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A metabolic hallmark of many cancers is the increase in glucose consumption
coupled to excessive lactate production. Mindful that L-lactate originates only from
pyruvate, the question arises as to how can this be sustained in those tissues where
pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited
by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely
reported findings in the very same cells. Hereby 17 pathways connecting glucose to
lactate bypassing pyruvate kinase are reviewed, some of which transit through the
mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and
lactate, but not commencing from glucose, are also examined. The minor production
of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review
aims to highlight the ways through which L-lactate can still be produced from pyruvate
using carbon atoms originating from glucose or other substrates in cells with kinetically
impaired pyruvate kinase and underscore the importance of mitochondria in cancer
metabolism irrespective of oxidative phosphorylation.

Keywords: cancer, glycolysis, mitochondria, metabolomics, Warburg effect, oncometabolism, lactate
dehydrogenase

GLUCOSE AND LACTATE IN CANCER: BACKGROUND

It is a well-known fact that most cancers exhibit increased rates in glucose consumption
(Bose and Le, 2018). This is clinically exploited by following radionuclide-labeled glucose
analogs for the purpose of tumor imaging in living human beings (Feng et al., 2019).
The very same cancers are also known to be major lactate producers, which is important
for their survival (de la Cruz-Lopez et al., 2019). The combination of an increased
consumption of glucose with an increase in lactate output led to the assumption that
cancers exhibit an increase in glycolysis; although this is true, serving the purpose of
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generating glycolytic metabolites which are diverted toward
biosynthetic processes (DeBerardinis et al., 2008) and NADPH
by the pentose phosphate pathway (Icard and Lincet, 2012),
most tumors express a dimeric form of the M2 isoform
of pyruvate kinase which has been reported to be much
less active than that found in healthy cells; furthermore,
numerous posttranslational modifications and mutations have
been reported for this gene product, leading to a much
reduced activity but still fueling cancer aggression (see section
“Pyruvate Kinase”). Even more so, tumor cells with undetectable
levels of pyruvate kinase still producing lactate can be found
in vivo (Israelsen et al., 2013). On one hand, the decrease
in pyruvate kinase activity is important for maintaining a
metabolite “traffic jam,” forcing upstream metabolites toward
biosynthetic pathways; on the other hand, it points to a
metabolic conundrum because L-lactate may only originate
from pyruvate, a metabolite arising from phosphoenolpyruvate
(PEP) through pyruvate kinase in glycolysis (see Figure 1).
The purpose of this review is to highlight the pathways that
can lead to pyruvate and lactate—even commencing from
glucose—bypassing pyruvate kinase. This is important because (i)
carbon-labeled atoms in glucose may appear in lactate without
net ATP production from glycolysis and (ii) hints on the
possibility that other pathways leading to pyruvate/lactate could
be crucial for cancer cell survival that are perhaps amenable
to pharmacological and/or genetic manipulation. The list of
pathways appearing below has been assembled by mining the
following databases: Kyoto Encyclopedia of Genes and Genomes1

(Kanehisa and Goto, 2000), BRaunschweig ENzyme Database2

(Jeske et al., 2019), Metabolic Atlas3 (Robinson et al., 2020),
Biochemical, Genetic, and Genomic knowledge base4 (King et al.,
2016), MetaNetX5 (Moretti et al., 2016), Human Metabolome
Database6 (Wishart et al., 2018), and Virtual Metabolic Human7

(Noronha et al., 2019).

PYRUVATE KINASE

Pyruvate kinase generates ATP at the “substrate level” in the
absence of oxygen by catalyzing the dephosphorylation of PEP
to pyruvate (see Figure 1). There are four isoforms denoted as
L, R, M1, and M2. For details regarding kinetic properties, tissue
distribution, and regulation, the reader is referred to the review
by Israelsen and Vander Heiden (2015). In the present review, the
PKM2 isoform will be specifically examined; for a more thorough
evaluation, the reader is referred to Li et al. (2014, 2018), Wong
et al. (2015); Yang and Lu (2015), Dayton et al. (2016b), Hsu and
Hung (2018), and Alquraishi et al. (2019). The non-enzymatic
functions of PKM2 are examined elsewhere (Hoshino et al., 2007;

1https://www.genome.jp/kegg/
2www.brenda-enzymes.org
3https://www.metabolicatlas.org/
4http://bigg.ucsd.edu/
5http://www.metanetx.org/
6www.hmdb.ca
7https://www.vmh.life/

Stetak et al., 2007; Luo et al., 2011; Yang et al., 2012; Yang and Lu,
2013).

Basically, PKM2 exhibits lower enzymatic activity compared
to that by PKM1 (Yamada and Noguchi, 1999) and is allosterically
regulated by fructose-1,6-bisphosphate (FBP); it exists either as
a dimer with low affinity for PEP or as an FBP-bound tetramer
with high affinity for PEP (Mazurek et al., 2005; Zhang et al.,
2019). Although PKM2 has been branded as “the predominant
isoform in cancer cells” (Altenberg and Greulich, 2004; Mazurek
et al., 2005), further scrutiny in 25 human malignant cancers,
six benign oncocytomas, tissue-matched controls, and several cell
lines showed that “PKM2 dominance was not a result of a change
in isoform expression, since PKM2 was also the predominant
PKM isoform in matched control tissues.” Therefore, a switch
from PKM1 to PKM2 isoform expression during malignant
transformation may not be taking place, as previously postulated
(Christofk et al., 2008). Mindful of the controversy surrounding
the proposed functions of PKM2 (Hosios et al., 2015; Harris
and Fenton, 2019), the group of Vander Heiden characterized
the effects of cancer−associated PKM2 mutations on enzyme
kinetics and allosteric regulation and reported that a decrease in
PKM2 activity supports the rapid proliferation of cells (Liu V. M.
et al., 2020). This is in line with earlier reports showing that a
decrease in PKM2 activity due to posttranslational modifications
(Lv et al., 2011) or inhibition by oxidative stress (Anastasiou
et al., 2011) promotes tumor growth (Prakasam et al., 2018).
Alternatively, exposure to small molecule PKM2 activators or
expression of the constitutively active PKM1 thwarts cancer cell
proliferation (Anastasiou et al., 2012). Finally, it has been also
shown that PKM2 is not even required for the growth of many
cancers (Cortes-Cros et al., 2013; Israelsen et al., 2013; Wang
et al., 2014; Lunt et al., 2015; Dayton et al., 2016a, 2018; Lau
et al., 2017; Tech et al., 2017; Hillis et al., 2018). In aggregate,
the consensus seems to be that the lower the pyruvate kinase
activity, the greater the stimulation of tumor growth. As discussed
in the section below entitled “Evidence Showing That Pyruvate
Kinase Inhibition Does Not Lead to a Proportional Decrease in
Pyruvate/Lactate Formation,” even those cells exhibiting low—or
even undetectable—pyruvate kinase activity still produce lactate,
which begs the question: where does this lactate come from?

EVIDENCE SHOWING THAT PYRUVATE
KINASE INHIBITION DOES NOT LEAD
TO A PROPORTIONAL DECREASE IN
PYRUVATE/LACTATE FORMATION

In Cortes-Cros et al. (2013), it was shown that knockdown of
both PKM1 and PKM2 (PKM2 knockdown was on the order
of > 95%) leading to an approximately fivefold decrease in overall
pyruvate kinase activity yielded only a ∼50% decrease in the
appearance of 13C originating from glucose to lactate.

In Chaneton et al. (2012), silencing of both PKM1 and PKM2
to an extent greater than 90% led to only a ∼30% decrease
in pyruvate and lactate production, while PEP concentration
increased by 100%.
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FIGURE 1 | Biochemical pathways connecting glucose or other metabolites to pyruvate and L- or D-lactate. The box in magenta represents a mitochondrion.
Glycolysis is highlighted in green. Metabolites found both inside and outside the mitochondria that are not connected with an arrow are highlighted in matching
striped colors (to avoid arrow clutter). For abbreviations, see Table 1.

In Vander Heiden et al. (2010), it was shown that cancer cell
lysates expressing no pyruvate kinase activity produced 50% of
pyruvate from PEP compared with the total cell lysates. Although
in this work it was postulated that phosphate from PEP is
transferred to the catalytic histidine on human PGAM1, this
claim was subsequently rejected by the same authors, attributing
their earlier findings to contaminating ATP−dependent protein
kinases (Hosios et al., 2015).

In all of the abovementioned studies, it was assumed that, in
view of severely diminished pyruvate kinase activity, pyruvate
and lactate production is attributed to carbon sources other
than glucose. Indeed Yu et al. (2019), determined that, in
pancreatic ductal adenocarcinoma cells with PKM1 and PKM2
knockdown, cysteine catabolism generated∼20% of intracellular
pyruvate. The purpose of the present review is to not only outline
these pathways but also show additional ways for obtaining
13C labeling in pyruvate or lactate originating from glucose;
furthermore, since some of these pathways involve intermediates

that transit through the matrix, the role of the mitochondria
is emphasized, which is unrelated to the concept of oxidative
phosphorylation.

PATHWAYS LEADING TO PYRUVATE
COMMENCING FROM GLUCOSE:
INTERMEDIATES NOT TRANSITING
THROUGH THE MITOCHONDRIA

The pathways shown in this section refer to Figure 2 (lavender
arrows). Multiple arrows imply multiple biochemical steps.

(1) Glc + PEP → Glc-6-P + pyruvate: This reaction
is catalyzed by glucose-6-phosphatase (G6PC) (Nordlie, 1974;
Colilla et al., 1975) (for abbreviations, see Table 1). In
humans, G6PC expression was reported to be elevated in
GBM when compared with normal brain (Abbadi et al., 2014),
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FIGURE 2 | Pathways leading to pyruvate commencing from glucose, highlighted in lavender: intermediates not transiting through the mitochondria. For
abbreviations, see Table 1.

while in rodent hepatomas it was found to be decreased
(Weber and Cantero, 1955).

(2) Glc →→→ methylglyoxal →→→ pyruvate: This
may occur through four different routes involving aldehyde
dehydrogenase 9, zinc binding alcohol dehydrogenase domain
containing two [more recently renamed to prostaglandin
reductase 3 (Yu et al., 2013)] and at least two oxoaldehyde
dehydrogenases; for details, see Vander Jagt and Hunsaker (2003).
Methylglyoxal has been reported to trigger metastasis in breast,
anaplastic thyroid, and colorectal cancer (Chiavarina et al., 2017;
Antognelli et al., 2019; Nokin et al., 2019).

(3) Glc →→→ PEP → pyruvate: the terminal reaction
is catalyzed by tartrate-resistant acid phosphatases (TRAP),
the molecular identity of which remained unknown well after
their biochemical characterization (Helwig et al., 1978; Chen
and Chen, 1988; Hayman et al., 1989); they are most likely
substantiated by a metalloprotein enzyme with the ability to
catalyze the hydrolysis of orthophosphate monoesters under
acidic conditions (Bull et al., 2002). The expression of this enzyme

(TRAP) is a marker of bone disease in cancer patients (Nguyen
et al., 1991; Koizumi and Ogata, 2002; Mose et al., 2003; Terpos
et al., 2003; Chao et al., 2005).

(4) Glc →→→ PEP; PEP + GalNAc → GalNAc-
1P + pyruvate: Terminal reaction catalyzed by
N-acetylgalactosamine kinase isoforms 1 or 2 (Pastuszak
et al., 1996). These enzymes are implicated in many signaling
pathways inherent to carcinogenesis (Zeidan and Hart, 2010).

(5) Glc →→→ 3-PG → 2-PG (by phosphoglucomutase
1 or 2) → glycerate [probably through 2-phosphoglyceric
acid phosphatase (Baranowski et al., 1968)] → 3-OH-pyr [by
glyoxylate reductase (Mdluli et al., 2005)]; 3-OH-pyr + Ala (or
glyoxylate) → Gly + pyruvate (or Ser): the terminal reaction
is catalyzed by alanine-glyoxylate aminotransferase (Danpure
et al., 2003). The mitochondrial isoform of the latter enzyme
(alanine-glyoxylate aminotransferase isoform 2, AGXT2) has
been reported to form glycine and pyruvate from alanine
and glyoxylate; this reaction has been confirmed in normal
tissues (Holmes and Assimos, 1998) and HepG2 cancer cells
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TABLE 1 | Abbreviations.

2-Oxoglrm 2-oxoglutaramate (a-ketoglutaramate)

2-PG 2-Phosphoglycerate

3-OH-pyr 3-hydroxypyruvate

3-PG 3-Phosphoglycerate

4-OH-proline 4-hydroxyproline

5-10 mTHF 5-10 methylene-Tetrahydrofolate

ACLY ATP Citrate Lyase

ACO Aconitase

ADH Alcohol Dehydrogenase

AGXT Alanine-glyoxylate Aminotransferase

aKG a-ketoglutarate

Ala Alanine

ALXT Alanine-Ketomalonate Transaminase

Aml Aminomalonate

Asn Asparagine

Asp Aspartate

cADC cis-Aconitate Decarboxylase

CLYBL Citramalyl-CoA Lyase

CS Citrate Synthase

CYB5D1 Cytochrome B5 Domain-Containing Protein 1

Cys Cysteine

D2HGDH D-2-Hydroxyglutarate Dehydrogenase

DAAO D-amino acid Oxidase

D-LDH D-Lactate Dehydrogenase

FAHD Acylpyruvase

FH Fumarate Hydratase

Fum Fumarate

G6PC Glucose 6 phosphatase

GALK N-acetylgalactosamine Kinase

GalNAc N-Acetylgalactosamine

GalNAc-1-P N-Acetylgalactosamine-1-Phosphate

GAPDH Glyceraldehyde 3 Phosphate Dehydrogenase

Glc Glucose

Glc-6-P Glucose-6-phosphate

Gln Glutamine

Glu Glutamate

GLUD Glutamate Dehydrogenase

Gly Glycine

Gly-3-P Glyceraldehyde-3-Phosphate

GLYCTK Glycerate Kinase

GOT Aspartate Aminotransferase

GPAT Glutamine-Pyruvate Transaminase

GPT Alanine Aminotransferase

GRHPR Glyoxylate Reductase

HAO Hydroxyacid Oxidase

IDH Isocitrate Dehydrogenase

Ile Isoleucine

KGDHC a-Ketoglutarate Dehydrogenase Complex

LAAO L-amino-acid Oxidase

LDH Lactate Dehydrogenase

Leu Leucine

Mal Malate

MDH Malate Dehydrogenase

ME Malic Enzyme

MGTK Methylglutaconase

(Continued)

TABLE 1 | Continued

MPC Mitochondrial Pyruvate Carrier

mTHF methyl-Tetrahydrofolate

OAA Oxaloacetate

Oml Oxomalonate

PCK Phosphoenolpyruvate Carboxykinase

PCK Pyruvate Carboxylase

PDHC Pyruvate Dehydrogenase Complex

PEP Phosphoenolpyruvate

PGM Phosphoglucomutase

PGPase 2-phosphoglyceric acid Phosphatase

Phe Phenylalanine

PHGDH Phosphoglycerate Dehydrogenase

Php Phosphohydroxypyruvate

PKM2 Pyruvate Kinase isoform M2

PL Phospholipids

PPP Pentose Phosphate Pathway

PSAT Phosphoserine Aminotransferase

Pser Phosphoserine

PSPH Phosphoserine Phosphatase

pyr Pyruvate

Q Quinone

QH2 Quinol

SDH Succinate Dehydrogenase

SDS Serine Dehydratase

Ser Serine

SHMT Serine Hydroxymethyltransferase

SUCL Succinate-CoA Ligase

THF Tetrahydrofolate

Thr Threonine

TR-Pase Tartrate-resistant acid Phosphatase

Tyr Tyrosine

Val Valine

(Baker et al., 2004). The same reaction has been reported to take
place in peroxisomes (Poore et al., 1997). On the other hand,
loss of alanine-glyoxylate aminotransferase (AGXT) expression
has been reported to accelerate the progression of hepatocellular
carcinoma (Sun et al., 2019). A “futile cycle” may exist between
3-PG and glycerate through 2-phosphoglyceric acid phosphatase
and glycerate kinase 1 and 2; glycerate kinase 2 is also found in
the mitochondria (Guo et al., 2006).

(6) Glc →→→ 3-PG → phosphohydroxypyruvate (Php),
catalyzed by phosphoglycerate dehydrogenase; Php + Ala →
phosphoserine (Pser) + pyruvate, catalyzed by phosphoserine
aminotransferase (PSAT) (Hirsch and Greenberg, 1967): PSAT
overexpression is associated with increased tumorigenicity in
human esophageal squamous cell carcinoma (Liu et al., 2016)
and colon carcinomas (Yoon et al., 2015) and a poor outcome
on tamoxifen therapy in recurrent breast cancer (De Marchi
et al., 2017); conversely, its selective loss suppresses migration,
invasion, and experimental metastasis in triple negative breast
cancer (Metcalf et al., 2020).

(7) Glc→→→ 3-PG→Php (catalyzed by phosphoglycerate
dehydrogenase); Php + Ala (or Glu) → Pser + pyruvate
(or →Kg); the latter reaction is catalyzed by phosphoserine
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aminotransferase; Pser → Ser → pyruvate, catalyzed by serine
dehydratase (Ogawa et al., 2006) or serine dehydratase-like
(SDSL) (Ogawa et al., 2006). Notably, SDS was reported to be
absent from human colon carcinomas (Snell et al., 1988).

(8) Glc →→→ Glyoxal →→→ glyoxylate (Lange et al.,
2012); glyoxylate + 3-OH-pyr (or Ala) → Gly + pyruvate
(or Ser): the terminal reaction is catalyzed by AGXT (for
considerations related to cancer, see pathway no. 5).

(9) Glc→→→ 3-PG→Php (catalyzed by phosphoglycerate
dehydrogenase); Php + Glu → Pser + →Kg; latter reaction
catalyzed by phosphoserine aminotransferase; →Kg + Ala →
Glu+ pyruvate, catalyzed by alanine aminotransferase (GPT; for
considerations related to cancer, see pathway no. 6).

PATHWAYS LEADING TO PYRUVATE
COMMENCING FROM GLUCOSE:
INTERMEDIATES TRANSITING
THROUGH THE MITOCHONDRIA

These pathways depend on one or more of three critical
parameters: (1) glyoxylate entry into the mitochondria, (2)
reversibility of the matrix phosphoenolpyruvate carboxykinase
(PCK2), and (3) reversibility of the mitochondrial pyruvate
carrier (MPC). Regarding glyoxylate, I was unable to find
information on its transport across the inner mitochondrial
membrane; however, it is known that it can be processed by
the matrix-localized AGXT2 (Kakimoto et al., 1969). PCK2
expression and activity level are critical for many cancer types:
in tumor-initiating enriched prostate cancer cell clones, PCK2
was overexpressed, and this correlated with more aggressive
tumors and lower survival rates (Zhao et al., 2017); in lung
cancer cell lines and in non-small cell lung cancer samples,
PCK2 expression and activity were enhanced under low-glucose
conditions (Leithner et al., 2015); finally, it was reported
that PCK2 is required for glucose-independent cancer cell
proliferation and tumor growth in vivo (Vincent et al., 2015).
Regarding PCK2 reversibility, the enzyme has been shown to
operate in the reaction toward OAA synthesis in mitochondria
from rabbit liver (Carlsen et al., 1988), pigeon and rat liver
(Wiese et al., 1996), guinea pig liver (Garber and Ballard, 1970;
Garber and Salganicoff, 1973), rabbit enterocytes (Wuensch and
Ray, 1997), chicken liver (Hebda and Nowak, 1982; Makinen
and Nowak, 1983; Wilson et al., 1983; Erecinska and Wilson,
1984), and bullfrog liver (Goto et al., 1980). However, in Vincent
et al. (2015), it was shown that a fraction of pyruvate originated
from glutamine from PEP through PCK2. With respect to the
reversibility of the MPC, this is a working hypothesis because
there are no data showing pyruvate release from normally
polarized mitochondria. Nevertheless, this is not a far-fetched
hypothesis: succinate and other metabolites are effluxed from the
mitochondria for non-metabolic roles against a hyperpolarized
membrane potential (Mills et al., 2016), demonstrating that
this is possible under appropriate conditions. It may be
also relevant that pyruvate catabolism through the pyruvate
dehydrogenase complex is associated with suppression of tumor

growth in vitro and in vivo (Michelakis et al., 2008); relevant
to this, genes coding for both the pyruvate dehydrogenase
complex and pyruvate carboxylase in certain cancers are usually
downregulated (Yuen et al., 2016); furthermore, pyruvate is
found in blood plasma, urine, and cerebrospinal fluid, and
its presence there is not associated with damage of plasma
membranes. Of course, this does not mean that extracellular
pyruvate originated from the mitochondria, but it indicates that
it can cross the plasma membrane through monocarboxylate
transporters, some of which are distributed both in plasma and
in the inner mitochondrial membrane (Hussien and Brooks,
2011); indeed monocarboxylate transporter 1, which is one of
the four known pyruvate transport mechanisms, was recently
shown to export pyruvate from the cell (Hong et al., 2016);
however, mitochondrial pyruvate export remains hypothetical
especially in view of the fact that its exit is influenced by the
membrane potential and →pH. It was also recently reported
that loss of an MPC isoform prior to a tumorigenic stimulus
doubled the frequency of adenoma formation and produced
higher-grade tumors, and this was associated with a glycolytic
metabolic phenotype and increased expression of stem cell
markers (Bensard et al., 2020). Mindful of the above, these
pathways are as shown in Figure 3 (yellow arrows).

(10) Glc→→→ glyoxal→→→ glyoxylate: Glyoxylate enters
the mitochondria; glyoxylate + Ala→ Gly + pyruvate through
AGXT2. Pyruvate may exit the mitochondria through the MPC
(for considerations related to cancer, see pathway no. 5).

(11) Glc →→→ PEP which enters the mitochondria;
PEP transport across the inner membrane of mammalian
mitochondria has been demonstrated to occur by the
tricarboxylate carrier by Robinson (1971) and the group of
Soling et al. (1971) and Kleineke et al. (1973) and to a lesser
extent by the adenine nucleotide carrier, shown by the Shug
and Shrago (1973); Sul et al. (1976) and in Drahota et al. (1983)
and reviewed in Passarella et al. (2003). The possibility of a
PEP/pyruvate transporter has also been put forward (Satrustegui
et al., 2007). More recently, PEP cycling via mitochondrial
PEPCK evoking PEP transport across the inner mitochondrial
membrane has also been demonstrated by the group of Kibbey
(Stark et al., 2009); PEP → OAA by PCK2; OAA → pyruvate
by reverse operation of PC. However, this is expected to
be a very minor path. Pyruvate may exit the mitochondria
through the MPC.

(12) Glc→→→ PEP; PEP enters the mitochondria through
the means outlined in pathway 11. PEP→ OAA by PCK2; OAA
→ pyruvate by FAHD1 (Pircher et al., 2011, 2015). FAHD1 also
converts 3-acylpyruvate, acetylpyruvate, and fumarylpyruvate
to pyruvate (Pircher et al., 2011). It is not known where
acetylpyruvate comes from, but its existence is known since
Krebs reported it (Krebs and Johnson, 1937). Pyruvate may
exit the mitochondria through the MPC. FAHD1 depletion
has been shown to induce premature senescence in human
endothelial cells by inhibiting mitochondrial metabolism (Petit
et al., 2017); however, this might be a double-edged sword
since OXPHOS capacity has been inversely correlated with
malignancy in several cell types (Zhou et al., 2003; Matoba et al.,
2006; Hu et al., 2012; Hall et al., 2013; Bartesaghi et al., 2015;
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FIGURE 3 | Pathways leading to pyruvate commencing from glucose, highlighted in yellow: intermediates transiting through the mitochondria. For abbreviations, see
Table 1.

Nicolay et al., 2015; Capala et al., 2016; Smith et al.,
2020).

(13) Glc→→→ PEP; PEP enters the mitochondria through
the means outlined in pathway 11; PEP→ OAA by PCK2; OAA
→ Mal by MDH2; Mal → pyruvate by ME2,3 (Zelewski and
Swierczynski, 1991). Pyruvate may exit the mitochondria through
the MPC. ME2 knockdown suppresses tumor growth in lung
cancer (Ren et al., 2014), while ME2,3 deletions confer lethality
in pancreatic cancer (Dey et al., 2017).

(14) Glc→→→ PEP; PEP enters the mitochondria through
the means outlined in pathway 11; PEP → OAA by PCK2;
OAA → Mal by MDH2; Mal exits the mitochondria; Mal →
pyruvate by ME1 (Zelewski and Swierczynski, 1991; Loeber et al.,
1994). ME1 knockdown inhibits the growth of colon cancer
cells (Murai et al., 2017), and its overexpression is associated
with larger breast tumor size, higher incidence of lymph node
metastasis, and higher incidence of lymph–vascular invasion
(Liu C. et al., 2020). In the same line, ME1 is associated
with tumor budding—a phenomenon representing epithelial

to mesenchymal transition—in oral squamous cell carcinomas
(Nakashima et al., 2020).

(15) Glc →→→ PEP; PEP enters the mitochondria
through the means outlined in pathway 11; PEP → OAA
by PCK2; OAA + acetyl-CoA → citrate by CS; citrate
exits the mitochondria through the dicarboxylate carrier;
citrate + ATP + CoASH → acetyl-coA + ADP + Pi + OAA
by ACLY (Chypre et al., 2012); OAA → Mal by MDH1; Mal
→ pyruvate by ME1 (for considerations related to cancer, see
pathway no. 14).

(16) Glc→→→ PEP; PEP enters the mitochondria through
the means outlined in pathway 11; PEP → OAA by PCK2;
OAA + Glu → →Kg + Asp by GOT2; Asp exits the
mitochondria; Asp + →Kg → Glu + OAA by GOT1; OAA
→ Mal by MDH1; Mal→ pyruvate by ME1 (for considerations
related to cancer, see pathway no. 14).

(17) Glc→→→ PEP; PEP enters the mitochondria through
the means outlined in pathway 11; PEP → OAA by PCK2;
OAA + acetyl-CoA → citrate by CS; citrate → cis-aconitate,
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intermediate of ACO2 reaction; cis-aconitate → itaconate by
cADC; itaconate + CoASH + ATP (or GTP) → itaconyl-
CoA + Pi + ADP (or GDP) by SUCL (Nemeth et al., 2016);
itaconyl-CoA→ citramalyl-CoA by methylglutaconase (MGTK);
citramalyl-coA → acetyl-CoA + pyruvate by CLYBL (Shen
et al., 2017). Pyruvate may exit the mitochondria through the
MPC. CLYBL has been reported to be associated with colorectal
cancer metastasis (Li and Peng, 2013). Furthermore, CLYBL was
reported to be overexpressed in 465 out of 38,258 tumor samples
in the COSMIC database8.

PATHWAYS LEADING TO PYRUVATE
BUT NOT COMMENCING FROM
GLUCOSE: INTERMEDIATES NOT
TRANSITING THROUGH THE
MITOCHONDRIA

These pathways are shown in Figure 4 (green arrows).
(18) Ser → pyruvate, catalyzed by SDS or SDSL (for

considerations related to cancer, see pathway no. 6).
(19) Ser →→→ PEP; PEP → pyruvate; terminal reaction

catalyzed by tartrate-resistant acid phosphatase (TR-Pases; for
considerations related to cancer, see pathway no. 3).

(20) Ser →→→ PEP; PEP + GalNAc → GalNAc-
1P + pyruvate. The terminal reaction is catalyzed by
N-acetylgalactosamine kinase isoforms 1 or 2 (for considerations
related to cancer, see pathway no. 4).

(21) Ala → pyruvate, catalyzed by L-amino-acid oxidases
(LAAO) (Nakano et al., 1967): Several mammalian LAAOs have
been described, of which the enzyme “interleukin-4 induced gene
1” (IL4I1) is the best characterized (Castellano and Molinier-
Frenkel, 2017); IL4I1 expression was reported to be associated
with poor prognosis in human breast cancers (Finak et al., 2008).

(22) Ala + 2-oxoglrm → Gln + pyruvate, catalyzed by
glutamine-pyruvate transaminase (GPAT) (Cooper and Meister,
1972; Cooper and Kuhara, 2014). GPAT is upregulated in many
cancers in a MYC-dependent manner (Dong et al., 2020).

(23) Ala + 2-Oml→ Aml + pyruvate, catalyzed by alanine-
ketomalonate transaminase (ALXT) (Nagayama et al., 1958). I
was unable to find relevant literature on ALXT expression or
aminomalonate levels and cancer.

(24) Ala + αKg → Glu + pyruvate, catalyzed by GPT:
GPT—similar to GPAT—is upregulated in many cancers in a
MYC-dependent manner (Dong et al., 2020).

(25) Ala + OAA → Asp + pyruvate; enzyme unknown
(Rowsell, 1956).

(26) Ala + Glyoxylate → Gly + pyruvate, catalyzed by
alanine-glyoxylate aminotransferase (for considerations related
to cancer, see pathway no. 5).

(27) Ala+ 3-OH-pyr→ Ser+ pyruvate, catalyzed by alanine-
glyoxylate aminotransferase (for considerations related to cancer,
see pathway no. 5).

(28) Thr → Gly + acetaldehyde, catalyzed by SHMT1
(Garrow et al., 1993; Pinthong et al., 2014); Gly + 5,10 mTHF

8https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=CLYBL

→ THF + Ser, catalyzed by serine hydroxymethyltransferase 1;
Ser→ pyruvate, catalyzed by SDS or SDSL. SHMT1 knockdown
induces apoptosis in lung cancer cells (Paone et al., 2014), and
SHMT inhibitors block the growth of many human cancer cells
(Ducker et al., 2017). Patients with high SHMT2 expression
exhibit a shorter overall survival rate compared with patients with
low expression (Koseki et al., 2018; for further considerations
related to SDS or SDSL and cancer, see pathway no. 6).

(29) Asp + αKg → Glu + OAA, catalyzed by GOT1; OAA
→ Mal by MDH1; Mal→ pyruvate by ME1 (for considerations
related to cancer, see pathway no. 14).

(30) 4-OH-proline →→→ pyruvate, through glyoxylate
formation (see pathway no. 26).

(31) Cys →→→ pyruvate through the sulfinate pathway
(Stipanuk, 1979, 2020). Notably, in pancreatic cancer cells
exhibiting PKM1/2 knockdown, 20% of intracellular pyruvate
originated from cysteine (Yu et al., 2019). The contribution
of cysteine catabolism to cancer has been extensively reviewed
by Serpa (2020).

(32) Cys → 3-sulfino-L-alanine catalyzed by aspartate
4-decarboxylase (Liu et al., 2012); 3-sulfino-L-alanine is
transaminated to 3-sulfinopyruvate by either aspartate
aminotransferase or deaminated to the same product by
cysteine sulfinic acid deaminase; 3-sulfinopyruvate is non-
enzymatically converted to sulfite and pyruvate (Stipanuk, 2020;
for considerations related to cancer, see pathway no. 31).

(33) Cys →→→ H2S + pyruvate through the 3-
mercaptopyruvate pathway (Nagahara and Sawada, 2006). Cys
can also transaminate with →-ketoglutarate to form glutamate
and 3-mercaptopyruvate though GOT1, exhibiting cysteine
transaminase activity. The catabolism of 3-mercaptopyruvate
toward pyruvate is outlined in the reactions below (pathway no.
34; for considerations related to cancer, see pathway no. 31).

(34) L-cysteine is isomerized to D-cysteine by cysteine
racemase (2-amino-3-mercaptopropionic acid racemase) (Soda
and Osumi, 1969); D-Cys is converted to 3-mercaptopyruvate by
D-amino acid oxidase and, in turn, to pyruvate and H2S by 3-
mercaptopyruvate sulfurtransferase (3MST) (Shibuya et al., 2013)
or thiosulfate sulfurtransferase (TST) (Pallini et al., 1991). The
possibility of conversion of D-Cys to pyruvate by D-cysteine
desulfhydrase (Nagasawa et al., 1985) in mammalian cells is
yet to be reported. 3-Mercaptopyruvate can also react with
hydrogen cyanide, forming pyruvate and thiocyanate in a
reaction catalyzed by 3MST or TST; obviously, this is only a
very minor route of pyruvate production due to cyanide toxicity
(Bhandari et al., 2014; for further considerations related to cancer,
see pathway no. 31).

(35) Ser → dehydroalanine (2-aminoacrylate) by serine
dehydratase (SDS), serine dehydratase-like protein (SDSL), or
serine racemase (SRR): Dehydroalanine can further hydrolyze
to NH3 and pyruvate through SDS, SDSL, or SRR (Kashii
et al., 2005); sometimes this reaction is referred to as hydrolysis
by “2-aminoacrylate aminohydrolase.” Dehydroalanine can also
spontaneously hydrolyze to NH3 and pyruvate through the
intermediate 2-iminopropanoate; the latter later part of this
spontaneous hydrolysis can be accelerated by 2-iminopropanoate
deaminase (Lambrecht et al., 2012). Dehydroalanine can also
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FIGURE 4 | Pathways leading to pyruvate but not commencing from glucose, highlighted in green: intermediates not transiting through the mitochondria. For
abbreviations, see Table 1.

be derived from 2 3,5-diiodo-L-tyrosine or 3,5-diiodo-L-tyrosine
by thyroid peroxidase in the process of forming thyroxine and
triiodothyronine, respectively (Gavaret et al., 1980). The crucial
importance of serine metabolism for the growth and survival of
proliferating cells is extensively reviewed in Yang and Vousden
(2016) and Newman and Maddocks (2017).

(36) Se-methyl-L-selenocysteine
(SeMSC, Se-methylselenocysteine, methyl
selenocysteine) can be deaminated to methaneselenol, NH3,
and pyruvate by selenocysteine lyase (Esaki et al., 1982). SeMSC
can be found in many edible plants, including garlic, onions,
and broccoli, as well as in dietary supplements (Yang and Jia,
2014). SeMSC was shown to exhibit anticarcinogenic properties
(Ip et al., 1991; Medina et al., 2001) and even potentiate the
antitumor activity of anticancer drugs (Cao et al., 2014).

(37) Val →→→ 2-methyl-3-oxopropanoate; 2-methyl-3-
oxopropanoate can get transaminated with alanine by AGXT2 to
D-3-amino-isobutanoate+ pyruvate (Kakimoto et al., 1969). The
overexpression of enzymes participating in valine catabolism is

associated with poor prognosis in prostate cancer (Mayers et al.,
2016) and tumors of the colon (Shan et al., 2019). The role of
valine in cancer has been extensively reviewed in Ananieva and
Wilkinson (2018) and Lieu et al. (2020).

(38) Leu →→→ 3-methylbutanoyl-CoA; the latter
compound is converted to isobutyryl-CoA through
branched-chain fatty acid metabolism (many steps);
isobutyryl-CoA →→→ 2-methyl-3-oxopropanoate; 2-methyl-
3-oxopropanoate can get transaminated with alanine by
AGXT2 to D-3-amino-isobutanoate + pyruvate (Kakimoto
et al., 1969). Because leucine catabolism shares many steps
with that of valine, for considerations related to cancer,
see pathway no. 37.

(39) Ile→→→ 2-methylbutanoyl-CoA; the latter compound
is converted to isobutyryl-CoA through branched-chain
fatty acid metabolism (many steps); isobutyryl-CoA →→→
2-methyl-3-oxopropanoate; 2-methyl-3-oxopropanoate can
get transaminated with alanine by AGXT2 to D-3-amino-
isobutanoate + pyruvate (Kakimoto et al., 1969). Because
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FIGURE 5 | Pathways leading to pyruvate but not commencing from glucose, highlighted in blue: intermediates transiting through the mitochondria. For
abbreviations, see Table 1.

isoleucine catabolism shares many steps with that for valine, for
considerations related to cancer, see pathway no. 37.

(40) Pro + αKg + O2 → CO2 + succinate + trans-4-
hydroxy-L-proline, catalyzed by prolyl 4-hydroxylase subunit
alpha (isoforms 1, 2, or 3); trans-4-hydroxy-L-proline is
then converted to L-1-pyrroline-3-hydroxy-5-carboxylate, also
yielding NAD(P)H, by either pyrroline-5-carboxylate reductase
(isoforms 1, 2, or 3) or left–right determination factor 1
(LEFTY1), a member of the TGF-→ family of proteins;
L-1-pyrroline-3-hydroxy-5-carboxylate can be converted to
L-erythro-4-hydroxyglutamate, also yielding NAD(P)H, by
aldehyde dehydrogenase 4 family member A1; in turn, L-erythro-
4-hydroxyglutamate is transaminated with either OAA by GOT2,
yielding 4-hydroxy-2-oxoglutarate + aspartate, or →Kg by
GOT1 or GOT2, yielding 4-hydroxy-2-oxoglutarate+ glutamate;
finally, 4-hydroxy-2-oxoglutarate is converted to glyoxylate
and pyruvate by 4-hydroxy-2-oxoglutarate glyoxylate-lyase.
It is relevant that increased proline catabolism has been
recently reported to support metastasis (Elia et al., 2017).
Arg, through either interconversion to metabolites as for
proline catabolism or through citrulline/ornithine and the

fumarate nucleotide cycle will also lead to pyruvate formation;
however, this probably requires inter-organ communication
and, thus, may not be found within a single cell. The
crucial role of proline catabolism in tumor growth and
metastatic progression is extensively reviewed in Phang (2019)
and D’Aniello et al. (2020).

PATHWAYS LEADING TO PYRUVATE
BUT NOT COMMENCING FROM
GLUCOSE: INTERMEDIATES
TRANSITING THROUGH THE
MITOCHONDRIA

These pathways are shown in Figure 5 (blue arrows).
(41) Thr→→→ acetyl-CoA; acetyl-CoA + OAA→ citrate,

catalyzed by CS; citrate exits the mitochondria through the
dicarboxylate carrier; citrate + ATP + CoASH → Acetyl-
coA + ADP + Pi + OAA by ACLY (Chypre et al., 2012);
OAA → Mal by MDH1; Mal → pyruvate by ME1. The
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FIGURE 6 | Pathways leading to L- and D-lactate, including those not going through lactate dehydrogenase, highlighted in brown. For abbreviations, see Table 1.

potential role of threonine catabolism in cancer is reviewed in
Tsun and Possemato (2015) and Lieu et al. (2020) (for further
considerations regarding ME1 and cancer, see pathway no. 14).

(42) Thr →→→ acetyl-CoA; acetyl-CoA + OAA →
citrate, catalyzed by CS; citrate → cis-aconitate, intermediate
of ACO2 reaction; cis-aconitate → itaconate by cADC;
itaconate + CoASH + ATP (or GTP) → itaconyl-
CoA + Pi + ADP (or GDP) by SUCL; itaconyl-CoA
→ citramalyl-CoA by MGTK; citramalyl-coA → acetyl-
CoA + pyruvate by CLYBL. Pyruvate may exit the mitochondria
through the MPC (regarding threonine and cancer, see pathway
no. 41; regarding CLYBL and cancer, see pathway no. 17).

(43) Asn→→→ Asp; Asp + αKg→ Glu + OAA by GOT2;
OAA by PCK2; OAA → pyruvate by reverse operation of PC.
However, this is expected to be a path of a very minor flux.
Pyruvate may exit the mitochondria through the MPC. The
crucial role of asparagine availability in cancer is explored in
Panosyan et al. (2014); Krall et al. (2016), and Knott et al. (2018).
However, more emphasis on asparagine availability for anabolic,
rather than catabolic, purposes is given.

(44) Asn→→→ Asp; Asp + αKg→ Glu + OAA by GOT2;
OAA→ pyruvate by acylpyruvase (FAHD1). Pyruvate may exit
the mitochondria through the MPC (for considerations related to
cancer, see pathways no. 12 and 37).

(45) Asn→→→ Asp; Asp + αKg→ Glu + OAA by GOT2;
OAA → Mal by MDH2; Mal → pyruvate by ME2,3. Pyruvate
may exit the mitochondria through the MPC (for considerations
related to cancer, see pathways no. 13 and 37).

(46) Asn →→→ Asp; Asp + αKg → Glu + OAA by
GOT2; OAA→Mal by MDH2; Mal exits the mitochondria; Mal
→ pyruvate by ME1 (for considerations related to cancer, see
pathways no. 14 and 37).

(47) Tyr, Phe →→→ Fum; Fum → Mal by FH; Mal →
pyruvate by ME2,3 (for considerations related to cancer, see
pathway no. 13).

(48) Tyr, Phe →→→ Fum; Fum → Mal by FH; Mal exits
the mitochondria; Mal→ pyruvate by ME1 (for considerations
related to cancer, see pathway no. 14).

(49) Tyr, Phe→→→ Fum; Fum→Mal by FH; Mal→ OAA
by MDH2; OAA→ pyruvate by acylpyruvase (FAHD1). Pyruvate
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may exit the mitochondria through the MPC (for considerations
related to cancer, see pathway no. 12).

(50) Thr→→→ acetyl-CoA; acetyl-CoA + OAA→ citrate,
catalyzed by CS; citrate exits the mitochondria through the
dicarboxylate carrier; citrate + ATP + CoASH → acetyl-
coA + ADP + Pi + OAA by ACLY; OAA → PEP by PCK1;
PEP enters the mitochondria; PEP → OAA by PCK2; OAA
→ pyruvate by acylpyruvase (FAHD1). Pyruvate may exit the
mitochondria through the MPC (for considerations related to
cancer, see pathway no. 12).

(51) Thr→→→ acetyl-CoA; acetyl-CoA + OAA→ citrate,
catalyzed by CS; citrate exits the mitochondria through the
dicarboxylate carrier; citrate + ATP + CoASH → acetyl-
coA + ADP + Pi + OAA by ACLY; OAA → PEP by PCK1;
PEP enters mitochondria; PEP→ OAA by PCK2; OAA→ Mal
by MDH2; Mal → pyruvate by ME2,3. Pyruvate may exit the
mitochondria through the MPC (for considerations related to
cancer, see pathway no. 13).

(52) Thr→→→ acetyl-CoA; acetyl-CoA + OAA→ citrate,
catalyzed by CS; citrate exits the mitochondria through the
dicarboxylate carrier; citrate + ATP + CoASH → acetyl-
CoA+ ADP+ Pi+OAA by ACLY; OAA→ PEP by PCK1; PEP
enters the mitochondria; PEP→ OAA by PCK2; OAA→ Mal
by MDH2; Mal exits the mitochondria; Mal→ pyruvate by ME1
(for considerations related to cancer, see pathway no. 14).

(53) Thr→→→ acetyl-CoA; acetyl-CoA + OAA→ citrate,
catalyzed by CS; citrate exits the mitochondria through the
dicarboxylate carrier; citrate + ATP + CoASH → Acetyl-
coA + ADP + Pi + OAA by ACLY; OAA → PEP by PCK1;
PEP + GalNAc → GalNAc-1P + pyruvate. Terminal reaction
catalyzed by N-acetylgalactosamine kinase isoforms 1 or 2 (for
considerations related to cancer, see pathway no. 4).

(54) Thr→→→ acetyl-CoA; acetyl-CoA + OAA→ citrate,
catalyzed by CS; citrate exits the mitochondria through the
dicarboxylate carrier; citrate + ATP + CoASH → acetyl-
coA + ADP + Pi + OAA by ACLY; OAA → PEP by PCK1;
PEP→ pyruvate; the terminal reaction is catalyzed by tartrate-
resistant acid phosphatases (for considerations related to cancer,
see pathway no. 3).

INCOMPLETELY CHARACTERIZED
REACTIONS FORMING PYRUVATE

In the literature, some reactions have been described to
produce pyruvate but are incompletely characterized. These are
collectively listed below:

(55) O-carbamoyl-L-serine + H2O → pyruvate + 2 NH3,
catalyzed by carbamoyl-serine ammonia lyase (Copper and
Meister, 1973). O-Carbamoyl-L-serine is a weak inhibitor of a
phosphate-dependent glutaminase (Shapiro et al., 1979); mindful
of the crucial importance of glutamine catabolism through
glutaminases in many cancer types, this route of pyruvate
provision is probably minor.

(56) L-Cysteine-S-conjugate + H2O → a
thiol + NH3 + pyruvate, catalyzed by cysteine S-conjugate
→-lyases (Cooper and Pinto, 2006). The possibility of

cysteine S-conjugate β-lyases metabolizing anticancer agents is
reviewed in Cooper et al. (2011).

(57) cystathionine + H2O→ L-homocysteine + pyruvate +
NH3 or cysteine + H2O → sulfide + NH3 + pyruvate
or cystine → thiocysteine + pyruvate + NH3, all catalyzed
by cystathionine gamma-lyase (Stipanuk et al., 2006; Chiku
et al., 2009). Cystathionine gamma-lyase was reported to be
upregulated in bone−metastatic PC3 cells, and its knockdown
suppressed tumor growth and metastasis (Wang et al., 2019).
In the same line, this enzyme was shown to be upregulated and
played a crucial role in the proliferation and migration of breast
cancer cells (You et al., 2017).

(58) L-Serine O-sulfate + H2O→ pyruvate + NH3 + sulfate
catalyzed by serine-sulfate ammonia-lyase (Tudball and
Thomas, 1972). I was unable to find relevant literature on
serine-sulfate ammonia-lyase expression or L-serine O-sulfate
levels and cancer.

(59) N-Acetylneuraminate → N-acetyl-D-mannosamine +
pyruvate catalyzed by N-acetylneuraminate lyase (Brunetti et al.,
1962); relevant to this, treatment of HL-60 cells by phorbol
esters leads to a marked increase in the activity of this enzyme
(Warren, 1986).

(60) D-Alanine + H2O + O2 → pyruvate + NH3 + H2O2
catalyzed by DAAO (Nagata et al., 1992; Abe et al., 2005; Fuchs
et al., 2005; Smith et al., 2009). The interaction of D-alanine (and
other D-amino acids) with tumors is reviewed in Bastings et al.
(2019).

(61) L-Alanine → pyruvate + NH3 catalyzed by glutamate
dehydrogenase; this reaction exhibits a weak activity (Silverstein,
1974). The role of glutamate dehydrogenase in cancer cells
has been extensively reviewed in Moreno-Sanchez et al.
(2020).

(62) 2-Oxosuccinamic acid + Ala → Asn + pyruvate,
catalyzed by asparagine aminotransferase (Cooper, 1977; Maul
and Schuster, 1986). The origin of 2-oxosuccinamic acid is not
known (Cooper et al., 1987). I was unable to find relevant
literature on 2-oxosuccinamic acid levels and cancer.

(63) Pyruvate oxime+ acetone→ pyruvate+ acetone oxime,
catalyzed by oximinotransferase (Omura et al., 1956). Due to
acetone volatility, this is probably a very minor pathway for
pyruvate production.

(64) Methylmalonyl-CoA + pyruvate → propionyl-
CoA + oxaloacetate catalyzed by methylmalonyl-CoA
carboxytransferase (Swick and Wood, 1960). This
reaction is reversible and thus may yield pyruvate. I was
unable to find relevant literature on methylmalonyl-CoA
carboxytransferase and cancer.

(65) L-Alanine + 3-oxopropanoate → pyruvate + →-
alanine, catalyzed by either →-alanine-pyruvate transaminase
(Ito et al., 2001) or alanine-glyoxylate aminotransferase isoform
2 (Lee et al., 1995) (for considerations related to cancer,
see pathway no. 5).

(66) Phenylpyruvate + L-alanine → L-phenylalanine +
pyruvate catalyzed by phenylalanine (histidine) transaminase
(Minatogawa et al., 1977). Phenylpyruvate has been reported
to inhibit pyruvate kinase activity in human brain (Weber,
1969), thus enhancing PK-bypassing pathways. Phenylpyruvate
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levels were also found to be increased in ovarian cancers
(Fong et al., 2011).

(67) 2-Oxoisohexanoate+ L-alanine→ L-leucine+ pyruvate,
catalyzed by the mitochondrial branched-chain L-amino acid
aminotransferase (Schadewaldt et al., 1995). The role of
branched-chain L-amino acid aminotransferase in cancer has
been reviewed in Ananieva and Wilkinson (2018).

(68) PCK1, ME1, and ME2,3 may also convert OAA to CO2
and pyruvate (Sauer, 1973; Carlson et al., 1978; Bukato et al.,
1995; Lee et al., 1995) (for considerations related to cancer, see
pathway nos. 13 and 14).

(69) Salsolinol can be converted to salsolinol-1-carboxylate
by salsolinol synthetase which can then be catabolized to
dopamine and pyruvate (by an unknown enzyme); salsolinol
is an endogenous catechol isoquinoline detected in humans
derived from dopamine metabolism (Sandler et al., 1973;
Collins et al., 1979). Salsolinol has been implicated in the
initiation and promotion of alcohol-related breast carcinogenesis
(Murata et al., 2016).

PATHWAYS LEADING TO L-LACTATE
AND D-LACTATE INCLUDING THOSE
NOT GOING THROUGH LACTATE
DEHYDROGENASE

These pathways are shown in Figure 6 (brown arrows).
Lactate—unlike pyruvate—exhibits chirality; thus, it

exists in L- or D- configuration. In humans, a putative
D-lactate dehydrogenase is known to exist (Flick and
Konieczny, 2002; Ewaschuk et al., 2005; Chen et al., 2015).
In metabolomics experiments, it is uncommon to distinguish
between L- and D-lactate even although it is possible by
using special columns. In this section, D- and L-lactate-
forming pathways are outlined, including those not going
through LDH:

(70) D-lactate formation by methylglyoxal and intestinal
flora (Chen et al., 2015) (for considerations related to cancer,
see pathway no. 2).

(71) Pyruvate + QH2 → D-lactate + Q, catalyzed by
D2HGDH in the mitochondrial matrix (Cammack, 1969, 1970).
Mutations in D2HGDH have been reported to be involved in
multiple types of cancers but render the enzyme hypoactive or
inert (Ye et al., 2018); thus, it is unlikely for this route to be
important regarding pyruvate production.

(72) D- (or L-) Lactate + 2 ferricytochrome → 2
ferrocytochrome C + 2 H+ + pyruvate, catalyzed by D-lactate
dehydrogenase; this reaction is mentioned in several databases,
but no reference is given.

(73) D- (or L-) Lactate + 2 ferricytochrome → 2
ferrocytochrome C+ 2 H+ + pyruvate, catalyzed by cytochrome
B5 domain-containing protein 1; this reaction is mentioned in
several databases, but no reference is given.

(74) Pyruvate + NADPH → NADP+ + L-lactate, catalyzed
by ADH (Bosron and Prairie, 1972). The many roles of ADH in
malignant neoplasms have been extensively reviewed in Orywal
and Szmitkowski (2017).

(75) Pyruvate + H2O2 → L-lactate + O2, catalyzed by
hydroxyacid oxidases (HAO1,2,3) (Fry and Richardson,
1979; Vignaud et al., 2007). However, in Jones et al. (2000),
no HAO activity was reported. In primary pancreatic
tumors, HAO3 is strongly downregulated (Thakur et al.,
2008). HAO2 was reported to inhibit the malignancy
of clear cell renal cell carcinoma cells. Overall, it is
unlikely for this to be a substantial pathway in yielding
pyruvate in cancer.

(76) Protein deglycase (E.C. 3.5.1.124) may form D-lactate
from proteins (Richarme et al., 2015; Richarme and Dairou,
2017). Relevant to this, the deglycase DJ-1/Park7 is important for
cancer cell survival (Vasseur et al., 2009).

(77) Methylglyoxal spontaneously forms a hemithioacetal
adduct with GSH; subsequently, glyoxalase I (lactoylglutathione
lyase; EC 4.4.1.5) produces S-D-lactoylglutathione
from this adduct (Thornalley, 1990), and glyoxalase II
(hydroxyacylglutathione hydrolase; EC 3.1.2.6), in turn,
hydrolyzes S-D-lactoylglutathione to D-lactate + GSH
(Cordell et al., 2004) (for considerations related to cancer,
see pathway no. 2).

Finally, it is worth mentioning that LDH may process
substrates other than pyruvate and lactate, interconverting
glyoxylate + NAD+ to oxalate + NADH or α-ketobutyrate to
→-hydroxybutyrate or L-glycerate to hydroxypyruvate (Dawkins
and Dickens, 1965; Kim and Whitesides, 1988).

PATHWAYS LEADING TO PYRUVATE
COMMENCING FROM GLUTAMINE
(GLUTAMINOLYSIS)

It is a well-known fact that most cancer cells grow much better
when feeding media contain glutamine; this spurred from the
pioneering studies of Eagle et al. (1956), showing the dependence
of cancer cells growing in monolayer cultures on glutamine.
The many critical roles of glutamine in tumor metabolism is
reviewed in Altman et al. (2016). From the energetic point
of view it were Reitzer et al. (1979) who first showed that
glutamine, not sugars, is the main energy source in cultured
HeLa cells and that carbon atoms from glutamine incorporate
into lactate, but not more than 13%. Zielke et al. (1980), likewise
reported that human diploid fibroblasts metabolize up to 13%
of media glutamine to lactate. In the same line of thought,
Scott et al. (2011), showed that, in human melanoma cell lines,
glutamine did not significantly label lactate, in agreement with
the data of Ta and Seyfried (2015) reporting that, in a murine
glioblastoma cell line, minimal amounts of lactate derived from
glutamine were detected. Le et al. (2012), as well as Son et al.
(2013) likewise showed that 13C-labeled atoms in glutamine
appear in lactate also to a minimal extent. However, in a study
published by DeBerardinis et al. (2007), ∼60% of the glutamine
metabolized by SF188 cells was claimed to be converted to
lactate, although they seemed to combine this percentage with
that of alanine production. The pathway of converting glutamine
to pyruvate (and lactate), referred to by McKeehan (1982)
as “glutaminolysis,” has been considered a hallmark of tumor
metabolism; however, this is a misconception: in normal tissues,
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FIGURE 7 | Pathways leading to pyruvate commencing from glutamine (glutaminolysis), highlighted in red. For abbreviations, see Table 1.

∼18% of glutamine carbons appear in lactate (Windmueller
and Spaeth, 1974), as opposed to ∼10–13% (or less) in tumor
cells (see the references above). Thus, if anything, cancer cells
exhibit a decrease in glutamine-to-lactate conversion exactly as
anticipated, mindful that glutamine provides both energy and
building blocks for several biosynthetic processes of cancer.
Although glutaminolysis was originally attributed to the pathway
Gln→ Glu→ aKg→ succinyl-CoA→ succinate→ fumarate
→malate (exiting the mitochondria)→ pyruvate (through malic
enzyme), several other routes may also contribute (outlined
below; see Figure 7).

(78) (For the sake of completion, the glutaminolysis
pathway proposed by McKeehan (1982) is repeated in
the present entry) Gln → Glu → aKg → succinyl-CoA
→ succinate → fumarate → malate; malate exits the
mitochondria → pyruvate; this last step is catalyzed by
cytosolic malic enzyme (ME1).

(79) Gln → Glu → aKg → isocitrate → cis-aconitate
→ itaconate by cADC; itaconate + CoASH + ATP
(or GTP) → itaconyl-CoA + Pi + ADP (or GDP)
by SUCL (Nemeth et al., 2016); itaconyl-CoA →

citramalyl-CoA by methylglutaconase (MGTK); citramalyl-
coA → acetyl-CoA + pyruvate by CLYBL (Shen
et al., 2017). Pyruvate may exit the mitochondria
through the MPC.

(80) Gln → Glu → aKg → isocitrate → cis-aconitate →
citrate, exiting the mitochondria→ citrate + ATP + CoASH→

acetyl-coA + ADP + Pi + OAA by ACLY (Chypre et al., 2012);
OAA→Mal by MDH1; Mal→ pyruvate by ME1.

(81) Gln → Glu → aKg → isocitrate → cis-aconitate →
citrate, exiting the mitochondria→ citrate + ATP + CoASH→
acetyl-coA+ADP+ Pi+OAA by ACLY; OAA→ PEP by PCK1;
PEP+GalNAc→GalNAc-1P+ pyruvate. The terminal reaction
is catalyzed by N-acetylgalactosamine kinase isoforms 1 or 2.

(82) Gln → Glu → aKg → isocitrate → cis-aconitate →
citrate, exiting the mitochondria → citrate + ATP + CoASH
→ acetyl-coA + ADP + Pi + OAA by ACLY; OAA → PEP
by PCK1; PEP→ pyruvate; the terminal reaction is catalyzed by
tartrate-resistant acid phosphatases.

(83) Gln → Glu → aKg → succinyl-CoA → succinate →
fumarate→malate→ pyruvate by ME2,3; pyruvate may exit the
mitochondria through the MPC.

(84) Gln → Glu → aKg; aKg transaminates with Asp
forming Glu and OAA, by GOT2; OAA→ pyruvate by FAHD1
(Pircher et al., 2011, 2015); pyruvate may exit the mitochondria
through the MPC.

(85) Gln→ Glu→ aKg; aKg transaminates with Asp forming
Glu and OAA, by GOT2; OAA → Mal by MDH2; Mal exits
the mitochondria; Mal → pyruvate by ME1 (Zelewski and
Swierczynski, 1991; Loeber et al., 1994).

(86) Gln→ Glu→ aKg; aKg transaminates with Asp forming
Glu and OAA, by GOT2; OAA → Mal by MDH2; malate
→ pyruvate by ME2,3; pyruvate may exit the mitochondria
through the MPC.
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ENERGETICS OF GLYCOLYSIS WITH
KINETICALLY INACTIVE PK

Glycolysis yields a net of two ATP molecules per glucose
molecule; however, in view of an inactive PK while pyruvate is
made through PK-bypass pathways, net ATP production from
glycolysis is expected to be zero. Although the importance
of high-energy phosphate generation has been downplayed
in cancer tissues (Vander Heiden et al., 2009), it cannot be
ignored that—according to the BRENDA database—among
the 336 enzymatic reactions requiring ATP in a cell (without
even considering quantitatively important, non-enzymatic
mechanisms such as Na+/K+ ATPase), 125 of them occur
in the cytosol. Clearly, while it is imperative to prevent
phosphofructokinase and hexokinase from ATP-dependent
feedback inhibition and allow a high flux of glycolysis for the
sake of generating intermediates shuttled toward other pathways,
ATP is still needed for many other reactions. Crunching the
numbers regarding cytosolic energetics is a daunting task, but
what is definite is that a cell with nearly zero ATP production
from glycolysis may not harbor ATP-consuming mitochondria,
for whatever reason (hypoxia, mtDNA mutations, etc.). This can
be solved by maintaining the adenine nucleotide translocase
in “forward” mode, i.e., providing ATP to the cytosol which
is made by SUCL supported by glutaminolysis (Chinopoulos
et al., 2010). Production of pyruvate and, therefore lactate is
still maintained by the PK-bypassing pathways so as to thwart a
reductive stress as pyruvate-to-lactate by LDH maintains a low
NADH/NAD+ ratio. Finally, it is important to emphasize that
this lack of ATP generation by glycolysis due to PK inhibition
does not only occur in neoplastic tissues, but it seems to be
a more general pathophysiological mechanism also present in
tissue ischemia: it was recently reported that during acute kidney
injury, PK was inhibited by oxidative/nitrosative stress for the
purpose of diverting glycolytic intermediates toward the pentose
phosphate pathway which, in turn, yielded reducing equivalents
and mounted a better response during the reperfusion phase
where ROS are formed, thus increasing the chances for organ
survival (Zhou et al., 2019).

CONCLUSION

The above considerations aim to (i) highlight that L-lactate can
still be produced from pyruvate using carbon atoms originating
from glucose or other substrates in cells with kinetically
impaired pyruvate kinase and (ii) show that the mitochondria
may contribute to cancer metabolism irrespective of oxidative
phosphorylation by providing means of contributing to pyruvate
production. Having said that, it is important to emphasize that
none of the aforementioned reactions take into account the
potential regulatory effects of metabolites on other reactions
such as those occurring on PK by amino acids (Chaneton et al.,
2012; Yuan et al., 2018). In addition, each enzyme probably
exhibits different kinetic and thermodynamic constraints which
control the overall flux, which also means that many of these
pathways may not operate simultaneously. Such exponentially
increasing complexity of a system precludes the possibility
of predictions and modeling, though I would be happy to
be proven wrong.
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