red outlines in Fig 2C). For example, if read-out
involves energy extraction from the temporal output returned by L1, N corresponds to squaring
and L2 to sum over time. Similar approximations can be adopted for root-mean-square and
MAX rules [51, 58]. The two filters L1 and L2 are referred to as the cascade filters. Our goal is to
estimate their structure via the psychophysical kernels we can measure from data (see below);
this is achieved by exploiting a set of analytical tools that establish important connections
between cascade filters and psychophysical kernels [59].

Fig 2. Models of AM processing in the auditory system. All such models consist of a cochlear filtering and AM
envelope extraction stage (top), followed by one of two competing formulations: (A) a linear lowpass filter that
smooths the AM envelope, better known as the linear envelope detector (LED) model; or (B) a modulation
frequency bank (MFB) model that bandpass filters the AM rates into different channels. Both models feed into a
decisional stage (red). (C) They can be reformulated as a cascade of linear-nonlinear-linear (L1NL2) stages, with
the additional combined nonlinear-linear (NL2) operation accommodating different decisional rules, e.g. squaring
followed by sum in the case of energy-based rules. When formulated as such, the two standard models in (A-B)
are primarily distinguished by the nature of their L1 modules (blue): lowpass in one and bank of bandpass filters in
the other. (D) Our cumulative empirical estimates of L1 and L2 support MFB characteristics (blue trace in D is
compatible with blue traces in B, not A).

doi:10.1371/journal.pcbi.1005019.g002

Dynamic Reweighting of Auditory Modulation Filters

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005019 July 11, 2016 6 / 23



Derivation of psychophysical kernels
Psychophysical kernels are used as compact descriptors of stimulus properties that impact lis-
teners’ decisions in simple detection/discrimination tasks [51, 60]. The most effective
approach to an intuitive understanding of the 1st order kernel is to think of the underlying
perceptual process as a matched template that assigns a set of weights to different elements of
the stimulus, sums across all elements, and finally converts this weighted sum into a binary
decision of the kind ‘I saw the target’ or ‘I did not see it’ [49, 61]. For this model, the psycho-
physical 1st order kernel (computed as described below) is an image of the template [49, 60]:
it details the perceptual impact associated with different portions of the auditory waveform. It
also does not matter whether the kernel is computed from noise modulations associated with
the target or not: in both cases, it will reflect the template associated with the model outlined
above, if this model provides an adequate account of the perceptual process [49, 60]. There are
many conditions, however, when the 1st order kernel does not retain the intuitively transpar-
ent interpretation proposed above, e.g. in the presence of a nonlinear transformation between
the stimulus and the response such as a dependence on the power or correlational structure of
the stimulus [62, 63]. In order to extract useful information about the underlying process, it
then becomes necessary to study higher-order descriptors such as the 2nd or 3rd order kernels
[64], requiring more data and elaborate models. For example, the 2nd order kernel is useful if
we suspect that the perceptual process assigns a set of weights to all possible pairwise interac-
tions between different elements of the stimulus, e.g. between the amplitudes of the first and
the second segments of the auditory waveform, or between the amplitudes of the first and
third segments, and so on. These interaction terms would provide additional information
about the stimulus properties that affect listeners’ choices beyond the description afforded by
the 1st order kernels [51, 59, 64]. To compute 1st and 2nd order kernels, we denote the AM
noise modulation applied on the target-present (q = 1) or target-absent (q = 0) interval of a
trial to which listeners responded correctly (r = 1) or incorrectly (r = 0) by the 9-element vec-
tor n[q,r]. The first-order target-present psychophysical kernels (i.e. those obtained only from

noise trials containing the target) were computed as p½1�
1 ¼ avgðn½1;1�Þ �avgðn½1;0�Þ where

avg(.) is used to indicate average across trials of the specified type [49]; the target-absent

Fig 3. Measured kernels and associated system identification estimates of L1. Target-present/target-
absent (black/orange) first-order kernels for increment detection are plotted in A (shaded regions show ±1
SEM). B plots first row from second-order kernel (or equivalently column, see S2C–S2E Fig); inset (orange)
shows same from target-absent data. The black trace in A is an estimate of the autocorrelation of L1 [51],
while the trace in B is an (independent) estimate of L1 itself [59, 64]. To confirm this, we plot the
autocorrelation of B in the inset of A: it matches the black trace shown in the main panel of A (see Materials
and Methods for details).

doi:10.1371/journal.pcbi.1005019.g003
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kernels were p½0�
1 ¼ avgðn½0;0�Þ �avgðn½0;1�Þ. The second-order psychophysical kernels were

similarly computed as p2 = cov(n[1,1]) + cov(n[0,0]) − cov(n[1,0]) − cov(n[0,1]) where cov(.)
indicates covariance across trials. Please see [51, 60] for further details of these methods.

L1/L2 estimates via cascade characterization
Cascade filters and psychophysical kernels are different classes of objects. Cascade filters are fil-
tering components of a hypothesized cascade model; for the L1NL2 cascade described previ-
ously, they cannot be estimated directly from data via simple rules. They can, however, be
estimated indirectly via the psychophysical kernels. Psychophysical kernels are data descriptors
computed directly from the raw data using simple rules (see above); in this sense, they are not
dissimilar from simply computing a summary statistic (e.g. mean or median) from a dataset.
Their estimation is robust and does not depend on any assumed underlying model. If a model
is assumed, the kernels can then be used to characterize specific components of the model. For
example, the LNmodel is widely adopted for this type of application [49]; in its psychophysical
variant, this model reduces to template matching for the L stage [51], i.e. inner product
between the input stimulus and the L template [65–67]. Under this model, the first-order psy-
chophysical kernel returns a scaled image of the template L [60], allowing for direct transpar-
ent estimation of the linear filtering stage.

For the purpose of our study the LNmodel is inapplicable as it predicts [49, 51, 58, 68, 69]
that perceptual kernels derived from noise modulations associated with signal+noise stimuli
(‘target-present’) must match those derived from noise-only stimuli (‘target-absent’). This
property is a consequence of the linear nature of the L stage, combined with the classic reverse-
correlation result that the static nonlinear N stage is bypassed by the kernel estimation proce-
dure [60, 70, 71]. The response of L to signal+noise is simply the sum of its response to signal
plus its response to noise, effectively decoupling the noise-driven response from that associated
with the signal. The filter perturbation associated with the noise element is therefore statisti-
cally analogous between signal+noise and noise-only stimuli, leading to equivalent kernel esti-
mates [68, 69]. This prediction is not born out by the results in S2A and S2B Fig which show
that target-absent and target-present first-order kernels respectively are markedly different
(compare not only the shape of the traces, but also the scaling of ordinate between S2A and
S2B Fig; see also [72] and S7A Fig). This finding is consistent with the expectation that the
underlying mechanism would more likely conform to cascade models including additional fil-
ters, e.g. the L1NL2 cascade in Fig 2C (see more below); because this cascade does not belong to
the LN family of models, it does not predict that target-present and target-absent 1st order ker-
nels should match but rather that (in general) they should differ [51], as we observe.

Under the L1NL2 cascade model, the connection between filter components (L1/L2) and

psychophysical kernels (p½1�
1 /p

½0�
1 /p2) is provided by the following three theoretical results (#1-2

pertaining to L1, #3 pertaining primarily to L2). Result #1: target-present first-order kernels
(Fig 3A) return an approximate image of L1 autocorrelation [51]; we can exploit this result to

study the characteristics of L1, with the cautionary note that the relationship between p½1�
1 and

L1 involves other terms besides L1 autocorrelation and that the relative contribution of these
terms depends on stimulus SNR [51]. Result #2: L1 can also be estimated from second-order
kernels by exploiting the established result that the first row (or column) of the second-order
kernel (black and red rectangles in S2C and S2D Fig, replotted as traces in Fig 3B) returns an
approximate image of L1 [51, 59, 64]. This is the approach typically adopted for solving L1NL2

cascades [59, 64]; we conform to this practice by relying primarily on these L1 estimates here.
We can cross-check the consistency of L1 estimates returned by these two approaches: if we
take the autocorrelation of the trace in Fig 3B and plot it in the inset to Fig 3A, it should
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resemble the trace in Fig 3A. This prediction is well realized by data (see also S2B and S2E Fig),
thus lending further support to the applicability of the associated analytical tools to the present
context.

We can also estimate L2 by relying on the additional result (#3) that target-absent first-
order psychophysical kernels (S2A Fig) return the cross-correlation between L1 and L2, as
detailed in [51, 73]. We can then deconvolve the L1 estimates (obtained as described above)
out of target-absent first-order kernels to obtain estimates for L2. The additional deconvolution
step involved in deriving L2 partly justifies the noisiness associated with the aggregate estimate
in Fig 2D (shading shows ±1 SEM; this is compounded by computing the power spectrum
from time-based filter estimates before combining them across listeners, who naturally dis-
played a significant degree of individual variability). Notice that all our conclusions are based
on quantitative analysis of individual listener data (Figs 4, 5B–5D and 5F); aggregate estimates
are shown for visualization purposes only.

In practice, L1/L2 estimates will be distorted images of the kernels associated with theoreti-
cal accounts of L1NL2 cascades due to analytical approximations [51, 73] and the highly non-
linear properties of AM extraction [16], but the qualitative nature of their filtering
characteristics (whether low-, high- or band-pass) is preserved in the presence of these distor-
tions (as we have verified via Monte Carlo simulations of full-scale models explicitly encom-
passing all stages from cochlear filtering to binary choice; see S5 Fig for a diagrammatic
representation of one such simulation).

Scalar metrics for quantitative evaluation of L1/L2 estimates
We computed the power spectrum w of each L1 and L2 estimate and gauged its band-pass char-
acteristics using four parameter-free metrics; because target-present kernels (Fig 3A) approxi-
mate L1 autocorrelation, the corresponding power spectrum was obtained via Fourier
transform [74]. The spectral centroid (Fig 4A) was f � ŵ where f is the vector of sampled spa-
tial frequencies and ŵ was obtained by normalizing w to sum 1. The ratio between spectral cen-
troid and SD of ŵ provides a surrogate index of band-pass characteristics for bell-shaped ŵ; the
transition value from low-pass to high-pass (marked by vertical dashed line in Fig 4B) corre-

sponds to a uniform spectrum, for which the centroid/SD ratio is
ffiffiffi
8

p
=2 given the sampling

rate used here. To establish a link with existing literature, in Fig 4B we plot this quantity in
units of Q, the mean/width ratio for a rectangular shape; the conversion is obtained by approxi-
mating an assumed Gaussian shape with a rectangle of equivalent full-width at half-height

(FWHH) [7], for which the conversion factor is FWHH ¼ SD� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logð2Þp

. AC/DC energy
log-ratio (Fig 4C) was log[w(f> 0)/w(0)] where w(0) is power at frequency 0 (DC) and
w(f> 0) is all remaining power in the spectrum. Spectral slope (Fig 4D) was the correlation
coefficient of w across f. The composite band-pass index in Fig 5D consisted of paired compar-
isons between ‘early’ and ‘late’ estimates of Q, AC/DC energy log-ratio and spectral slope;
because Q is always positive the comparison involved log-ratios, while AC/DC energy log-
ratios and spectral slopes (can be negative) were compared via subtraction.

Epoch definition and related analysis
Increment and decrement experiments were often run in alternate fashion across sessions
(although they were never mixed within the same session/day); for exposure-related analyses
(Fig 5), they were combined following sign inversion for noise modulations from decrement
experiments to align them with the increment data. We restricted our analysis to the smallest
number of trials collected by any listener (3.5k) to make the analysis comparable across listen-
ers (35k trials contributed to Fig 5). We split this initial period of data collection into ‘early’
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and ‘late’ epochs by assigning the first 1750 trials to the former and the second 1750 trials to
the latter. For the 10-epoch analysis (Fig 5E and 5F) we split the same period into 10 epochs of
350 trials each. Centroid drift (x axis in Fig 5F) is the correlation coefficient of centroid versus
logarithm of epoch number. We logged epoch number before computing correlation because
the semilogarithmic representation corresponded to an excellent linear fit of the aggregate data
in Fig 5E (see solid gray lines).

Coupling between noise DC fluctuations and trial-by-trial responses
We averaged noise amplitude (as specified by the 9-element vector n detailed above) and used
it as proxy for the noise-induced DC perturbation of each stimulus. We then took the differ-
ence in noise DC content between the two stimuli presented on each trial, and computed the
biserial correlation coefficient between this differential DC content and the binary response
returned by listeners (S4B Fig). We applied the above calculation only to the noise component
of each stimulus (without target signal) because, when the signal is included, DC content is
almost invariably greater for the stimulus containing the target signal; given that listeners per-
formed above chance (i.e. their response was correlated with target presence), it is trivial that
we should find a correlation (which we do find in all instances) between differential target-
driven DC content and behavioural response. We therefore focused on the behavioural compo-
nent of the response that was specifically driven by trial-to-trial random fluctuations of DC
content (i.e. those induced by the noise), rather than the expected correlation with target
presence.

Stimulus bandwidth characterization and correction for carrier-induced
AM deviations
We estimated stimulus task-relevant modulation for different centroid values by extracting the
AM content of signal+noise and noise-only stimulus waveforms via a bank of 1-octave AM fil-
ters centred at 2, 4, 8, 16 and 32 Hz, plus a lowpass filter with a cut-off at*1.5 Hz (approxi-
mating a DC-driven loudness estimator). Each simulation returned the difference between the
AM content of the two traces over 1000 trials, and the average of 100 simulations is plotted in
Fig 5E (orange shading; see [38] for related results). S5 Fig illustrates this procedure for 1 simu-
lation (see caption for details of individual panels).

Fig 4. The band-pass character of L1. The band-pass characteristics of the L1 filter, contrasted with the low-pass L2 read-out filter, are demonstrated by
the distribution of four filter parameters (centroid in A, Q in B, AC/DC energy log-ratio in C, spectral slope in D) applied to all L1/L2 estimates. Parameters
are gathered from across all experiments (increment/decrement detection) and listeners. Vertical dashed lines in panels (B,C,D) mark transition from low-
pass to high-pass for each given parameter (see Materials and Methods for details).

doi:10.1371/journal.pcbi.1005019.g004

Dynamic Reweighting of Auditory Modulation Filters

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005019 July 11, 2016 10 / 23



We also wished to verify that the slight amplitude deviations introduced by the randomly
generated carrier (which was refreshed from block to block, see above) did not affect our calcu-
lations based on the notional AM perturbations specified before application of the carrier to
generate the stimulus waveform. To this end, we applied the following energy-based recalibra-
tion to the stimulus samples in our dataset: each waveform as it was delivered to the listener
was split into 9 segments, and RMS (root-mean-square) was computed from each segment to
obtain a proxy AM vector equivalent to the 9-element vector specified by our amplitude modu-
lation protocol. We then applied the same kernel estimation procedures used with the pre-
specified noise samples to these RMS-corrected samples. The resulting kernel estimates are
plotted in S6 Fig, where it can be seen that they demonstrate the same characteristics as
obtained before RMS recalibration.

Fig 5. Front-end filter (L1) shifts from low-pass to band-pass characteristics with exposure. (A) L1

estimates as in Fig 3B, separately for ‘early’ (green) and ‘late’ (black) phases of the data collection epochs
(see Materials and Methods). Inset curves show the corresponding low-pass (early) and band-pass (late)
power spectra of the two L1 estimates. (B) Quantifying the shift from low-pass to band-pass shapes of the L1
filter. The spectral centroid (y axis) is plotted against the Q estimates using the same symbols as in Fig 4.
Ovals are aligned with best-fit line, with radii matched to SD’s for data projected parallel and orthogonal to
line. (C) Distribution of late/early log-ratios for centroid values. (D) Distribution of late/early comparisons for all
three band-pass metrics (Q, AC/DC energy log-ratio, spectral slope). (E) Gradual change in the spectral
centroids in 10 successive epochs during the experiments (rather than just early/late); orange shading
reflects task-relevant stimulus modulations across centroid values in the bandpass region (see Materials and
Methods and S5I Fig for a full plot of these modulations spanning the low frequency region). Solid line shows
semi-log linear fit (thin lines plot boundaries ±1 SEM around fit parameters). Associated correlation coefficient
(centroid drift) is plotted separately for each subject in (F). Error bars/margins plot ±1 SEM in (A-B, E); ±95%
confidence intervals in (F).

doi:10.1371/journal.pcbi.1005019.g005
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Results

Cascade approximation of auditory modulation filter models
Data from reverse correlation experiments are almost invariably interpreted with relation to a
cascade that only incorporates one linear filter L1 applied via template-matching, followed by a
threshold conversion to binary decision [49]. However, as discussed in Materials and Methods,
this linear-nonlinear (LN) class of models is inadequate for our dataset (we return to this point
in Discussion). Instead, we adopt the more general and highly successful linear-nonlinear-lin-
ear (L1NL2) cascade [64] which, in its most general formulation, serves as a functional approxi-
mator of wide applicability [75, 76] (notice that the L1 linear stage in the L1NL2 cascade
involves convolution, not template matching; see Materials and Methods for further details).
Qualitative inspection of the second-order kernels associated with the experiments described
here appears consistent with this class of models [51, 64] (as discussed in Materials and Meth-
ods and demonstrated in S2C and S2D Fig).

Both LED and MFB can be cast in the form of L1NL2 cascades as illustrated in Fig 2. The
only difference between the two models lies in the characteristics of the L1 stage (blue in Fig 2):
low-pass for LED [6] (Fig 2A), primarily band-pass for MFB [16] (Fig 2B). Subsequent stages
depend on relatively arbitrary choices of read-out rules [21], but in general they can all be
approximated by the combination of a static nonlinearity (N) and a subsequent linear stage
(L2). Established techniques in nonlinear system identification [59, 64], combined with idio-
syncratic features of their psychophysical variants [51], can be exploited to derive estimates for
both L1 and L2 from first-order and second-order psychophysical kernels like those shown in
Figs 3 and S2 (see Materials and Methods for a more detailed description of the connection
between model components L1/L2 and psychophysical kernels).

The band-pass nature of AM filtering
Within the framework outlined above, L1 and L2 can be thought of as ‘front-end’ and ‘read-
out’ filters. L1 is the component of primary interest for this study, as it supports the distinction
between LED and MFB as being associated with low-pass versus band-pass characteristics
respectively (see next section for discussion of recent variants of the MFB model incorporating
a lowpass filter [35]). Estimates of this filter are depicted in Fig 3A and 3B (the black trace in A
is an estimate of the filter autocorrelation, see Materials and Methods). They show that L1 pres-
ents band-pass characteristics with Q*1 centred around 8 Hz (thus favouring the MFB model
overall). This band-pass property is not an artefactual distortion induced by the target signal,
because it is preserved when estimates are obtained from target-absent noise modulations
alone (inset to Fig 3B). As we demonstrate in later sections of this study, it is also an evolving
characteristic that may not be present at all stages of stimulus exposure.

We quantify this band-pass finding using four different metrics (Fig 4; see Materials and
Methods). In all cases, L1 estimate distributions (solid histograms in Fig 4B–4D) fall within the
highpass/band-pass range, while L2 estimate distributions (open histograms) fall within the
low-pass range (the latter result points to a late temporal integration window of 50–100 ms
consistent with independent estimates from previous studies [21]). More specifically, spectral
centroids (Fig 4A) for L1 are larger than for L2 (p<10−5, unpaired two-tailed Wilcoxon test); Q
values (Fig 4B) for L1 (but not L2) are significantly larger (p<10−5, two-tailed Wilcoxon test)
than expected for a uniform spectrum (indicated by dashed lines in Fig 4B); the AC/DC energy
ratio (Fig 4C) is larger than 0 (p<10−5) for L1 (indicative of band-pass/highpass characteristics)
and smaller than 0 for L2 (p<0.05); the spectral slope (Fig 4D) is positive for L1 (p<10−4) but
negative for L2 (p<0.01).
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It is also noteworthy that results were comparable between datasets from increment detec-
tion and decrement detection (y axis): there was no statistically significant difference (at
p>0.05) for any metric and for either L1 or L2 (data points scatter around solid unity lines in
S3 Fig). Such convergence of independent datasets indirectly validates our estimation proce-
dure and suggests that increments and decrements may be processed by the same perceptual
mechanism (as also indicated by the similarity in performance metrics, see S1 Fig).

The overall conclusion from the above analyses is that the L1 filter is band-pass; therefore,
AM processing resembles the characteristics of the MFB more than the LED model. This con-
clusion is not the product of fitting either model to the data: it is based on non-parametric
characterization of the front-end filter associated with a general framework cascade that
encompasses both models (Fig 2).

Exposure-mediated retuning of AM filters
All estimates described above were obtained by pooling trials across the entire data collection
period undertaken by each listener, spanning several sessions on different days. The character-
istics of the perceptual process may have undergone substantial modifications over this
extended period, particularly considering that listeners received trial-by-trial feedback and
were therefore encouraged to optimize their strategy. To investigate this possibility we defined
early versus late epochs for data collection (see Materials and Methods for definition). The L1

estimates associated with the two epochs differed: only the ‘late’ estimate (black in Fig 5A)
exhibited band-pass characteristics. In contrast, the ‘early’ estimate (green in Fig 5A) was closer
to low-pass (see also AM frequency plots within inset). Similar exposure-mediated changes in
kernel structure have been previously reported in the vision literature [31, 32]; Fig 5 offers the
first demonstration for auditory processing.

The above result is supported by metric analysis of individual listener data: Q estimates
(x axis in Fig 5B) are significantly larger (at p<0.01) than the lowpass/highpass cut-off point
(orange vertical dashed line) for the late epoch (black), but not for the early epoch (green). We
further probed this result with paired data analysis by computing a composite shift index for
band-pass characteristics from early to late in each condition and each listener (see Materials
and Methods); the resulting distribution (orange in Fig 5D) was significantly shifted away from
0 (p<10−4) in the direction of greater band-pass for the late epoch. This shift in band-pass
value was accompanied by a significant shift in filter centroid (Fig 5C).

Although more elaborate interpretations are possible, a parsimonious view of our measure-
ments suggests that the shift involved an adjustment of the same underlying filter population,
rather than ad-hoc neural assembly of a new filter bank: the ‘late’ dataset overlaps with the
‘early’ dataset in Q-centroid space, only restricted to a smaller region (compare black and
green ovals in Fig 5B). When we compare the Q/centroid ranges spanned by the two epochs,
we find that the lower percentile boundary (5%) shifts from 0.27 (early) to 0.44 (late) for Q and
2.7 to 5.1 for centroid, but the higher percentile boundary (95%) remains virtually unchanged
at 1.5 (Q) and 10 Hz (centroid). A different but equivalent way of conceptualizing this result is
to describe the early-late shift as reflecting differential weighting of two discrimination strate-
gies: one relying on loudness, the other on the spectral shape of the modulation frequencies
(temporal profile), both driven by valid cues for performing the task (see below for further dis-
cussion of this point). In the early phase, the two strategies would coexist and support discrimi-
nation to a roughly equal extent; in the late phase, the temporal profile strategy would play a
more prominent role.

The above interpretation is consistent with an additional analysis where we estimated cou-
pling between listeners’ choices and the differential DC content (proxy for loudness) of the
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noise samples presented on those same trials (see Materials and Methods). In the early phase,
we found that correlation values across listeners were significantly different than 0 (data points
in S4B Fig fall to the right of the vertical dashed line at p<0.02), indicating that the behavioural
choices made by listeners were at least partly driven by stimulus loudness. In the late phase,
correlation values did not demonstrate a significant shift away from 0 (data points in S4B Fig
scatter around the horizontal dashed line at p<0.23), indicating that loudness did not play a
significant role in driving behaviour during later phases of data collection.

The filter bank proposed by recent versions of the MFB model [35], encompassing a lowpass
filter in the very low modulation range and bandpass filters at higher modulation rates, could
accommodate our results when combined with appropriate weighting profiles. In this sense,
our data provide support for a mixed lowpass/bandpass version of the MFB model combined
with a flexible read-out stage that may undergo internally driven retuning. The lowpass filter
recovered by our protocols should not be confounded with the processing stage preceding the
filterbank in early formulations of the MFB model [39]; this stage does consist of a lowpass fil-
ter, but with a much higher cut-off frequency of 150 Hz. The lowpass filter of interest for the
present discussion is therefore best viewed as a subcomponent of the filter-bank itself operating
in the very low frequency range, rather than a separate earlier stage extending to the high fre-
quency range.

To gain better insight into the temporal evolution of the exposure-mediated effects, we
obtained centroid estimates across 10 different epochs of data collection. Centroid estimates
drifted exponentially towards higher values (Fig 5E) matching closely the estimated modula-
tion content of the stimulus (indicated by orange shading, see Materials and Methods and S5
Fig), and this effect was surprisingly robust across listeners: even though drift (see Materials
and Methods for definition) returned a noisy measurement for individual listeners (see 95%
confidence intervals in Fig 5F), it was consistently positive (symbols fall to the right of vertical
line in Fig 5F) so that the overall trend across listeners was highly significant (p<0.005).

The above-detailed modifications of filter structure were associated with only mild improve-
ments of absolute efficiency in some listeners (S4A Fig). This apparent decoupling between fil-
ter estimates and performance metrics is a well-documented finding in relation to various
perceptual phenomena [77–79] including learning [33]. Direct coupling is theoretically
expected only for LN models [80] which are not applicable to our experiments as pointed out
earlier; therefore, the estimated filters cannot be transparently linked to discrimination perfor-
mance. Even if they were, there are at least two reasons why one may not expect to see perfor-
mance differences.

First, learning effects on AM discrimination are small and difficult to expose (often requir-
ing>100 listeners, see [81]). Second, successful discrimination in our task was supported by
both lowpass and bandpass stimulus power (see two peaks in S5I Fig); in this respect our proto-
col differs from the equally valid ones adopted by previous studies (e.g. [82]) with the specific
goal of excluding loudness cues (see Materials and Methods for clarifications as to why we
deliberately avoided a stimulus design that would invalidate loudness cues). Because filter
structure shifted between these two equivalent sources of task-related information (see above),
discrimination performance may well remain unchanged even though supported by different
regions of AM frequency.

Prompted by the above results, we re-analyzed data from a prior published study [58] to
determine whether similar effects could be exposed for an independent dataset collected using
substantially different stimulus/task designs. At the time when this dataset was published, the
exposure-mediated effects reported in the present study were not known. We converted per-
ceptual filters from the previous study into a format comparable with the one adopted here and
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applied the same analysis; as demonstrated in S7 Fig, we obtained remarkably similar results,
including lowpass-to-bandpass retuning during the first*4K trials.

Discussion
This study represents the first targeted application of psychophysical reverse correlation to AM
processing. Although related tools have been applied successfully in auditory neuroscience [83]
and psychoacoustics (see [84] and [85] for the case of spectral processing and [48] for an appli-
cation to a loudness illusion), they have not addressed the specific case of modulation percep-
tion [86], possibly due to multiple challenges associated with this question. First, there is the
critical issue of which stimulus dimension should be perturbed by the noisy process in order to
provide meaningful and feasible leverage for tapping into the mechanisms responsible for ana-
lyzing AM signals. Adding acoustic white-noise is inappropriate, partly because the envelope
fluctuations it induces are difficult to control and exercise adequately, and partly because the
dimensionality of the space needing characterization is impractically large to measure [86].
Second, there is the question of whether the analytical toolkit associated with reverse correla-
tion is sufficiently flexible to accommodate both LED and MFB: in the vast majority of its
applications, reverse correlation is tightly coupled with the assumption of the linear-nonlinear
(LN) cascade [49, 87]. Neither LED nor MFB can be correctly approximated by this model
(and our data fail to comply with its basic prediction that target-present first-order kernels
must match corresponding target-absent estimates, compare black versus orange traces in Fig
3A), requiring more elaborate analytical tools.

To overcome these challenges, we exploited techniques from nonlinear system identification
analysis [59] where the coupling between input noise and output response is used not only to
compute linear descriptors of the sensory process [55, 85, 87], but also nonlinear (second-
order) descriptors that afford the opportunity to characterize more complex cascades than LN
[64]. In particular, these additional tools can effectively constrain linear-nonlinear-linear
(LNL) cascades [51] to which both LED and MFB likely conform when formulated with refer-
ence to the stimulus dimension perturbed in the experiments described here (Fig 2). By com-
bining these system identification tools with AM-tailored stimulus perturbations, we gained
sufficient insight into the perceptual process to constrain its properties via data-driven charac-
terization. To appreciate the significance of the analysis adopted here, it is instructive to con-
sider first-order filter estimates from target-absent noise modulations alone (orange trace in
Fig 3A). This measurement is similar to the decision weight profiles reported by loudness stud-
ies [44–48], including evidence for a primacy effect (larger weights during early phase of the
stimulus [47], see orange trace in Fig 3A), and is often regarded as a more appropriate descrip-
tion of the filtering process [88, 89]; more importantly, these measurements (from previous
studies as well as our own) present lowpass characteristics, with no evidence of bandpass AM
filtering. Signatures of bandpass processing are exposed specifically by second-order kernels
(Fig 3B). Indeed, when the dataset from [48] is re-analyzed using the nonlinear tools described
here, bandpass filtering becomes evident at the level of second-order kernels in the presence of
decisively lowpass first-order kernels [90] (see [91, 92] for related examples from the vision
literature).

A further enabling factor in the experiments reported here is the stability of task rules and
impenetrability of cognitive introspection. Specifically, listeners in these experiments carried
out the same task throughout data collection and it is extremely unlikely that from one trial to
the next they could explicitly monitor all small deviations introduced by the noisy process and
introspect cognitively on those to reach a decision. They therefore operated under relatively
stable conditions (except for potential intrinsic changes in adaptive state), allowing us to
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confidently treat our dataset as reflecting the properties of the same perceptual machinery
throughout [31, 32] (even though specific parameters within that machinery may change with
exposure). These advantages carry the cost of unusually large data mass (for this study we col-
lected*100k trials), restricting our investigation to only a limited ecologically relevant portion
(3–12 Hz) of the system’s operating regime, however they allow us to exclude stimulus-driven
alterations. More specifically, previous literature has shown that auditory perceptual templates
depend not only on signal spectrotemporal structure [26] but also on signal intensity [27] (see
[92–94] for related results in the vision literature). Furthermore, strategy shifts not dissimilar
from those we report here can be triggered by simple stimulus modifications such as signal-
masker asynchrony [28]. It is therefore critical to use stable task rules and a statistically invari-
ant stimulus throughout (as we have done in this study) if one is to ascribe spontaneous filter
changes to the perceptual system alone.

Over the past decades, evidence in favour of LED/MFB models [7, 20] has been interpreted
in the light of fitting procedures around specified computational implementations and often
requiring ad-hoc adjustments for different datasets, weakening the associated conclusions
regarding the applicability of one model over the other. Our approach did not favour any spe-
cific model, nor did it involve explicit implementation of those or other computational
schemes. At the same time, it enabled model selection while retaining close proximity with
data structure. These methods uncovered a more complex picture than initially suggested by
the LED/MFB dichotomy. Although the low-pass/band-pass distinction retains its descriptive
power in relation to our dataset, the underlying mechanism displays dynamic adaptive proper-
ties that potentially depend on various factors, most notably learning-mediated plasticity [95–
99] (see also expectation effects on AM processing [29]). This raises the possibility that previ-
ous diverse interpretations of the results (with respect to lowpass versus bandpass filtering)
may in fact both provide adequate representations of the underlying process, albeit under dif-
ferent learning states [18]. For example, long-term release from adaptation of postulated band-
pass filters [18] may need to be re-interpreted in the context of exposure-mediated reweighting
across the filter bank, rather than evidence against low-level adaptation within the MFB (as
originally hypothesized in [18]). This interpretation may be verified/falsified using the tools
developed and validated in this study.

A further unresolved issue concerning the LED/MFB distinction pertains to the specific Q
value associated with AM filtering. It was originally hypothesized that the filterbank associated
with the MFB exhibits slightly different Q’s for low versus high modulation rates [16]: above
*10 Hz, filters would span a bandwidth that increased with center frequency; below*10 Hz,
bandwidth would remain roughly constant regardless of center frequency. Our dataset presents
sufficient variability of estimated central spectroid to span the 3–10 Hz range (y axis in Fig 5B),
allowing us to test the latter hypothesis directly. We find that the hypothesized trend is well
supported by data: if filter bandwidth is relatively independent of center frequency, the ratio
between center frequency and bandwidth (Q) should scale with center frequency; consistent
with this prediction, we measured a strong correlation between spectral centroid and Q for
both early (r = 0.89,p<10−7) and late (r = 0.9,p<10−6) epochs (see tilted ovals in Fig 5B). How-
ever, the specific values hypothesized for bandwidth (Q�2; [16]) are higher than suggested by
relevant studies (Q�1; [24, 25]) and by some of the values we measured in this study (Fig 4B).
Our results indicate that, even when restricted to comparable regions of AM rates, aggregate Q
values may span a 0.3–1.7 range depending on the degree of recalibration undergone by the
system via exposure/learning (see data scatter across x axis in Fig 5B), consistent with the latest
estimates [24, 25] but substantially lower than the values employed by recent modelling work
[35, 39].
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To what extent do our results depend on the stimulus parameters and task specifications
selected for this study? As explained earlier, we were constrained in our ability to test a wide
range of configurations, however we did perform measurements using increment as well as
decrement target signals. The spectral profile of task-relevant stimulus information is sub-
stantially different between these two configurations: in the increment case, the useful band-
pass region lies between 8 and 20 Hz (S5I Fig), while the decrement configuration mostly
targets the 4–8 Hz region (S5J Fig). As for the lowpass (loudness) cue, it required opposite
read-out rules for the two configurations (target signal is louder in the increment configura-
tion, and softer in the decrement configuration; see peaks of opposite signs in the lowpass
region of S5I and S5J Fig). Despite these differences in the stimulus, we observed no differ-
ence between increment and decrement estimates of bandpass tuning (S2 and S3 Figs), and
we found no correlation/relationship between the exposure-mediated effects (Fig 5E and 5F)
and the relative exposure to increment versus decrement signals. Furthermore, the very fact
that these characteristics (both centroid and Q values, Fig 5B–5D) changed with exposure in
the face of an unchanging stimulus indicates that they are not solely driven by stimulus speci-
fication. This is not to say that our estimates are completely decoupled from the chosen stim-
ulus/task parameters: by requiring observers to detect a specific signal, we are implicitly
prompting them to calibrate their available perceptual resources in relation to the assigned
task and signal [92, 94]; for example it is conceivable that, in extreme cases such as detection
of very narrow AM pulses with a broad modulation spectrum, the measured filters may
become broader reflecting stimulus characteristics [93]. However, beyond the inevitable
structure imposed by task instructions and signal specification on listeners’ selection of per-
ceptual resources, our measurements appear to reflect properties that are instrinsic to the
perceptual process and informative of its inherent characteristics. Finally, targeted re-analysis
of an earlier published dataset [58] exposed structure entirely consistent with the results
reported here (S7 Fig), providing strong validation of our findings: due to numerous design
differences between the two studies, it is not trivially expected that we should find similar
overall characteristics.

In summary, the experimental approach adopted in this study has enabled us to examine
outstanding issues in the AM processing literature from a different perspective, and clarify
important aspects of this phenomenon, enabled by a set of tools that has not been previously
applied with relation to this phenomenon. We have delineated the relationship between LED
and MFB models within the context of a prominent theoretical cascade framework [100], we
have refined and further constrained previous estimates of channel selectivity for processing
amplitude modulations, and we have demonstrated its spontaneous adaptive nature in the con-
text of active listening tasks (see also [31, 32]). Further research and additional characterization
will be necessary to establish the applicability of our findings across a wider range of tasks and
determine the exact nature and functional purpose of exposure-dependent adaptive processes
[101, 102].

Supporting Information
S1 Fig. Performance metrics are similar for detecting increments and decrements. (A) Sen-
sitivity is in the d0*1 range (unity is indicated by dashed lines). (B) Bias is not statistically dif-
ferent from 0 (indicated by dashed lines). (C) Internal noise is within expected range [56] (grey
shaded area). (D) Absolute efficiency is within expected range. Ovals are aligned with best-fit
line, with radii matched to 0.5× (thickest), 1× and 1.5× (thinnest) SD’s for data projected paral-
lel and orthogonal to line. Different symbol shapes refer to different listeners. Error bars plot
±1 SEM. There was no statistically significant difference between increment (x axis) and
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decrement data (y axis) for any of these metrics.
(EPS)

S2 Fig. Detailed overview of kernel measurements. (A,B) Target-absent and target-present
first-order kernels are plotted in A and B respectively (see Materials and Methods for detailed
description of how these kernels were computed), for both increment (black) and decrement
(red) detection tasks (shaded regions show ±1 SEM). Target-absent kernels differ markedly
from target-present kernels (among other features, notice different scaling of y axis between A
and B), ruling out the linear-nonlinear model typically assumed by reverse correlation studies.
Inset in (B) shows the autocorrelation of the kernels in E. (C,D) Second-order kernels for incre-
ment and decrement detection (plotted as upper/lower triangular matrix respectively). (E) First
row (or equivalently column) from second-order kernels (indicated by black/red rectangles in
C-D). Inset shows same measurements but only from target-absent second-order kernels.
(EPS)

S3 Fig. Expanded view of bandpass characteristics for front-end filter (L1) and read-out fil-
ter (L2). Panels (A-D) display estimates from increment detection on x axis against those from
decrement detection on y axis. Solid symbols refer to L1 (bigger symbols for estimates obtained
from first row/column of second-order kernels (S2E Fig) and smaller symbols for estimates
obtained from target-present first-order kernels (S2B Fig)). Open symbols refer to L2. Different
symbol shapes refer to different listeners. Error bars plot ±1 SEM. As for performance metrics
(S1 Fig), there was no statistically significant difference between increment (x axis) and decre-
ment data (y axis) for any of these estimates.
(EPS)

S4 Fig. (A) Absolute efficiency [61] was similar during early (x axis) and late phases. (B) Cou-
pling between noise-driven DC fluctuations and behavioural responses, however, was only
present during the early phase (see Materials and Methods and main text).
(EPS)

S5 Fig. Bandwidth characteristics of signal and noise. The stimulus waveform (A) is mapped
to its spectrotemporal representation (B) using standard cochlear parameters [103]. It is then
processed by a bank of modulation 1-octave filters with central frequency ranging from low-
pass to 64 Hz (C); the scalar output of each filter (plotted in D) is the mean/maximum (orange/
black) absolute value across the corresponding spectrogram (mean trace has been rescaled by
3× to span range comparable to maximum trace). This procedure is applied to both signal
+noise (A-D) and noise-only (E-H) stimuli (example shown for increment detection in A-I);
the difference between the filter-bank output from the two stimuli provides an indication of
the modulation frequency bands that supported above-chance discrimination (the region
around lowpass (lp) and 8–16 Hz for increment in I, and 4–8 Hz for decrement in J). Solid
lines in D,H-J show mean across 20 iterations of 5K trials each (±10 SD indicated by shaded
region).
(EPS)

S6 Fig. Fine temporal structure does not impact our results. As detailed in Materials and
Methods, a new carrier was generated at the beginning of each blok of data collection. This
additional source of randomness in the stimulus caused slight amplitude deviations from those
specified by the AM noise deliberately introduced and controlled by the experimenter. To ver-
ify that these deviations had no impact on our results, we reconstructed the amplitude content
of individual noise samples while taking into account the specific carrier waveform presented
on those specific trials (see Materials and Methods). In this figure, we reproduce the critical
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measurements supporting our conclusions (target-present first-order kernels (left column) and
L1 estimates from second-order kernels) before and after correcting for carrier-induced AM
deviations (black/red versus blue/yellow respectively). More specifically, A-B plot the quanti-
ties estimated in Fig 3A and 3B for increment detection; C-D plot the same for decrement
detection. Shaded regions show ±1 SEM. The overlap between corrected and uncorrected esti-
mates in A is such that the two traces (blue versus black) are barely distinguishable in the plot.
(EPS)

S7 Fig. Confirmation of lowpass-to-bandpass shift from post-hoc analysis of prior dataset.
We re-analyzed data from a previously published study [58] in light of the results obtained
here. More specifically, we converted spectrograms from reference [58] (defined across the
dimensions of both time and frequency) into vectors defined along time alone by extracting
values only at the target frequency, to bring them into coarse alignment with the perceptual fil-
ters used in the present study. Except for small differences in total duration and sampling rate
(7 samples spanning 280 ms in the prior study versus 9 samples spanning 300 ms in the present
study), results from the two studies are therefore comparable in data format (even though dif-
ferent stimuli (in particular target signals) and tasks were employed for the two studies). A is
plotted to the same conventions adopted in Fig 3A. B is plotted to the conventions adopted in
the inset to Fig 5A. To make the early/late analysis comparable to the analysis used in Fig 5, we
defined the ‘early’ phase as spanning the first 2000 trials (from trial 1 to 2000) and the ‘late’
phase as spanning the second 2000 trials (from trial 2001 to 4000) for each of the 8 observers
tested in the prior study (main two-tone condition). This analysis exposes structure in the pre-
viously published dataset consistent with the effects reported in the present study, further sup-
porting their validity and applicability to other stimuli/tasks.
(EPS)
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