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Abstract: During the last decade, extensive research has been carried out on the subject of low-cost
sensor platforms for air quality monitoring. A key aspect when deploying such systems is the quality
of the measured data. Calibration is especially important to improve the data quality of low-cost air
monitoring devices. The measured data quality must comply with regulations issued by national
or international authorities in order to be used for regulatory purposes. This work discusses the
challenges and methods suitable for calibrating a low-cost sensor platform developed by our group,
Airify, that has a unit cost five times less expensive than the state-of-the-art solutions (approximately
€1000). The evaluated platform can integrate a wide variety of sensors capable of measuring up
to 12 parameters, including the regulatory pollutants defined in the European Directive. In this
work, we developed new calibration models (multivariate linear regression and random forest)
and evaluated their effectiveness in meeting the data quality objective (DQO) for the following
parameters: carbon monoxide (CO), ozone (O3), and nitrogen dioxide (NO2). The experimental
results show that the proposed calibration managed an improvement of 12% for the CO and O3 gases
and a similar accuracy for the NO2 gas compared to similar state-of-the-art studies. The evaluated
parameters had different calibration accuracies due to the non-identical levels of gas concentration at
which the sensors were exposed during the model’s training phase. After the calibration algorithms
were applied to the evaluated platform, its performance met the DQO criteria despite the overall low
price level of the platform.

Keywords: air pollution sensors; air quality monitoring; data quality; electrochemical sensors;
low-cost sensors; sensor calibration

1. Introduction

Air pollution is a major concern that affects not only the environment but also the
health of individuals. Studies show that air pollution is responsible for many diseases,
such as pulmonary and cardiovascular diseases, and that these conditions are only observ-
able after a long exposure time [1]. Given its importance, the Environmental Department of
the European Union released a European Air Quality Directive on ambient air quality and
cleaner air for Europe [2] that sets the thresholds for environmental and health protection.
The directive also sets the data quality objectives (DQO) requirements that air quality
measurement data must meet after calibration. Low-cost sensor platforms, in order to
be effectively used as indicative measurements in the EU, must meet the minimum re-
quirements for expanded relative uncertainty with respect to reference monitoring stations
defined in the directive [2]. Today, most cities have municipally managed reference stations
to monitor air quality. Solutions relying solely on reference stations have an important
shortcoming in the context of large-scale usage by individuals, which is limited spatial
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representation of the measured pollutant concentrations. Additionally, the high unit price
of a reference station (€50–100.000) and the costs associated with its maintenance limit the
number of instalments, yielding low spatial coverage. This is especially the case in small
cities and less-developed economic regions.

All of these reasons, together with the rapid development in sensor technology, led re-
searchers to build and use low-cost sensor platforms that would enable better spatial
and temporal coverage [3]. Professional air monitoring stations typically measure pollu-
tant levels of: carbon monoxide (CO), nitrogen oxides (NO2 and NO), particulate matter
(PM10, PM2.5), ozone (O3), and environmental parameters (e.g., temperature and relative
humidity). However, the use of low-cost sensors for air quality measurement faces sev-
eral challenges, such as high uncertainty of the values, internal sensor errors, and poor
selectivity of the target pollutant [4].

Low-cost air quality sensors employ one or several of the following measurement
techniques: particulate matter sensors [5,6], electrochemical sensors [7–12], and metal-
oxide sensors [9,11,13]. Irrespective of their type, all low-cost sensors are plagued by
errors, yielding differences in measured data with respect to a high-quality reference.
As argued in [4], there are two main sources of errors: internal errors, which are related
to the sensor’s working principle, and external errors, which are caused by the working
conditions. The most common internal sensor errors are: dynamic detection boundaries,
non-linear response, and sensor drift. For external errors, the most representative is the low
selectivity of the target gas, which is influenced by the cross-sensitivity with the other gases.
Most of these errors can be mitigated using laboratory and colocation calibration methods.

In this study, we evaluated a low-cost air monitoring platform (Airify) measuring
a wide variety of air parameters (i.e., CO, NO2, NO, O3, SO2, CO2, PM10, PM2.5, PM1,
temperature, relative humidity, and atmospheric pressure), and we discuss the challenges
of its calibration. Our group designed the proposed platform after analysing current
solutions and developments in low-cost air quality monitoring devices. The sensors used
in our devices were evaluated by other studies [10,14], and the reported results showed
promising usability of them in a real-world scenario. The contribution of this work is the
development and validation of calibration models based on state-of-the-art multivariate
linear regression (MLR) models and random forest (RF) algorithms [5,8,14–16] such that
the low-cost sensor platform meets the DQO.

2. Data Correction and Calibration Methods

The topic of low-cost air quality sensor calibration and correction algorithms has
been the focus of scientists for more than a decade. New sensors emerging on the market,
such as metal-oxide [9] and electrochemical [10] sensors, or those using light-scattering
principles [5], offer new research opportunities. Recent works [3,15,17] target the collection
of real-time air quality data with the aim of improving the existing infrastructure of fixed
air quality monitoring stations in cities by improving temporal and spatial resolutions.

In order to make use of low-cost sensors, a couple of steps are required [7–10,14,15,17–20]:

1. design a small device using low-cost sensors;
2. calibrate the device in closed controlled chambers in a laboratory using known gas

concentrations;
3. assess the effectiveness of the calibration algorithm by placing the units outside in

colocation with a reference station;
4. compare the calibrated results with the reference results.

If the results are unsatisfactory with respect to DQO, the algorithm will be revised.
Note that not all sensors can be successfully calibrated to a high-enough degree of confi-
dence. Two important keys in choosing the candidate sensors for calibration are their levels
of detection (LoD) and their cross-sensitivity with other pollutants. The lower LoD should
be close enough to 0 or to the lower known atmospheric levels of the target pollutant,
whereas the cross-sensitivity with other pollutants should be minimal or non-existent.
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A typical method to assess the reliability and accuracy of low-cost sensors is to colocate
them in the field against an official air quality station. Laboratory calibration is limited
to reducing the dynamic boundaries of the internal errors (i.e., offset and gain errors [4]).
The colocation might help mitigate the cross-sensitivity and the selectivity errors if the
reference station is representative for the final place where the sensors will be deployed.
After enough air quality data are collected, models can be developed to correct the data
and calibrate devices in order to meet the regulatory standards.

The state-of-the-art calibration methods are summarized in Table 1. The table shows
the state-of-the-art results, the underlying equation, and the predictors used for each gas.
Two main categories of methods were identified: MLR with different regressions such
as simple [7], multivariate [9,11,18], orthogonal [9,11,14,21], polynomial, and exponential
curve fitting [16]. Other methods such as Gaussian processes [8,15], RF [21], and hybrid
RF [8] algorithms are less commonly used.

Table 1. Overview of sensor calibration methods.

Calibration
Method Gas Reference Papers Results

r2 Equation Predictors

Linear regression

CO [7,8,10,11,14,18,21,22] 0.85 [8] CO = α1sCO + α2sCO
2 + α3T + α4T2 + α5RH +

α6RH2 + α7sCOT + α8sCORH + α9TRH + β1 [8]
CO, T, RH

NO2 [7,8,11,14–16,18,21] 0.82 [16]
NO2 = β0 + β1

√sNO2 + β3log(sO3 ) + β4RH2 +
β5T + β6

√
WS + β7factor(WD) [16]

NO2, O3, RH, T,
wind speed

(WS), and wind
direction (WD)

O3 [7,8,11,14,15,18,21] 0.83 [8] O3 = α0 + α1sO3 + α2sNO2 + α3T + α4RH [8] O3, NO2, T, RH

Random forest
CO [8,21] 0.77 [8] Hybrid RF + LR on the edges [8] -

Trees and hybrid
NO2 [8,21] 0.84 [8] Random forest [21] -

O3 [8,21] 0.81 [8] Hybrid RF + LR on the edges [8] -

Next, we briefly discuss the state-of-the-art calibration for each gas. The MLR cal-
ibration methods are the simplest models used to calibrate gas sensors, yielding good
results [5,8,11,16]. For the MLR approach, each gas has its own equation. In this regard,
for the CO and O3 gases, the best equations are those reported in [8]. According to [7,10],
environmental changes are best accounted for using temperature and relative humidity
measurements. O3 and NO2 gases have high cross-sensitivity, making the presence of
sensors for both parameters mandatory [4].

For the NO2 gas, the information of the wind-speed and wind-direction meteoro-
logical data significantly improved the sensor response [16]. The results from [16] also
suggest that there is a trade-off between the number of model parameters and the result
accuracy. Note that meteorological data are generally not used as covariates for NO2
calibration [15,23]. We include this information in Table 1 since the model that reported the
best performance according to state-of-the-art studies considered them.

In the last couple of years, many studies have tried to find nonparametric models
in order to correct data from low-cost sensors [8,21]. This is prompted by the fact that
sensor calibration is highly dependent on location. Therefore, once the devices are moved
to another place, calibration is required [22]. The results suggest that the RF models work
better for the NO2 and O3 gases, being the only algorithm that can correct both parameters
with a factor of determination r2 > 0.7 [8].

The RF algorithms work better inside the training boundaries of the values but perform
poorly once they encounter a value greater or smaller than what the algorithm has seen in
the training dataset. To mitigate this shortcoming, the authors of [8] proposed a hybrid
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algorithm using the standard RF model when the new value is within 10% of the limits of
the training dataset and an MLR model if the values are close to or outside the limits of the
training dataset. Their results show that the hybrid RF approach performs better for CO
and O3 than the classic RF model.

3. Implementation of Calibration Models

The calibration methods proposed in this work were designed for the air quality
measurement device platform described in [24], under the premise that low-level data
acquisition and filtering is available [25].

3.1. Devices and Platform Description

The air monitoring device, described in Figure 1, is equipped with electrochemical
Alphasense (UK) A4-type sensors (CO, NO2, NO, O3, and SO2), which are the smallest
and cheapest 4-electrode sensors designed for ppb levels; a non-disruptive infrared (NDIR)
pyroelectric sensor for CO2; and a light-scattering sensor from PlanTower for PMs [25],
which are placed in a closed case. The case is equipped with a fan and holes to allow good
air flow over the sensors.

Figure 1. Airify air monitoring device: (a) the device without the case is made of two stacked boards:
one for the sensors and another one used for processing purposes. The particle sensor is attached to
the stack via a cable to reduce possible interference with its own fan. In case of a power shortage,
the battery allows 4 h of autonomy. (b) The sensor board is placed at the bottom. A fan placed on
the upper wall ensures that the air flows towards the sensors. The particle sensor has its own fan
and the in/out openings are separated by the case to reduce the chance for a tunnel between them.
(c) The processing board is placed on top. The two boards create a tunnel for air to flow over the
sensors. (d) The Airify inside a case. The case has openings lengthways to create the air tunnel and
also on the side for the particle sensor. On the side, the case has the power/indicator button and the
charging port.
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Compared to the state-of-the-art, this platform uses a diverse selection of the lowest-
cost sensors. This diversity creates incentives for developing better calibration models,
while at the same time limiting the cost per unit to approximately €1000. An overview
of the device sensors used, and those from related work, is presented in Table 2. It is
worth emphasizing that some research studies use sensor clusters [7,8,10], whereas others
are limited to only a subset of sensors due to the manufacturer limitations (devices are
off-the-shelf), or due to the rather high unit cost [5,9,16,18]. The majority of projects rely on
electrochemical sensors from Alphasense B Series or Citytech. These sensors are expensive
compared to those used in this work. Typically, the higher the price, the better the sensor
sensitivity. The price and the sensor sensitivity are correlated. Thus, they can detect low
ppb levels of a target gas, making the signal acquisition circuit less prone to noise.

Table 2. Comparison of the device under test and literature devices.

Sensor
Type

N. Castell
et al. [7]

C. Malings
et al. [8]

S. DeVito
et al. [18]

L. Spinelle
et al. [9,11]

V. van Zoest
et al. [16]

O. A. M.
Popoola
et al. [10]

M. H. Bergin
et al. [5]

Current
Work

CO Alphasense
CO-B4

Alphasense
CO-B4 - MICS-4514,

TGS-5042 - CO-AF,
CO-B4 - Alphasense

CO-A4

CO2 - NDIR SST
Sensing -

Gascard
NG,

ELT Sen-
sors

S-100

- - - Alphasense
NDIR

NO Alphasense
NO-B4

Alphasense
NO-B4

Alphasense
NO-B4

Citytech
NO-3E100 - NO-A1,

NO-B4 - Alphasense
NO-A4

NO2
Alphasense
NO2-B42F

Alphasense
NO2-B42F

Alphasense
NO2-B42F

Alphasense
NO2-B4,
Citytech

NO2-3E50,
MICS-2710

Citytech
Sensoric

NO2 3E50
ECN

NO2 A1 - Alphasense
NO2-A43F

O3
Alphasense
OX-B421

Alphasense
OX-B421

Alphasense
OX-B421

Alphasense
O3-B4,

Citytech
O3-3E1F

E2V MICS
2610 - - Alphasense

OX-A431

SO2 - Alphasense
SO2-B4 - - - Alphasense

SO2-B - Alphasense
SO2-A4

PM1 - - - - - - - PMSA003
PM2.5 AQMesh - - - - - PMS3003 PMSA003
PM10 AQMesh - - - - - PMS3003 PMSA003

Temperature Yes Yes Yes Yes Yes Yes Yes Yes
Relative

humidity Yes Yes Yes Yes Yes Yes Yes Yes

Sampling
time 15 min 15 min 1 min 1 h 10 min 5 s 1 min 3 min

In order to reduce this noise, we designed an in-house acquisition board made of
reliable circuitry that is capable of assessing any variance and noise introduced by other
electronics, such as wireless communication modules or fan start/stop periods [25].

3.2. Testing Environment

For the proposed calibration, we used five Airify units. Our devices were colocated
together with an air quality monitoring reference station in a calibration facility for the
duration of about one month (6 January 2021–2 February 2021) in the city of Petrosani
area. The station is located outside, and its purpose is to continuously measure the air
quality parameters for the city of Petrosani. The reference station uses sensors that are
periodically calibrated and certified by the authorities. The reference sensor types and
calibration certificate numbers are presented in Table 3.
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The group of Airify devices under test were placed in a box as depicted in Figure 2a.
To provide the same pollution gas to the devices, we inserted a hoe into the pipe used by the
reference station. The air was then pumped inside the box using a 6 L/min pump, as can
be observed in Figure 2b. Our units were equipped with new sensors for all parameters,
and this study is the first exposure of them to outside conditions.

The box used had some shortcomings: the temperature might be higher inside the
box, and it might lower the gas concentration sampled by the devices. These limitations
are a consequence of box-made materials and their properties of thermal insulation and
gas-absorbing capacity. The first shortcoming had a higher impact on our models because
temperature was one of our predictors and is especially important for electrochemical
sensors. Therefore, it is mandatory to use accurate temperature measurements during the
training period. We mitigated this problem by calibrating the temperature reported by
our devices using a simple linear regression between our measurements and the reference
ones. The results using this approach had a coefficient of determination r2 = 0.99, which
makes the calibrated value close enough to the value measured by the reference. These
calibrated values were then used in the proposed calibration models. The box’s gas-
absorbing property was taken into account by the method imposed to bring the gas around
the devices. Using the pump, we ensured a constant flow of air around the devices, while
the exhaust was carried out by leakage; thus, the capacity of the box to absorb pollutants
was limited.

Figure 2. Devices under test placed in the exposure box: (a) inside the box, we placed 5 of our units
with a power cord for each of them. (b) The box was closed, and the air was pumped inside the box
via a 6 L/min pump to ensure a constant air flow. The air was taken from the same pipe used by the
reference monitoring station.

Measurements were performed using the internal sampling rate of both Airify devices
and the reference station. The reference station had a sampling rate of 1 sample every
3 min, whereas our devices have a sampling rate of 1 sample per minute. Thus, the data
series needed synchronisation during post-processing. Given our platform response time,
the synchronisation choice was proven around 3 to 6 min.

In addition to this, we performed other post-processing computations in order to filter
out outliers and erroneous values from the data. The first step was done in accordance
with the lower and upper LoDs imposed by the reference station’s sensors. We removed
any data point that fell below the detection limit of the reference station from the dataset.
This led to the removal of a small percentage (1.5%) of NO2 data points. The lower LoD of
all the reference sensors can be seen in the last column of Table 3. It is important to note
that we did not remove any data that fell below the LoD of our device sensors. This is
justified by the fact that we aimed to see if a calibration model can overcome the LoD of
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low-cost sensors and provide useful information about the measured phenomena. The LoD
of our platform’s sensors are presented in Table 4. The results showed that the LoDs were
similar for CO but were 30 times less for NO2 and O3. The second step was to remove the
data points that were outside the equivalent of three times the standard deviation. We also
considered them as outliers, and we removed the recordings from both the reference and
the test data series.

Table 3. Reference station sensor certificates.

Name/Type Gas Series Lower Limit of Detection (ppb) Uncertainty

Analyzer CO model APMA 370 (certificate
4393/31.10.2019) CO MB733KF9 50 3%

Analyzer model Serinus 40 (certificate G184-2020/
23.09.2020/NO)

NO,
NO2

15-0619 0.4 14.5%

Analyzer O3 model APOA 370 (certificate
40-2020/31.01.2020) O3 TJRRSS70 0.5 2.5%

Table 4. Device under test lower limits of detection.

Manufacturer Gas Type Lower Limit Of Detection (ppb)

AlphaSense CO CO-A4 20
AlphaSense NO2 NO2-A43F 15
AlphaSense O3 OX-A431 15

The consequence of the short colocation period was the small value range reported by
the reference for the NO2 parameter. Therefore, we did a small simulation for about 1.5 h
at the end of the measurement period. For the last couple of colocation days, we used a
mixture of diluted exhaust gas from a diesel engine (Euro 1) to make sure that we obtained
CO and NO2 parameters above the LoD threshold. In this way, the sensors were exposed
to a high diversity of pollution levels, since, in the monitoring period, the NO2 values were
relatively low.

3.3. Calibration Models Description

Various calibration models have been used to test our devices and assess the effective-
ness of the platform after calibration. Our approach uses a combination of parametric MLR
models and RF non-parametric ones.

Linear regression models are the most simple and common approaches to calibrate
air quality monitoring data [8]. These models use a linear function that maps the input
features to an output value. Thus, we aimed to find a linear dependency between the
measured data of the device and the reference data. Using a similar approach, we also
implemented quadratic equations where we used powers of some input parameters such
as temperature and relative humidity. In this regard, we proposed Equations (1)–(6) to
calibrate the CO, NO2, and O3 data. Along with them, we also used the equations reported
in Table 1 (lines 1, 2, and 3), since they are the best state-of-the-art results. For the NO2
equation from Table 1 (line 2), we disregarded the wind direction and the wind speed
information for two reasons. First, our device platform does not support them for cost
reasons. The meteorological station information has a low spatial coverage resolution (i.e.,
city level instead of street level, as required in our case). Second, this information is related
to data prediction, rather than data calibration [23,26].

The models from Equations (2), (4), and (6) leveraged our array of sensors. We con-
structed the models using the Akaike information criterion (AIC) score [27] for each
measured parameter in order to take into account only the meaningful predictors. Using
the AIC score, we found that the measured PM10 was a strong predictor of CO and PM2.5
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for the NO2 parameter, whereas NO had an influence on NO2 and O3. Incorporating these
predictors into the model greatly improved the results.

CO = α0sCO + β0 (1)

CO = α0sCO + α1T + α2sNO + α4sPM2.5 + β0 (2)

NO2 = α0sNO2 + α1T + α2 AH + α3sO3 + β0 (3)

NO2 =
6

∑
n=0

αisi + β0, where (4)

si = [NO2, O3, T, CO, NO, PM10]

O3 = α0sNO2 + α1sO3 + α2sNO + β0 (5)

O3 =
7

∑
n=0

αisi + β0, where (6)

si = [NO2, O3, T, RH, CO, NO, PM10, PM2.5]

For all three gases under evaluation, we used the simple RF algorithm without the
hybrid form, since both yielded similar results. The RF algorithm used was a random
forest regressor that fits a number of classification decision trees on different subsamples of
the original dataset. It uses averaging to control the overfitting problem. Using the sensor
array, we proposed an RF algorithm composed of 300 decision trees with a maximum
depth of 10 subnodes per tree. The proposed model used the mean square error as a fitting
function in order to evaluate each decision split and was configured with a minimum of
nine samples required to split an internal node and a maximum of nine features to be
considered when searching for the best split.

4. Results and Discussion

For this study, we used five Airify units that were colocated with a reference station.
Given that the devices performed similarly with negligible differences, hereafter we report
the findings of a single device.

In the evaluation process, we used 3 min data average values of the device under
test and of the reference high-quality station. For each model, we expressed the results as
a coefficient of determination (r2), a root mean square error (RMSE), a normalised mean
bias (NMB), and a normalised mean error (NME), and we computed the uncertainty of
measurement using an orthogonal regression of the estimated values versus Reference [11].
The advantage of the RMSE metric is that it provides a combined measure of systematic
and random error. The NME metric is more robust to outliers and cannot cancel negative
and positive errors because both add to the sum. The NMB metric is a 0-mean metric
showing the bias between the measured signal and the reference. If the NMB is negative
or positive, the signal tends to underestimate or overestimate the reference. Using the
normalised versions of these two metrics better presents the errors with respect to signal
noise. For the RMSE, NMB, and NME metrics, smaller values indicate better agreement
between the signals.

A certified calibration procedure should satisfy the EU DQO having a low RMSE
and NME and a very-close-to-0 NMB. The accuracy of the data is also reflected in the
measurement uncertainty metric (see [2] for a detailed description). In Table 5, we present
the four classes of devices classified according to the relative uncertainty of the measure-
ment. The relative uncertainty, Ur, was calculated using Equation (7) with b0 and b1 being
the slope and intercept of the orthogonal regression, respectively, whereas the sum of the
square of residuals (RSS) was computed using Equation (8) (see [11] for further details).
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Table 5. Data quality objectives (DQO) of the European Directive [2].

Class O3 CO, NO2

DQO reference measurements Uncertainty = 15% Uncertainty = 15%
DQO indicative measurements Uncertainty = 30% Uncertainty = 25%

DQO Objective estimation Uncertainty = 75% Uncertainty = 75%
Additional class Uncertainty = 200% Uncertainty = 200%

Ur(yi) = 2

(√
RSS
n− 2

− u2(xi) + [b0 + (b1 − 1)xi]2

)
/yi (7)

RSS = ∑(yi − b0 − b1xi)
2 (8)

In Table 6, we present a summary of the proposed and evaluated models represented
by the r2, RMSE, NMB, NME, slope, and intercept obtained for the validation period.
The validation data used consist of 20% of the total samples selected randomly. This reduces
the chance of the model being overfitted. The correlation between the predicted values
of our models and the reference is presented as a scatter plot in Figure 3. The red line
represents the one-to-one line between the reference values and a perfect calibration model,
whereas the blue line is composed of the slope and intercept values of our model obtained
during validation. Ideally, the two lines match. Their proximity is an indicator of the quality
of the calibration model. The results show that CO presents a strong linear dependency for
all models, whereas the NO2 and O3 values exhibit a higher variance mainly due to the
fact that the 3 min data averaging was used for increased temporal granularity.

Table 6. Evaluated model prediction results.

Sensor r2 Slope Intercept RMSE NMB NME

CO(MLR Model Table 1 (1st line)) 0.94 0.89 64.24 155.07 −0.02 0.14
CO(MLR Model Equation (1)) 0.92 0.88 69.00 153.44 −0.03 0.12
CO(MLR Model Equation (2)) 0.94 0.95 00.00 150.90 −0.03 0.18

CO(RF Model) 0.98 01.00 4.79 30.59 −0.01 0.08
NO2(MLR Model Table 1 (2nd line)) 0.10 0.09 15.49 10.43 −0.04 0.45

NO2(MLR Model Equation (3)) 0.18 0.15 14.22 10.50 −0.05 0.45
NO2(MLR Model Equation (4)) 0.50 0.45 0.04 8.57 −0.04 0.37

NO2(RF Model) 0.65 0.56 7.29 7.52 −0.03 0.32
O3(MLR Model Table 1 (3rd line)) 0.10 0.09 18.52 10.20 −0.04 0.42

O3(MLR Model Equation (5)) 0.32 0.28 14.86 9.11 −0.03 0.36
O3(MLR Model Equation (6)) 0.72 0.70 0.14 5.82 −0.02 0.23

O3(RF Model) 0.92 0.90 2.02 3.14 −0.00 0.10

Using Equation (2) and the RF models, which take advantage of the wide variety of
sensors on our devices, the CO concentration outperformed the state-of-the-art models
in terms of r2. The CO improvement was due to the good correlation of our platform
data and the measurement data from the reference station. Thus, good results in CO
data measurement were obtained using the CO sensor alone. When using other sensors,
a further 3% improvement was achieved. Compared to the results reported in the state-
of-the-art, we obtained a 9% improvement in r2 for model 1, with respect to [8] and a 12%
improvement when considering the RF model.
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Figure 3. Scatterplot of calibration sensor data using the proposed models against reference measurements.
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For the NO2 parameter, our results did not achieve the best of the state-of-the-
art [16] (r2 of 0.5 versus 0.82), as a result of the fact that we did not include wind-speed and
wind-direction information and because, in our colocation period, the values for the NO2
parameter were very low, making the sensor operate at its detection limit. Similar results
were obtained using RF models with a maximum r2 of 0.65. Furthermore, this performance
degradation can also be attributed to the fact that our sensors are one order of magnitude
cheaper and smaller than the ones reported in [16]. During the evaluation period, NO2
concentration levels were low, and many values were below the limit of detection state by
the sensor manufacturer; a good calibration procedure should assess this limitation. Using
exhaust gases to increase pollution levels showed better correlation results since the values
were well above the limit of detection.

Finally, the O3 sensor showed a very good correlation with the measured reference
value. Thus, we obtained similar results as reported in [8] using a cheaper sensor in
conjunction with the MLR models. For the nonparametric RF model, we obtained an
improvement of 12% with respect to similar RF models from state-of-the-art studies and
an overall improvement of 2% (r2 = 0.92) with respect to all the studies and projects
investigated by us.

Based on Equation (7), the relative expanded uncertainty was computed for all three
candidate sensors taking into account the reference uncertainty. Figure 4 presents the
plot of Ur against the reference measured during the validation phase of all the models
considered. We report the uncertainty with a coverage factor of 2, meaning that the level
of confidence in the reported values was 95%. It is important to note that values below
the DQO indicative level can be used as supplementary pollution information to reference
measurements. Thus, devices that report values within this level of uncertainty have a
high confidence in measuring the correct concentration of pollutants. Moreover, Figure 4
shows that the nonparametric RF models performed better, and the devices under test can
reach the DQO indicative class for small ppb values of measured gases. The NO2 gas was
the only candidate that only reached the DQO estimation class and not the indicative class.
However, as uncertainty decreases with increasing measured gas concentration, we can
infer that, for values greater than 100 ppb, our devices are able to reach the indicative class
for this parameter as well. Such values are not uncommon in the peak traffic hours of many
large and medium cities.
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Figure 4. Relative uncertainty of the different calibration models versus reference measurements with a coverage factor of 2.
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Figure 5 presents the target diagram for all candidates. This summary diagram
highlights the relationship between the root mean square difference (RMSD) and the
bias (B) for both the reference and the proposed model [28]. The distance between each
point and the origin represents the total RMSD between the model and the reference.
The diagram also shows whether the standard deviation of the model is larger (X > 0) or
smaller (X < 0) than the reference. Figure 5 uses the bias and the RMSD normalised by
the standard deviation of the reference. The CO sensor scenarios and the RF model for O3
yielded good results with points inside the circle radius of 0.5, whereas the NO2 and the
other O3 models had slightly lower results since they were plotted in the circle radius of
0.7. The target diagram only included the cases having an RMSD smaller than one. It is
worth noting that, without a calibration model, all sensor data except that of the CO sensor
are unreliable.
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0.5

1.0
B*
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CO Mode  Eq. (2)
CO Mode  RF
NO2 Mode  Tabe  I 2nd  ine
NO2 Mode  Eq. (3)
NO2 Mode  Eq. (4)
NO2 Mode  RF
O3 Mode  Tabe  I 3rd  ine
O3 Mode  Eq. (5)
O3 Mode  Eq. (6)
O3 Mode  RF

CO Unca ibrated
NO2 Unca ibrated
O3 Unca ibrated
CO Mode  Tab e I 1st  ine
CO Mode  Eq. (1)
CO Mode  Eq. (2)
CO Mode  RF
NO2 Mode  Tabe  I 2nd  ine
NO2 Mode  Eq. (3)
NO2 Mode  Eq. (4)
NO2 Mode  RF
O3 Mode  Tabe  I 3rd  ine
O3 Mode  Eq. (5)
O3 Mode  Eq. (6)
O3 Mode  RF

Figure 5. Target diagram for the proposed calibration models. For clarity, we present only the positive X of the target
circle. The CO models except the RF one are overlapping around an RMDS*’ of 0.2 showing the good correlation between
them. The uncalibrated NO2 and the uncalibrated O3 are outside the circle with radius 1 and are not present on the graph
(nncalibrated NO2 B* = 4.14, RMSD*’ = 1.11; uncalibrated O3 B* = 14.32, RMSD*’ = 2.50).
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For the proposed models, we obtained comparable and even better coefficients of
determination for all three candidate gases with slopes very close to 1 and intercepts
between 10 and 100. With respect to the DQO imposed by the EU, we concluded that all
sensors can meet the estimation level (class 3) on intervals that can be found outdoors in
real environments, and some models can reach the indicative level (class 2). The indicative
level was only obtained for CO on all models evaluated and for O3 when the RF models
were used; whereas, for NO2, it was only obtained when the RF models were used and for
high concentrations of the parameter.

5. Conclusions

In this study, we developed and evaluated calibration models (MLR and RF) for a
low-cost air quality platform for three gases: CO, NO2, and O3. Our platform, Airify, has a
cost per unit that is five times less expensive than the state-of-the-art solutions and has a
rich variety of sensors for air quality monitoring. The experiments showed that having
a wide variety of available sensors yields better calibration models. Regarding related
work, we obtained an improved coefficient of determination of 12% for the CO and O3
parameters, whereas, for NO2, we obtained similar results to other works, even without the
use of external information such as wind direction and wind speed. NO2 sensor models
did not exceed state-of-the-art results. However, Equation (4) and RF models with new
predictors were able to improve the output calibration data.

For the CO gas, we obtained a high coefficient of determination and a low RMSD
for the data even without any calibration. For the other gases, calibration models were
mandatory. We evaluated our results with respect to state-of-the-art models by comparing
the coefficient of determination, the RMSE, the relative uncertainty, and the target diagram.

The platform with the proposed calibration models meets the DQO for the estimation
level for all of the validation concentration range, but only CO and O3 reached the indicative
level requirements. NO2 values greater than 100 ppb can be observed during peak hours
in urban areas and can also meet the indicative level of DQO, as the expanded uncertainty
decreases with increasing concentration. The O3 sensor was able to meet the indicative
DQO in the measured interval of values >20 ppb using the RF model.

It is important to note that by using the same calibration method (i.e., the RF model
was used for all tree parameters with the same configuration), we obtained different results
based on each individual parameter measured. This is the result of exposure to different lev-
els of pollution concentration of each sensor type. The CO parameter constantly measured
values >250 ppb (10 times its LoD), whereas the NO2 and O3 parameters were exposed
to a concentration between 0–50 ppb, which was slightly above their LoD. Furthermore,
it is well known that NO2 and O3 have a strong cross-sensitivity, making the results more
susceptible to errors.

So far, our findings suggest that the Airify platform can be used in a real-world
scenario as an indicative monitoring device for CO and O3 parameters. More evaluation is
needed for longer periods of time for a definitive conclusion. This is a work in progress.
The devices are in the process of undergoing colocated measurements, at which point we
will re-evaluate the models on the newly collected data.
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