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Abstract
Several studies have previously been conducted on the dynamics of probabilistic epidemic models driven by Lévy disorder.
All of these works have used the Poisson counting process with finite Lévy measures. However, this scope disregards a
considerable category of correlated Lévy jump processes governed by an infinite Lévy measure. In this research, we take
into consideration this general framework applied to an epidemic model with a quarantine strategy. Under an appropriate
hypothetical setting, we infer the exact threshold value between the ergodicity and the disease disappearance. Our analysis
completes the work presented by Privault and Wang (J Nonlinear Sci 31(1):1–28, 2021) and puts forward a novel analytical
aspect to deal with other stochastic models in several areas. As a numerical application, we implement the algorithm of
Rosinski (Stoch Process Appl 117:677–707, 2007) for tempered stable Lévy processes with an infinite Lévy measure.

Keywords Stochastic analysis · Epidemic model · Lévy jumps · Ergodicity · Extinction · Lévy measure

Mathematics Subject Classification 37A50

1 Study background and problematic

Transmissible illness surveillance relies on analytical model-
ing and future forecasting as a key decision-making tool [1].
However, each illness is modeled and described by its own
mode of transmission, so in each specific case, the selection
of an appropriate method to adequately characterize disease
dynamics is highly demanded [2]. In this regard, mathemat-
ical biology, especially through compartmental systems, is
the most famous approach for obtaining an understandable
view of the disease spread. Many of the mathematical mod-
els adopted in the study of epidemics are derived from the
basic SIR system suggested by Kermack and McKendrick in
1927 [3]. From then on, diverse formulations of this model
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have been investigated by many researchers due to their
theoretical and functional importance [4,5]. However, the
mentioned epidemiologicalmodel is not sufficient to describe
the mechanism of the spread of highly prevalent viruses such
as COVID-19, and some hypotheses or strategies must be
included. In fact, many individual public health measures
have been practiced during the spread of the COVID-19 pan-
demic such as staying at home and maximizing physical
distancing from others for better protection. By considering
the application of the quarantine strategy and the impact of
immune deterioration, in this study, we focus on an epidemic
model with the following fourth classes:

1. susceptible class C1, 2. infected class C2, 3. quar-
antined class C3, 4. recovered class C4.

In this epidemic system, infected individuals may be iso-
lated and evolve transitory resistance after infection, and
recovered persons, with diminished immunity, come back
to the susceptible class. The transfer rates between the above
classes are characterized by this dynamical system:
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Table 1 Definition of the positive parameters appearing in system (1.1)

Parameter Epidemiological meaning

a The flow into the host population C1

b The prevalence rate between C1 and C2

d The normal mortality rate of Ck , k = 1, 2, 3, 4

d2 The disease-related mortality rate of C2

d3 The disease-related mortality rate of C3

q The quarantined rate of C2

c2 The cure ratio of of C2

c3 The cure ratio of of C3

h The immune deterioration rate of C4

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dC1(t) = (
a − dC1(t) − bC1(t)C2(t) + hC4(t)

)
dt,

dC2(t) = (
bC1(t)C2(t) − (d + d2 + q + c2)C2(t)

)
dt,

dC3(t) = (
qC2(t) − (d + d3 + c3)C3(t)

)
dt,

dC4(t) = (
c2C2(t) + c3C3(t) − (d + h)C4(t)

)
dt,

Ck(0) > 0, k = 1, 2, 3, 4,

(1.1)

where the positive constants a, b, d, d2, d3, q, c2, c3 and h are
defined in Table 1.

In dealing with transmissible disease systems, one of the
main goals is to determine the long-run behavior of the
model. Analytically, it is shown that the asymptotic behavior
of the deterministic model (1.1) depends on the sign of the
expression λ0 = ab

d − (d + d2 + q + c2). Minutely,

� If λ0 > 0, then the illness is continued in the population.
� If λ0 ≤ 0, then the illness dies out.

Predominantly, λ0 can be rewritten as the basic reproduction
number R◦ = ab

d(d+d2+q+c2)
and we can compare this ratio

with the number 1 to assort the large time behavior of the
deterministic system (1.1) [6].

As far as we know, environmental disturbances affect the
spread of an epidemic and make it more difficult to predict
its behavior [7–18]. In such situations, deterministic sys-
tems, while able to make very instructive predictions and
forecasts, are not actually enough [19]. Hence, we need a
developed and sophisticated mathematical model that takes
into consideration the randomness effect, especially when
studying the prevalence of a highly harmful infectious dis-
ease like COVID-19 [20–26]. In this vein, a large number of
authors have suggested and evolved many stochastic mod-
els that describe the dynamic of many illnesses from various
angles and prospects [27–37]. In all these works, the pas-
sage from the deterministic formulation to the probabilistic
one is done by assuming that the solution of this first wig-
gles normally around its value, which is often expressed

by perturbing some system parameters with white noises.
The addition of these variations is considered to be one of
the most logical and prominent ways of describing any real
phenomenon under small and continuous fluctuations [38–
40]. Unfortunately, this approach is insufficient to model the
spread of disease under massive and sudden environmental
disturbances, during some economic crises, or through the
application of some human interventions (isolation and vac-
cination in the case of COVID-19 [41,42]). For this reason,
we resort to the Lévy processes which are renowned for their
ability to correctly formulate this type of randomness [43–
51]. Inspired by the above facts and motivations, this study
puts forward a stochastic formulation of the illness model
(1.1) driven by Lévy jumps of the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dC1(t) =
Deterministic part

︷ ︸︸ ︷(
a − dC1(t) − bC1(t)C2(t) + hC4(t)

)
dt +

Jumps-diffusion part,
︷ ︸︸ ︷
C1(t−)dA1(t)

dC2(t) = (
bC1(t)C2(t) − (d + d2 + q + c2)C2(t)

)
dt

+C2(t−)dA2(t),

dC3(t) = (
qC2(t) − (d + d3 + c3)C3(t)

)
dt+C3(t−)dA3(t),

dC4(t) = (
c2C2(t) + c3C3(t) − (d + h)C4(t)

)
dt

+C4(t−)dA4(t),

Ck(0) > 0, k = 1, 2, 3, 4,

(1.2)

where A = (A1,A2,A3,A4) indicates the vector of the
random process that describes the intensity of sudden events
shocks. Here and elsewhere, Ck(t−) (k = 1, 2, 3, 4) are
respectively the left limits of the Markov processes Ck(t)
(k = 1, 2, 3, 4). For the convenience of the reader and for a
finer overview of the formulation of system (1.2), we intro-
duce two categories of the process A.

• Jumps-diffusion with independent Brownian motions
and finite Lévy measure:

In [52], the authors considered an SIQS model (a particular
case of (1.1)) with the following stochastic process:

Ak(t) =
B.m. part
︷ ︸︸ ︷
mkBk(t)+

Jumps part
︷ ︸︸ ︷
∫ t

0

∫

H
ϑk(u)J(ds, du), (k = 1, 2, 3, 4),

(1.3)

where the positive constants m1, m2 , m3 and m4 indicate
the intensities of the independent Brownian motions (B.m.s)
B1(t),B2(t),B3(t) andB4(t) defined on a filtered probability
space (�,F , {Ft }t≥0,P) such that {Ft }t≥0 is an increasing,
right continuous filtration and F0 includes all P-null sets.
Nχ is a Poisson measure which is independent of Bk with
a finite specific measure χ defined on a measurable sub-
domainH ⊂ R+ \ {0}. J is the compensator process with its

123



Acute threshold dynamics of an epidemic system with…

associated Lévy measure (L.m.) χ , where

J(t, du) = Nχ (t, du) − tχ(du).

The jumps magnitude functions ϑk : H → (−1,∞) (k =
1, 2, 3, 4) are assumed to be continuous onH.

Remark 1.1 The above-mentioned work offers the long-run
characteristics of an SIQS epidemic system driven by jumps
with independent B.M.s and a finite L.m. χ(·) < ∞. Never-
theless, this scope eliminates a special class of Lévy jump
processes with two characteristics: the infinitude of Lévy
measure χ and the interdependence between the random
noise items of model (1.2).

Thoroughly, Lévy process increments driven by finite mea-
sures have partially-weighty tails, and they have limited
potential to simulate radical and brutal phenomena which
usually lead to unexpected variations in the total number of
individuals [53]. In the next category, we present an alterna-
tive frame that considers a general L.m. and the relationship
between B.m.s components.

• Jumps-diffusion with general L.m. and correlated B.m.s

In [54], Privault and Wang proposed a novel class of Lévy-
jumps perturbation by considering a process A with the
associated Lévy–Khintchine formula E[e�(t)] = eφ(t,u),
where

�(t) = ia1A1(t) + ia2A2(t) + ia3A3(t) + ia4A4(t),

φ(t, u) = −0.5t〈a,Ma〉
+ t

∫

H

(
ei〈a,ϑ(u)〉 − i〈a, ϑ(u)〉 − 1

)
χ(du).

Here and elsewhere, we use the flowing notations and defi-
nitions:

� a = (a1, a2, a3, a4) ∈ R
4.

� M = (mk, j )1≤k, j≤4 is a positive definite matrix.
� The Lévy intensities ϑk : H ⊂ R

4 \ {0} → R (k =
1, 2, 3, 4) are continuous functions.

� χ verifies that
∫

H
min

(|ϑk(u)|2, 1)χ(du) < ∞, (k =
1, 2, 3, 4).

Motivated by the theory presented in [53] and [49], the
authors in [54] expressed A by

Ak(t) =
Gaussian process

︷ ︸︸ ︷
B
m
k (t)

+

General Lévy tails
︷ ︸︸ ︷∫ t

0

∫

H
ϑk(u)J(ds, du), (k = 1, 2, 3, 4). (1.4)

Here, Bm = (
B
m
1 ,Bm

2 ,Bm
3 ,Bm

4

)
is referring to a Gaussian

process with the following hypotheses:

� B
m has independent and stationary increments.

� The associated co-variance matrix of Bm is donated by
M.

� Nχ is independent of Bm.

Furthermore, it is supposed that χ can be infinite or finite and
the conveniences of A are expressed by

E
[
Ak(t)A j (t)

] = mk, j t

+ t
∫

H
ϑk(u)ϑ j (u)χ(du), k, j = 1, 2, 3, 4.

Remark 1.2 In [54], Privault and Wang obtained sufficient
criteria for the disease vanishing and its insistence in the case
of SIR model with the second representation of A. However,
the ergodicity property has not been investigated due to some
technical difficulties. It must bementioned that the ergodicity
is an important statistical property for randomsystems. In this
survey, we properly deal with this question.

Specifically, this study exhibits a novel approach to treat
the long-run of the perturbedmodel (1.2) with the representa-
tion (1.4). Under an appropriate hypothetical framework, we
present the sufficient and necessary condition for ergodicity
and extinction of the model. Based on some nice character-
istics of an auxiliary equation with linear jump-diffusion, we
establish the exact expression of the threshold R◦. In other
words, if R◦ > 1, then system (1.2) has a single ergodic
stable distribution, and if R◦ < 1, then the illness will tend
to disappearance exponentially. We mention that our proof
to demonstrate the disease disappearance differs from that
presented in [54].

As an instance where the proposed methodology is appro-
priate, we present and study numerically a robust class of
tempered stable distributions. The discrete increments of
tempered stable processes have power tails that are strongly
applied in infinite Lévy measure cases [54]. In line with the
survey presented in [53], the tempered α-stable Lévy mea-
sure is expressed as follows:

χ(Y) =
∫

R+

∫

H
e−τ τ−α−11Y (τ y)Zα(dy)dτ,

α ∈ (0, 2). (1.5)

Here,Zα(·) denotes ameasure onH such that
∫

H
min

(‖y‖2,
′‖y‖α

)
Zα(dy) < ∞. We take Zα(dy) = φ−(dy) + φ+(dy),

where φ− = ζ−θα−δ(−1/θ−,−1/θ−,−1/θ−,−1/θ−), φ+ =
ζ+θα+δ(1/θ+,1/θ+,1/θ+,1/θ+), for all ζ−, ζ+, θ−, θ+ > 0 and
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δz is the Dirac mass measure at point z inR4. From (1.5), we
infer that the infinite measure χ is rewritten as follows:

χ(Y) =
∫

R+
ψ−e−τ τ−α−1dτ +

∫

R+
ψ+e−τ τ−α−1dτ,

α ∈ (0, 2) (1.6)

where ψ− = ζ−1Y (−τ/θ−,−τ/θ−,−τ/θ−,−τ/θ−) and
ψ+ = ζ+1Y (τ/θ+, τ/θ+, τ/θ+, τ/θ+).

The remnant of this study is organized into three following
parts:

� Second Sect. 2 presents the hypothetical framework as
well as some required lemmas.

� Third Sect. 3 shows thatR◦ is the global sill of the system
(1.2) with the representation (1.4).

� Final Sect. 4 introduces some numerical examples to clar-
ify and emphasize our outcomes.

2 Hypothetical framework and some
required lemmas

To properly study our model (1.2) with the representation
(1.4), we impose the following assumptions:

• H1:
∫

H
ϑ2
k (u)χ(du) < ∞, k = 1, 2, 3, 4,

• H2: ϑk(u) ∈ (−1,∞) and
∫

H

(
ϑk(u) − ln

(
1 +

ϑk(u)
))

χ(du) < ∞, k = 1, 2, 3, 4,

• H3: � = d − 2p − 1

2
‖m‖∞ − I(2p)

2p
> 0, p > 1,

• H4:
∫

H
|(1 + ϑ�(u))2p − 1|χ(du) < ∞,p > 1,

where

‖m‖∞ = max
k=1,2,3,4

4∑

j=1

|mk, j |,

I(2p) = p(2p − 1)max
(
22p−3, 1

)

∫

H

(
ϑ2

� (u) + ϑ
2p
� (u)

)
χ(du), p > 1,

ϑ�(u) = max
{
ϑ1(u), ϑ2(u), ϑ3(u), ϑ4(u)

}
.

Remark 2.1 Biologically, if ϑk(u) > 0 the Lévy jumps
increase the quantity of the host population. Otherwise, if
−1 < ϑk(u) < 0, the number of individuals is minimized
gradually.

Remark 2.2 The assumptions H2 and H4 mean biologically
that the intensity of Lévy jumps cannot exceed the environ-
mental carrying capacity.

The next consequence guarantees the well-posedness of the
model (1.2) with the representation (1.4).

Lemma 2.1 Under the hypotheses H1 and H2, the proba-
bilistic system (1.2) is well posed.

By the approach used in [43], we can easily prove that for
any positive initial dataC0 = (C1(0),C2(0),C3(0),C4(0)),
there corresponds one and only one global solution C =
(C1(t),C2(t),C3(t),C4(t)) ∈ R

4+ of the model (1.2) on
t ≥ 0.

Now and based on the positivity of the solutionC, we give

an estimate of the total class TC(t) =
4∑

k=1
Ck(t).

Lemma 2.2 Let hypotheses H1,H2,H3 hold and letC be the
solution of (1.2) with initial value C0 ∈ R

4+, then for any
p > 1 such that � > 0, it holds that

lim sup
t→∞

t−1
∫ t

0
E

[(
1 + TC(s)

)2p
]
ds ≤ 2p�

γ
,

where γ ∈ (0, 2p�) and � = 1 + sup
x>0

{

x2p−2
(

−
(
� −

γ

2p

)
x2 +

(
a − d + γ

p

)
x + a + γ

2p

)}

.

The above result can be proved using an analysis analogous
to that of the proof of Lemma 2.2. in [2].

Lemma 2.3 Let hypotheses H1, H2, H3, H4 hold and let C0

be a given positive value. If C indicates the unique solution
of model (1.2) that begins from C0, then

1. limt→∞ Ck (t)
t = 0a.s. k = 1, 2, 3, 4.

2. limt→∞ t−1
∫ t
0 Ck(s)dBb

k (s) = 0 a.s. k = 1, 2, 3, 4.
3. limt→∞ t−1

∫ t
0

∫

H ϑk(u)Ck(s−)J(ds, du) = 0 a.s. k =
1, 2, 3, 4.

By employing the method presented in [44] and Kunita’s
inequality [55], we can readily demonstrate the above
Lemma. A detailed proof is presented in [54] (see Lemmas
2.2, 2.3 and 2.5).

To deal with the new stochastic system (1.2), we propose
an alternative method based on a second system very close
to the equation of the total population TC(t). This new aux-
iliary system characterizes the epidemic dynamics in limit
conditions when the infection is absent. Keeping the same
probabilistic part of TC(t), the auxiliary system is expressed
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by the following boundary equation:

⎧
⎪⎨

⎪⎩

dD(t) = (
a − dD(t)

)
dt +

4∑

k=1
Ck(t−)dAk(t),

D(0) = TC(0) ∈ R+.

(2.1)

The stochastic system (2.1) is biologically well-posed and
admits a unique positive solution D(t). Moreover, D(t) is a
Markov process which satisfies nice analytical properties. As
an example, we present the next lemma.

Lemma 2.4 Let H1, H2, H3, H4 hold. Then,

limt→∞ t−1
∫ t

0
D(s)ds = a

d
a.s.

Proof By integrating (2.1) and using Lemma 2.3, we can
effortlessly and directly prove this result. �
Remark 2.3 Via the probabilistic comparison theorem [56],
we conclude that TC(t) ≤ D(t) for all t ∈ [0,∞) a.s.

Different from theHasminskii’smethod, in this paper, we use
the alternately limited possibilities lemma of Feller processes
to get the sufficient and almost necessary criterion for the
ergodicity of our system.

Lemma 2.5 (Alternately limited possibilities lemma, [57])
We consider a stochastic process G ∈ R

n that verifies the
Feller property. Then, two possibilities are available:

1. A single ergodic stationary distribution exists, or
2. The following result is satisfied

lim
t→∞sup

�̂

t−1
∫ t

0

∫

Rn
P
(
x; s,U)

�̂(dx)ds = 0, (2.2)

for a given compact domain U ⊂ R
n, where �̂ is the

initial distribution on R
n and P

(
x; s,U)

stands for the
probability of G belongs to U with G(0) = x ∈ R

n.

3 Threshold analysis: stationary distribution
and extinction

As stated in the introduction, when analyzing amathematical
model that describes the spread of a particular illness, our
main preoccupation is to know if it will end or will last. For
this reason, we will prove that

R◦ = R◦ −

(

0.5m2,2 +
∫

H

(
ϑ2(u) − ln

(
1 + ϑ2(u)

))
χ(du)

)

d + d2 + q + c2
,

is the threshold among stationarity and extinction of the
stochastic model (1.2) with the representation (1.4). But

before doing so, let us first introduce the following assump-
tion:

• H5:
∫

H

(
ln

(
1 + ϑk(u)

))2
χ(du) < ∞, k = 1, 2, 3, 4.

Theorem 3.1 Assume thatH1,H2,H3,H4 andH5 hold. The
parameter R◦ is the sill of the stochastic model (1.2) with
the representation (1.4). That is to say that,

1. If R◦ > 1, then the stationarity and ergodicity of our
model are verified.

2. IfR◦ < 1, then the illness dies out exponentially (rapidly)
with probability one.

Biological interpretation 3.1. By Theorem 3.1, we show
that:

1. The stationarity and ergodicity reveal that the stochastic
model (1.2) has a limiting stable distribution that proph-
esies the continuation of the illness. That implies that the
infected population persevers for a long time.

2. The quantity R◦ contains linear random intensities,
which are related to the infected class C2. This desig-
nates that if R◦ is strictly less than one, the stochastic
fluctuations help to the inhibition of the illness.

Proof Analogous to the demonstration of (Lemma 3.2. in
[58]), we can confirm the Feller property of the Markov pro-
cess C. In the next step, we prove that (2.2) is not verified
for the system (1.2). Let G(t) = C1(t)C2(t) and apply Itô’s
formula to function V(t) = lnC2(t)− b

d

(
D(t)−C1(t)

)
, then

dV(t) ≥
(

bD(t) − (d + d2 + q + c2) − 0.5m2,2

−
∫

H

(
ϑ2(u) − ln

(
1 + ϑ2(u)

))
χ(du)

)

dt

− b2

d
G(t)dt

+ dBm
2 (t) +

∫

H
ln

(
1 + ϑ2(u)

)
J(dt, du)

− b

d

4∑

k=2

Ck(t)dB
m
k (t) − b

d

4∑

k=2
∫

H
ϑk(u)Ck(t−)J(dt, du). (3.1)

We integrate from 0 to t on both sides of (3.1), then we get

V(t) − V(0) ≥
∫ t

0
bD(s)ds − (d + d2 + q + c2)t
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− 0.5m2,2t − t
∫

H

(
ϑ2(u) − ln

(
1 + ϑ2(u)

))
χ(du)

− b2

d

∫ t

0
G(s)ds

+ B
m
2 (t) +

∫ t

0

∫

H
ln

(
1 + ϑ2(u)

)
J(ds, du)

− b

d

4∑

k=2

∫ t

0
Ck(s)dB

m
k (s)

− b

d

4∑

k=2

∫ t

0

∫

H
ϑk(u)Ck(s−)J(ds, du).

Thus, we have

∫ t

0
bG(s)ds ≥ d

b

∫ t

0
bD(s)ds

− d

b

(

(d + d2 + q + c2) + 0.5m2,2

+
∫

H

(
ϑ2(u) − ln

(
1 + ϑ2(u)

))
χ(du)

)

t

+ d

b
B
m
2 (t) + d

b

∫ t

0

∫

H
ln

(
1 + ϑ2(u)

)
J(ds, du)

−
4∑

k=2

∫ t

0
Ck(s)dB

m
k (s)

−
4∑

k=2

∫ t

0

∫

H
ϑk(u)Ck(s−)J(ds, du)

+ (
D(t) − C1(t)

) − (
D(0) − C1(0)

)

− d

b
ln

C2(t)

C2(0)
. (3.2)

Let

f (t) = d

b
B
m
2 (t)

+ d

b

=g(t)
︷ ︸︸ ︷∫ t

0

∫

H
ln

(
1 + ϑ2(u)

)
J(ds, du)

−
4∑

k=2

∫ t

0
Ck(s)dB

m
k (s)

−
4∑

k=2

∫ t

0

∫

H
ϑk(u)Ck(s−)J(ds, du).

The quadratic variation associated with the local martingale
g(t) is given by

〈g(t), g(t)〉 =
(∫

H
(
ln(1 + ϑ2(u)

)2
χ(du)

)

t .

By employing the strong law of large numbers for martingale
[55], Lemma 2.3 and hypothesis H5, we obtain

lim
t→∞ t−1 f (t) = 0, a.s.

From Lemma 3.1 of [45], we conclude that lim sup
t→∞

t−1 ln

C2(t)
C2(0)

≤ lim sup
t→∞

t−1 ln TC(t)
C2(0)

≤ 0 a.s. So,

lim inf
t→∞ t−1

∫ t

0
bG(s)ds

≥ d

b

(

lim inf
t→∞ t−1

∫ t

0
bD(s)ds

−
(

(d + d2 + q + c2) + 0.5m2,2

+
∫

H

(
ϑ2(u) − ln

(
1 + ϑ2(u)

))
χ(du)

))

= d

b
(d + d2 + q + c2)

(R◦ − 1
)

> 0.

To carry onwith our proof, we need to consider the following
subsets:

S1 = {
(t, ω) ∈ R+ × �|C1(t, ω) ≥ θ, and,C2(t, ω) ≥ θ

}
,

S2 = {
(t, ω) ∈ R+ × �|C1(t, ω) ≤ θ

}
,

S3 = {
(t, ω) ∈ R+ × �|C2(t, ω) ≤ θ

}
,

where θ > 0 is a constant to be specified in the following.
Therefore, we obtain

lim inf
t→∞ t−1

∫ t

0
E

[
bG(s)1S1

]
ds

≥ −lim sup
t→∞

t−1
∫ t

0
E

[
bG(s)1S2

]
ds

− lim sup
t→∞

t−1
∫ t

0
E

[
bG(s)1S3

]
ds

+ lim inf
t→∞ t−1

∫ t

0
E

[
bG(s)

]
ds

≥ −bθ lim sup
t→∞

t−1
∫ t

0
E

[
C1(s)

]
ds

− bθ lim sup
t→∞

t−1
∫ t

0
E

[
C2(s)

]
ds

+ d

b
(d + d2 + q + c2)

(R◦ − 1
)
.

Consequently

lim inf
t→∞ t−1

∫ t

0
E

[
bG(s)1S1

]
ds

≥ −2abθ

d
+ d

b
(d + d2 + q + c2)

(R◦ − 1
)
.
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We can choose θ ≤ d2

4b2a
(d + d2 + q + c2)

(R◦ − 1
)
, and

then we have

lim inf
t→∞ t−1

∫ t

0
E

[
bG(s)1S1

]
ds

≥ d

2b
(d + d2 + q + c2)

(R◦ − 1
)

> 0. (3.3)

Let p > 1 such that � = d− (2p−1)
2 ‖m‖∞ − I(2p)

2p > 0 and

q is given by 1
q + 1

p = 1. By employing the Young inequality
[55], we get

lim inf
t→∞ t−1

∫ t

0
E

[
bG(s)1S1

]
ds

≤ lim inf
t→∞ t−1

∫ t

0
E

[
(p−1(�bG(s)

)p + q−1�−q1S1

]
ds

≤ p−1(�b)plim sup
t→∞

t−1
∫ t

0
E

[
(1 + TC(s))2p

]
ds

+ lim inf
t→∞ t−1

∫ t

0
E

[
q−1�−q1S1

]
ds,

where � > 0 is a constant verifying �p ≤ dγb−(p+1)

8� (d+d2+
q+ c2)

(R◦ − 1
)
. By Lemma 2.2 and (3.3), we conclude that

lim inf
t→∞ t−1

∫ t

0
E

[
1S1

]
ds

≥ q�q
(

d

2b
(d + d2 + q + c2)

(R◦ − 1
) − 2��pbp

γ

)

≥ dq�q

4b
(d + d2 + q + c2)

(R◦ − 1
)

> 0. (3.4)

Setting

S4 = {(t, ω) ∈ R+ × �| C1(t, ω) ≥ ζ, or, C2(t, ω) ≥ ζ },
S

� = {(t, ω) ∈ R+ × �| θ ≤ C1(t, ω) ≤ ζ, and,

θ ≤ C2(t, ω) ≤ ζ },

where ζ > θ > 0 is a constant value to be described in the
next. By using the Markov’s inequality [55], we can find that

∫

S

1S4(t, ω)dP(ω) ≤ P(C1(t) ≥ ζ ) + P(C2(t) ≥ ζ )

≤ 1

ζ
E

[
C1(t) + C2(t)

]
.

We choose
1

ζ
≤ d2q�q

8ba
(d+ d2 + q+ c2)

(R◦ − 1
)
, then we

obtain

lim sup
t→∞

t−1
∫ t

0
E

[
1S4

]
ds

≤ dq�q

8b
(d + d2 + q + c2)

(R◦ − 1
)
.

By (3.4), we have

lim inf
t→∞ t−1

∫ t

0
E

[
1S�

]
ds

≥ −lim sup
t→∞

t−1
∫ t

0
E

[
1S4

]
ds

+ lim inf
t→∞ t−1

∫ t

0
E

[
1S1

]
ds

≥ dq�q

8b
(d + d2 + q + c2)

(R◦ − 1
)

> 0.

Ultimately and according to the above treatment, we have
specified a compact domain S

� such that

lim inf
t→∞ t−1

∫ t

0
P
(
C0; s,S�

)
ds

≥ dq�q

8b
(d + d2 + q + c2)

(R◦ − 1
)

> 0. (3.5)

In contrary, we check easily that if R◦ < 1, the illness will
extinct. In accordance with Lemma 2.3, we obtain

lim sup
t→∞

t−1 ln
C2(t)

C2(0)

= blim sup
t→∞

t−1
∫ t

0
C1(s)ds

− (
(d + d2 + q + c2) + 0.5m2,2

+
∫

H

(
ϑ2(u) − ln(1 + ϑ2(u))

)
χ(du)

)

≤ b lim
t→∞ t−1

∫ t

0
D(s)ds

− (
(d + d2 + q + c2) + 0.5m2,2

+
∫

H

(
ϑ2(u) − ln(1 + ϑ2(u))

)
χ(du)

)

= (d + d2 + q + c2)
(R◦ − 1

)
< 0 a.s.

So, limt→∞ C2(t) = 0 a.s. To put it another way, the epi-
demic of the system (1.2) will quickly be removed, and its
deterioration rate is at least (d+ d2 + q+ c2)

(R◦ − 1
)
. This

ends the demonstration. �

4 Application: epidemic model (1.2) driven
by tempered stable Poisson process

This part is devoted to introducing the numerical exam-
ples and checking the correctness of Theorem 3.1. Through
computer simulations, we acquire the trajectories plot, and
corresponding histograms, which can more obviously reflect
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the complex dynamical attitude of the perturbed system (1.2).
Moreover, we choose some reasonable parameter values to
verify our hypothetical framework. According to the work
presented in [54], we use the following compensated tem-
pered Poisson process:

Y(t) =
∫ t

0

∫

R\{0}
u J(ds, du), (4.1)

with the associated infinite L.m. (1.6). To numerically apply
the method proposed in [53] on the process (4.1) with related
measure (1.6), we use the following setup.

4.1 Algorithm configuration and inputs tuning

• We suppose that Bm is generated as follows:

B
m
1 = m1,1Ba,

B
m
2 = m2,1Ba + m2,2Bb,

B
m
3 = m3,1Ba + m3,2Bb + m3,3Bc,

B
m
4 = m4,1Ba + m4,2Bb + m4,3Bc + m4,4Bd ,

whereBa ,Bb ,Bc andBd stand for independentBrownian
motions.

• (a j ) j≥1 is an i.i.d. Bernoulli random sequence with the
associated distribution

(
ζ−/(ζ− + ζ+), ζ+/(ζ− + ζ+)

)
.

• (b j ) j≥1 and (b
′
j ) j≥1 are i.i.d. exponential random vari-

ables with the parameter 1, where Bj = b
′
1 + · · · + b

′
j .• (c j ) j≥1 are i.i.d. uniform random variables.

• (d j ) j≥1 is an i.i.d. uniform U (0, 1) random sequence.

According to Theorem 5.3 in [53], all above sequences are
supposed to be mutually independent. Furthermore, the pro-
cess Y with (1.6) can be presented as follows:

• When 0 < α < 1, then Y(t) = ∑∞
j=1 1(0,t](c j )

a j
|a j | S̃1,

for all 0 ≤ t ≤ T , where S̃1 = min

{(
(ζ−+ζ+)T

αBj

) 1
α

,

b j
|a j |d

1
α

j

}

.

• When 1 ≤ α < 2, then

Y(t) = ∑∞
j=1

(

1(0,t](c j )
a j
|a j | S̃2 − z0

t
T

(
ζ−+ζ+
α j/T

) 1
α

)

+

t�T , for all 0 ≤ t ≤ T where S̃2 = min

{(
ζ−+ζ+
αBj /T

) 1
α

,

b j
|a j |d

1
α

j

}

, z0 = (ζ− − ζ+)/(ζ− + ζ+), z1 = ζ+θ−1−α+ −
ζ−θ−1−α− and

�T =

⎧
⎪⎨

⎪⎩

z0
T ζ

( 1
α

) (
T (ζ−+ζ+)

α

) 1
α − z1�(α − 1), 1 < α < 2,

(2γe + ln(ζ− + ζ+))z1 −
∫

H
x ln(|x |)Zα(dx) α = 1,

where ζ(·) denotes the Riemann zeta function, �(·) is the
Gamma function, and γe is the Euler constant.

Now, we choose ϑk(u) = eku, where ek > 0, (k =
1, 2, 3, 4), and we introduce the following perturbed model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dC1(t) = (
a − dC1(t) − bC1(t)C2(t) + hC4(t)

)
dt

+ C1(t)dB
m
1 (t) + e1C1(t−)dY(t),

dC2(t) = (
bC1(t)C2(t) − (d + d2 + q + c2)C2(t)

)
dt

+ C2(t)dB
m
2 (t) + e2C2(t−)dY(t),

dC3(t) = (
qC2(t) − (d + d3 + c3)C3(t)

)
dt

+ C3(t)dB
m
3 (t) + e3C3(t−)dY(t),

dC4(t) = (
c2C2(t) + c3C3(t) − (d + h)C4(t)

)
dt

+ C4(t)dB
m
4 (t) + e4C4(t−)dY(t),

C1(0) = 1.6,C2(0) = 0.4,C3(0) = 0.3,C4(0) = 0.1.
(4.2)

Remark 4.1 In fact, we noticed that:

1. the assumptions on the jump-diffusion intensitiesH1,H2

and H5 are naturally verified in our case.
2. the condition H4 holds just for α ∈ (0, 1), p > 1.
3. I(2p) is finite when p > α.
4. the conditionH3 will be checked according to the choice

of other parameters.

In view of the last remark, we will give some numerical sim-
ulation results in the case of the one-sided tempered stable
process Y(t) with ζ− = 0 and α ∈ (0, 1). So, we choose

• α = 0.7, ζ+ = 2.8 and θ− = θ+ = 1.2.
• m1,1 = 0.11, m2,1 = 0.16, m3,1 = 0.15, m4,1 = 0.101,
m2,2 = 0.22, m3,2 = 0.12, m4,2 = 0.17, m3,3 = 0.1,
m4,3 = 0.135, m4,4 = 0.115.

• e1 = 0.1, e2 = 0.11, e3 = 0.101 and e4 = 0.1025.

4.2 Theoretical results check

For the probabilistic model (4.2), the deterministic param-
eters are taken as follows: a = 0.2, b = 0.35, d =
0.11, d2 = 0.03, d3 = 0.025, h = 0.1 q = 0.13, c2 =
0.2, c3 = 0.1. Then, H3 holds and R◦ = 1.0098 > 1. By
using Theorem 3.1, we conclude that there is only one stable
distribution. In Figs. 1 and 2, we plot the two-dimensional
empirical distribution in order to offer a comprehensive
overview of the marginal densities of the solution. In Fig. 3,
we show the permanence of all trajectories.Now,wedecrease
the value of b to 0.285 which indicates the reduction of the
disease prevalence between C1 and C2. Then, H3 holds and
R◦ = 0.9803 < 1. From Theorem 3.1, we establish that
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Fig. 1 The 3D graph of the joint two dimensional density at time t = 5000 of the classes C1, C2, C3 and C4
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Fig. 2 The upper view of the joint two dimensional densities at time t = 5000 of the classes C1, C2, C3 and C4
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Fig. 3 Computer simulation of the solution of the probabilistic model (4.2) with tempered process

the illness will almost certainly extinct. To explore the Lévy
jumps effect in this case, we compare the trajectories of (4.2)
with the deterministic solution. A simple calculation shows
that R0 = 1.1025 > 1. From the Fig. 4, we notice that the
Lévy jumps conduct to the cancellation of the disease while
the deterministic path persists. Thus, discontinuous jumps
have a passive impact on the continuation of the disease and
this means that Lévy jumps with infinite measure can change
the propagation pattern remarkably in the long term.

Remark 4.2 We have theoretically chosen the parameters
used in the simulations according to two criteria:

1. To verify and check appropriately the obtained analytical
results in both cases: permanence and extinction of the
diseases.

2. To shownumerically the sharpness of theobtained thresh-
olds.

It should be pointed out that our theoretical findings are gen-
eral and can be applied to study many transmissible diseases,
for example, COVID 19 epidemic (please see [59]).

Conclusion

In this study, we have analyzed a classical illness model
with quarantine strategy and Lévy fluctuations. By consid-
ering a general Lévy measure and correlated noise items,
we have proposed an analytical framework to deal with our
constructedmodel. Explicitly, we have investigated the prop-
erties of stationarity and extinction by using the stochastic
comparison theorem, exponential inequalities for martin-
gales, Feller’s property, the mutually limited possibilities
lemma, and other mathematical tools. Our method differs
from thewell-knownKhasminskii approach by providing the
sufficient and necessary condition for ergodicity and disease
suppression, and this is the strong point of our work. It only
remains to verify what happens in the situation of R◦ = 1.
We will process this open question in the future.
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Fig. 4 Computer simulation of the solution of the probabilistic model (4.2) with tempered process
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