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Abstract. Trypanosomes compartmentalize most of 
their glycolytic enzymes in a peroxisome-like micro- 
body, the glycosome. The specificity of glycosomal 
targeting was examined by expression of chloramphe- 
nicol acetyltransferase fusion proteins in trypanosomes 
and monkey cells. Compartmentalization was assessed 
by cell fractionation, differential detergent permeabiliza- 
tion, and immunofluorescence. The targeting signal of 
trypanosome phosphoglycerate kinase resides in the 

COOH-terminal hexapeptide, NRWSSL; a basic amino 
acid is not required. The minimal targeting signal is, 
as for mammalian cells, a COOH-terminal tripeptide 
related to -SKL. However, the acceptable degeneracy 
of the signal for glycosomal targeting in trypanosomes 
is considerably greater than that for peroxisomal tar- 
geting in mammals, with particularly relaxed require- 
ments in the penultimate position. 

T HF. trypanosomatid protozoa compartmentalize most 
of their glycolytic enzymes in a microbody, the glyco- 
some (27). The glycosome is clearly evolutionarily 

related to the peroxisomes and glyoxysomes found in yeast, 
insects, mammals, and plants. All have similar morphology 
and behavior in density gradients, and have a subset of 
enzymes in common (3). However, only the glycosome 
contains glycolytic enzymes. While growing in their mam- 
malian host, the pathogenic African trypanosomes are com- 
pletely dependent Upon glycolysis and substrate-level phos- 
phorylation for their energy supply, suggesting glycolysis 
and glycosome assembly as a promising target for chemo- 
therapy (10). 

The uptake of proteins into glycosomes and peroxisomes 
mostly occurs within 5 min of protein synthesis, and is in 
general (although there may be exceptions) not coupled to 
any obligatory posttranslational processing (3, 21). Various 
variants of the COOH-terminal peptide (serine-lysine- 
leucine) (SKL) t are capable of directing foreign proteins 
into the peroxisome-like organelles of mammalian, trypano- 
some, insect, yeast, and plant cells (11, 14, 15) and the 
microbodies of all these species are labeled by an SKL- 
specific antibody (18). However, many peronisomal and 
glycosomal proteins lack a COOH-terminal SKL-like signal. 

African trypanosomes have three genes encoding phos- 
phoglycerate kinase (PGK) (12, 28). One (PGK-B) is a cyto- 
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plasmic PGK, and another (PGK-A) is a minor glycosomal 
enzyme that has an internal 80-amino acid insertion relative 
to the cytoplasmic PGK (2, 22, 36). The third PGK (PGK-C) 
is the major glycosomal enzyme. It has a 20-amino acid 
COOH-terminal extension that is capable of targeting chlor- 
amphenicol acetyltransferase to glycosomes (11). The final 
three amino acids of this COOH-terminal extension are 
-SSL, which has been shown to be inactive in targeting lu- 
ciferase to peroxisomes of monkey kidney cells (14). This 
suggested to us that there might be differences between 
glycosomes and peroxisomes in their signal recognition 
properties. To characterize these differences further, we have 
undertaken a detailed characterization of the precise amino 
acid requirements for glycosomal targeting using the PGK 
and SKL signals. 

Materials and Methods 

Plasmid Constructions and Expression of Plasmids in 
Trypanosomes and Monkey Cells 
Trypanosome expression plasmids were derivatives of the vectors pJP25 or 
pJP44 (29). The construction of a plasmid expressing the CAT-PGK hybrid 
protein (pJP 62) has been described previously (11). The hybrid gene was 
constructed in such a way that the sequence encoding the COOH-termiaal 
22 amino acids of glycosomal PGK was joined to the CAT coding region 
at a unique SacII site; a PstI site downstream of the polyadenylation signal 
in the vector (pJP 44) was destroyed. The targeting signal sequence contains 
a unique internal Pstl site and there is a unique BamI-II site immediately 
downstream of the termination codon (Fig. 1). CAT-PGK hybrids with al- 
tered COOH-terminal signals were therefore constructed by cloning double- 
stranded synthetic oligonucleotides directly between the above-mentioned 
restriction sites. To obtain a variety of mutants, oligonucleotides degenerate 
at a single position (the first base of a codon) were used. However, the use 
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Sac  H P s t  1 
r c c  GCGCTC CTC ~CC TAX CCC TCT a C A C ~ T  ACT GSA 
s e t  a l n  v a l  v a l  s e t  t y r  a l a  s e r  a l a  g l y  t h r  g l y  

Bam HI 
ACT CTT.TCT.AAC,CGG.TGG~GC.TCT.CTT.TAA.C,~ATCC 
t h r  l e u  s e t  a s h  a r t  t r p  ~ e r  s e r  l e u  OCH 

Figure I. Translated COOH- 
terminal sequence of the CAT- 
PGK fusion protein gene, show- 
ing the junction with CAT and 
the restriction sites used in sub- 
sequent manipulations. OCH 
denotes an ochre termination 
codon. 

of mixed oligonucleotides within 6 bases of the SaclI site invariably resulted 
in deletions. The COOH-terminal regions were sequenced using primers 
hybridizing 30--50 bases upstream or downstream. Oligonucleotides were 
synthesised by the ZMBH oligunucleotide synthesis facility. 

Plasmids expressing variants of the SKi, signal were derived from con- 
structs expressing the same proteins in mammalian cells (14, 35). The CAT 
fusion genes were excised as HindlII-BgllI fragments and cloned into the 
HindlII-BamHI sites of piP25. 

To obtain trypanosomes permanently expressing CAT, we excised the 
gene, surrounded by the PARP 5' and 3' RNA processing signals, from plP 
44 (29). We then ligated the resulting cassette into the XbaI site of pUC 
Tbneo 3 (37). The plasmid was linearized at the KpnI site before transfec- 
tion into Antat 1.1 trypanosomes and selection with G418. Attempts to ex- 
press CAT-PGK with an analogous construct failed. The CAT-PGK gene 
was therefore cloned between the 5'- and Y-processing signals of the actin 
gene, and set downstream of the hygromycin resistance gene under control 
of the PARP promoter (bNsp-H-r (23; L. E. Wirtz and C. Clayton, unpub- 
lished data). This plasmid was transfected in the form of supercoiled DNA 
and cells were selected with hygromycin (23). 

For expression of CAT-PGK in monkey cells, the dihydrofolate reductase 
gene in pSV2-DHFR (31) was replaced by the CAT-PGK gene (Hin- 
dIII-BamI-II fragment) using standard procedures to give pSV2-CAT-PGK. 
The plasmids pSV2-CAT and pSV2-CAT-SKL have been described (14). 

DNA Transfection and CAT Assays 

DNA was transfect~J into trypanosomes, and CAT assays were performed 
as previously described (29). The amount of DNA transfected (10-50 #g 
per cuvette) was adjusted at least partially to compensate for varying expres- 
sion levels of the different C %'1" fusion proteins. DNA transfection of CV-1 
cells was done using TransfectAce (Bethesda Research Laboratories, 
Gaithersburg, MD). In the CAT assay, the level of CAT was assessed from 
the rate of production of butyryl chloramphenicol over the linear range of 
the assay. If the postnuclear supernatant sample had a CAT activity of less 
than four times the background the results were discarded. 

CAT immunofluorescence for CV-1 cells was done as described (17) using 
a commercial anti-CAT antibody (5'-3' inc.) and PITC-conjugated goat 
anti-rabbit antiserum from Vector laboratories, Inc. (Burlingame, CA). 
Trypanosomes were stained after fixation with 3 % formaldehyde in PBS 
(10-15 win). Fixed parasites were preincubated for 15 min with 0.1 M gly- 
cine in 0.1 M phosphate buffer, pH 7.2-7.4, before permeabilization for 5 
rain with either 0.1% Triton X-100 or 3.75 ng/ml digitonin in PBS. Antibod- 
ies used were a mouse monoclonal anti-cAT, rabbit polyclonal antibody to 
purified aidolase (6), rhodamine-conjugated goat anti-rabbit antibody and 
FITC-conjngated goat anti-mouse antiserum (Becton-Dickinson and Co., 
Mountain View, CA). 

Cell Fractionation 
To measure compartmentation, the T. brucei were suspended in isotonic 
buffer (10% sucrose in 25 mM Tris, pH 7.2, 1 mM EDTA, 2/~g/ml leupep- 
tin) and either broken in a mini-glass-bead beater (5 s) or permeabillzed 
with digitonin (150 #g digitonin/ml, 5 x 106 trypanosomes/ml; 60 rain on 
ice with mixing). In the case of the glass-bead procedure, nuclei and un- 
broken cells were removed by low speed centrifngation, then the glyco- 
somes and other smaller particles were separated from the soluble compo- 
nents by high speed centrifugation (11). Digitunin-permeabilized cells were 
centrifuged for 10 min at 15,000 rpm in a Heraeus microfuge (Heraeus- 
Amersil, Inc., Sayerville, NJ), and the supernatant separated from the 
pellet. The efficiency of the methodology was determined by assessing the 
compartmentation of CAT, CAT-PGK, and the glycosomal enzyme glyc- 
erolphosphate dehydrogenase (GPDH) as previously described (11). To 
assay for GPDH, glycosomes were permeabilized with Triton. The CAT 
assay works without prior membrane permeab'flization, possibly because 
the substrates are able to penetrate the glycosomal membrane (11). 

In Vivo Labeling and Immunoprecipitation 
CV-1 ceils were labeled with 100 #Ci [35S]methionine/ml on 3.3-cm petri 
dishes for 2 h, freeze thawed three times in extraction buffer (20 mM Tris, 
pH 7.5, 5 mM EI)TA, 1 mM DTT, 0.1% sodium deoxycholate, 0.1% Triton 
X-100, 1 mM PMSF, 0.05% BSA, alpha2 macrnglobulin, leupeptin, aproti- 
lain, pepstatin) and CAT immunoprecipitated using a polyelunal antibody 
(5'-3' Inc.) and Protein A-Sepharose. The immunoprecipitates were ana- 
lyzed on a 12 % polyacrylamide minigel (Bio-Rad Laboratories, Richmond, 
CA) which was soaked in "Amplify" (Amersham Braunschweig, Germany) 
before exposure to x-ray film. 

Results 

Improvements in the Assay Methodology 
Plasmids bearing hybrid CAT genes, expressed using the 
promoter and RNA processing signals of the procyclic acidic 
repetitive protein (PARP) genes (7, 29), were electroporated 
into T. brucei. After an overnight incubation, ceils were bro- 
ken and the compartmentation of CAT protein measured by 
differential centrifugation. In our original procedure, which 
involved shaking the trypanosomes with glass beads, 30- 
40% of CAT-PGK and 50% of GPDH, a glycosomal en- 
zyme, were found in the microbody pellet. The CAT-PGK 
in the microbody pellet comigrated with GPDH in sucrose 
gradient centrifugation (11), confirming its association with 
glycosomes. 

Low concentrations of digitonin permeabilize the plasma 
membrane but leave intracellular membranes intact. Using 
digitonin-permeabilized cells, we found that microbody 
compartmentation was much better preserved than after 
physical breakage. '~,80% of CAT-PGK (see Table II) or 
GPDH (not shown) now remained in the glycosomal frac- 
tion. The association of two fusion proteins (CAT-SSL and 
CAT-NRWSSL) with glycosomes, rather than aggregates or 
some other undefined digitonin-impermeable compartment, 
was confirmed by sucrose gradient centrifugation (not 
shown). Tables I and II list results from assays using both 
methodologies. 

Targeting by COOH-terminal Tripeptides 
To test which variants of the -SKL signal were active in 
trypanosomes, plasmids encoding CAT bearing a variety of 
SKL-like COOH-terminal sequences were electroporated 
into Z brucei and the compartmentation of CAT activity 
tested the next day. Results are shown in Table I, together 
with the published compartmentation of the same hybrids in 
peroxisomes of primate cells. COOH-terminal tripeptides 
that are known to occur on glycosomal enzymes are marked. 
All variants tested were active in causing glycosomal 
association in trypanosomes, although some differences in 
targeting efficiency were detected. In primate cells, the 
COOH-terminal leucine appears essential for high-efficiency 
targeting (14); substitution by methionine results in a sig- 
nificantly reduced targeting efficiency (35). In contrast, 
SKM is as efficient as, or more efficient than, SKL in direct- 
ing CAT to glycosomes. 

Dissection of the PGK COOH-terminal Signal 
Results of deletion and mutation of the PGK COOH- 
terminus are shown in Table II. From the deletions it was 
clear that the most important portion was once again the 
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Table L Function of SKL Variant Signals 

Percentage in glycosomes 

Glass beads Digitonin Summary* 
COOH-terminal 
extension Mean No, Mean No. T M 

None 3 (11) 5 (5) - - 

SKI_ 16 (3) + + 
�9 AKL 35 (2) 22 (2) + + 
CKL 27 (3) 67 (2) + + + 
SRL 25 (2) 50 (2) + + + 

�9 SSL 16 (3) 22 (2) + - 
�9 SHL 10 (2) 40 (2) + + 
�9 SKM 27 (3) 48 (2) + + 
�9 ARL + 

Compartmentation of CAT hybrid proteins bearing variants of the SKI. entry 
signal in trypanosome glycosomes. Values for glass bead and digitonin frac- 
tionation are given as: 

CAT activity in glycosomal pellet 

CAT activity in pellet + supernatant 

Results are expressed as the mean value, with the number of experiments (No.) 
indicated in parentheses. 
" Summary shows overall conclusions. For trypanosomes (T): ( + + )  
20-100% glycosomal localization by glass-bead method and 50-100% by 
digitonin method; (+) 9-20% glyeosomal localization by glass bead method 
and 20-50% by digitonin method; and ( - )  <9 and 20% glycosomal localiza- 
tion by glass-bead and digitonin methods, respectively. 

Mammalian values (M) for extent of peroxisomal localization as judged by 
immunofluorescence (35): (+) Efficient peroxisomal localization; (+) ineffi- 
cient peroxisomal localization; ( - )  no detectable peroxisomal localization; and 
(.) COOH-terminal peptides found on sequenced trypanosomatid glycosomal 
enzyme genes. 

COOH-terminal peptide, -SSL. However, -SSL by itself had 
a rather poor targeting capacity, working better in combina- 
tion with three upstream amino acids. -SSL does not target 
proteins to mammalian peroxisomes to any significant extent 
(14). It is noteworthy that within the context of the COOH- 
terminal hexapeptide of the gPGK signal, a basic amino acid 
in the signal was not essential for targeting: tyrosine or gly- 
cine, but not aspartic acid, could be substituted for the argi- 
nine residue. At the first amino acid of the tripeptide, the 
spectrum of acceptable degeneracy was similar to that for 
mammalian cells (14, 35): glutamate, leucine, and threonine 
were not tolerated but alanine was functional. Requirements 
for the second and third amino acids were however clearly 
more relaxed in trypanosomes than in mammalian cells: ser- 
ine, asparagine, tyrosine, and even aspartic acid could be 
substituted at the second position (within the context of the 
COOH-terminal hexapeptide) whereas in monkey cells only 
basic residues were functional; and a COOH-terminal tyro- 
sine or methionine could be substituted for the terminal 
leucine. 

Immunolocalization of CAT in Trypanosomes 
Our experiments so far had shown glycosomal association of 
CAT-PGK and its derivatives, but we could not rule out the 
possibility that the association was an external attachment to 
the glycosomal membrane, which could have occurred dur- 
ing cell breakage. We therefore examined the localization of 
CAT and CAT-PGK in trypanosomes by immunofluores- 

Table II. Analysis of T. brucei g-PGK Signal 

Percentage in glycosomes 

Glass beads Digitonin 

COOH-terminal extension Mean No. Mean No. Summary 

None 3 (11) 5 (5) - 

SAVVSYASAGTGTLSNRWSSL 35 (11) 81 (5) + + 
SAVVSYASAGTGTLSNR 6 (4) 9 (2) - 
SAVVSYASAGTGTLSN 4 (3) 6 (2) -- 
SAVVSYASAGTGTLSNDWSS L 11 (5) 5 (2) - 
SAVVSYASAGTGT LSNI~NSSL 27 (4) 66 (2) + + 
SAVVSYASAGTGTLSNYWSS L 24 (15) 54 (2) + + 

NRWSSL 32 (14) 77 (2) + + 
WRWSSL 45 (13) 82 ( 2 )  + + 

NGWSSL 28 (4) 59 (2) -t- + 
NRNSSL 38 (3) 67 (2) + + 
NRWASL 45 (13) 69 (2) + + 
NRWESL 2 (3) 10 (2) - 
NRWLSL 2 (3) 19 (2) -- 
NRWTSL 3 (3) 17 (3) - 
NRWSNL 30 (14) 75 (2) + + 
NRffSDL 25 (13) 37 (2) + 
NRWSHL 31 (4) 84 (2) + + 
NRWSYL 40 (3) 37 (2) + 
NRWSSN 5 (3) 14 (3) - 

NRWSSD 4 ( 3 )  10  ( 3 )  - -  

NRWSSH 6 (3) 18 (3) - 

NRWSSY 24 (3) 27 (3) + 
SSL 16 (3) 22 (2) + 

CompartJ~ntation of CAT hybrid proteins bearing variants of the PGK entry signal in trypanosome glycosomes. Mutated amino acids are shown in bold type. 
Values are calculated as for Table I. 
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Figure 3. Immunofluorescence staining of CV-1 cells expressing 
CAT or CAT hybrid proteins. (a) CAT; (b) CAT-SLK; and (c) 
CAT-PGK. Bar, 10 #m. 

cence. To develop the methodology, we used trypanosomes 
that had been selected permanently to express either CAT or 
CAT-PGK (see Materials and Methods). ,o5% of these 
trypanosomes were expressing CAT or CAT-PGK. (The 
cells were not cloned, and the structure of the retained plas- 
mid DNA has not been examined, so we do not know if the 
heterogeneity of expression was due to deletion of the CAT- 

coding sequences, or has some other explanation.) When we 
examined transiently transfected trypanosomes, we found 
that ,,o1% of the cells expressed CAT or CAT-PGK and the 
fluorescence was considerably brighter than in the perma- 
nently expressing cells. Results for these transiently trans- 
fected cells are therefore illustrated in Fig. 2. The cells were 
examined by immunofluorescence after fixation and per- 
meabilization with Triton X-100, which permeabilizes the 
plasma membrane and the glycosomal membrane. Trypano- 
somes expressing CAT fluoresced throughout the cytoplasm 
(Fig. 2 a), whereas those expressing CAT-PGK showed 
bright fluorescent dots (Fig. 2 c) in a similar pattern to the 
positive glycosomal enzyme control, trypanosome aldolase 
(Fig. 2 b). Using rhodamine fluorescence, the punctate pat- 
tern of aldolase was more difficult to see but could still be 
detected at the narrow end of the trypanosomes (Fig. 2 f ) .  
Double staining of CAT-PGK (fluorescein) and aldolase 
(rhodamine) confirmed that CAT-PGK and aldolase colocal- 
ize (Fig. 2 f ) .  The compartmentation of several of the other 
CAT fusion proteins was also checked by immunofluores- 
cence (not shown) and the results correlated with those ob- 
tained by cell fractionation. In trypanosomes expressing 
CAT-SSL the pattern was consistent with partial import (not 
shown). 

To confirm that the CAT-PGK had been imported across 
the glycosomal membrane, we once again took advantage of 
the differential sensitivity of the plasma membrane and 
glycosomal membrane to digitonin. After cell permeabiliza- 
tion with digitonin, the CAT fluorescence pattern was indis- 
tinguishable from that seen after Triton permeabilization 
(Fig. 2 d). As expected, aldolase fluorescence was extremely 
weak (Fig. 2 e), presumably because the glycosomal mem- 
brane was not permeabilized by digitonin and the aldolase 
was not accessible to the antibodies. CAT-PGK was com- 
pletely undetectable (not shown), confirming that it too was 
shielded from antibodies by a digitonin-resistant membrane. 

Activity of the Trypanosomal PGK Signal 
in Primate Cells 
The results so far indicated that there were both similarities 
and differences in targeting between trypanosome glyco- 
somes and mammalian peroxisomes. To test whether the 
PGK signal functions in primate cells, we expressed the 
CAT-PGK hybrid in monkey cells under control of the SV-40 
virus early promoter. CAT and CAT fusions were detected 
by immunofluorescence, using CAT alone as a negative con- 
trol and CAT-SKL as positive control. Results are shown in 
Fig. 3. As already published (14) CAT-SKL was concen- 
trated in bright dots (the peroxisomes) whereas CAT alone 
was spread all over the cytoplasm. The distribution of 
CAT-PGK was very similar to that of CAT. To confirm that 
the CAT, CAT-SKL, and CAT-PGK were made as expected, 
in vivo-labeled proteins were immunoprecipitated and ex- 
amined by gel electrophoresis (Fig. 4). There was a clear 
difference in gel mobility between the three proteins; sur- 
prisingly, even the difference between CAT and CAT-SKL 
could be detected. A very small proportion of the precipi- 
tated CAT-PGK appeared to have been somewhat degraded, 
but we judge that this would be insufficient to change the im- 
munofluorescence pattern. In these experiments, the amount 
of CAT-PGK was approximately three times that of CAT. 
Reduction of the amount of CAT-PGK (by reducing the 
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Figure 4. Synthesis of CAT, 
CAT-SKL, and CAT-PGK in 
transfected CV-1 cells. Immu- 
noprecipitated proteins from 
[35S]methionine-labeled cells 
were separated by SDS-PAGE. 

amount of input DNA) did not influence the immunofluores- 
cence pattern (not shown), indicating that the cytoplasmic 
localization was not a consequence of saturation of putative 
peroxisomal import receptors. 

D i s c u s s i o n  

Specificity of  Glycosomal Targeting 

The results described above clearly show that the microbody 
targeting signal for T. brucei PGK resides within the COOH- 
terminal 6 amino acids, and that this targeting signal does 
not function in monkey cells. A basic residue is not 
required for glycosomal targeting. It has been previously 
suggested, based on sequence and ultrastructure compari- 
sons (38) and results of in vitro import assays (9, 30), that 
internal sequences of glycosomal PGK, especially basic 
residues, may play a role in targeting. Our results do not sup- 
port this, but we cannot rule out the possibility that the CAT 
fusion protein behaves differently from the intact PGK mole- 
cule. Luciferase, for example, has COOH-terminal SKL, but 
alterations elsewhere in the protein can result in its redirec- 
tion to the cytoplasm (13, and see below). 

As for many microbody proteins, the most important com- 
ponent of the glycosomal PGK targeting signal resides in the 
COOH-terminal tripeptide. However, the spectrum of vari- 
ants that is functional differs markedly from that observed 
for mammalian cells. The first amino acid can be serine, ala- 
nine, or cysteine, as for peroxisomes. However, require- 
ments at the second position are very relaxed (we have not 
yet found anything that doesn't work) and the third leucine 
can be replaced by tyrosine or methionine without much 

effect on glycosomal targeting. The ability of-SKM to func- 
tion as a targeting signal is consistent with the finding of 
COOH-terminal SKM in Leishmania mexicana glyceralde- 
hyde phosphate dehydrogenase (16). In monkey cells, -SKM 
has only weak activity (35). 

We have found that some of the SKL variants, including 
-SKL itself, do not work as efficiently in trypanosomes as the 
PGK glycosomal targeting signal. Although -SSL is func- 
tional, it is clearly "helped" by the upstream amino acids. In 
this context, it is notable that of the glycosomal proteins so 
far sequenced, glyceraldehyde phosphate dehydrogenases 
share with PGK the basic amino acid at position -5 relative 
to the COOH terminus (Table II/). Glucosephosphate iso- 
merase, however, has an acidic residue at this position; this 
was not tolerated upstream of -SSL but appears not to af- 
fect the function of-SHL.  Perhaps the trypanosomatids 
compensate for the relaxed specificity for -SKL-like signals 
by having more stringent context requirements. Even in 
mammalian peroxisomes, the SKL signal is context depen- 
dent. For example, deletion of the first 58 amino acids of lu- 
ciferase, or insertion of four amino acids within the NH2- 
terminus, can both abolish peroxisomal import despite the 
fact that the -SKL sequence is undisturbed (13). It is clear, 
too, that SKL-like signals are not the only possible micro- 
body targeting signals. Rat ketoacylthiolase has a cleavable 
NH2-terminal signal (34), which is homologous to the 
NH:-termini of several other microbody proteins including 
trypanosome aldolase (5, 24); and the signal for the PGK 
"A" gene must reside somewhere other than at the COOH 
terminus, perhaps in the central insertion (22). Another 
probable entry signal is the 39-amino acid extension at the 
COOH terminus of the glycosomal PGK of Crithidia fas- 
ciculata (33): the final 6 amino acids are MVLASP. Results 
of preliminary experiments suggested that the Crithidia se- 
quence was not capable of directing CAT into T. brucei 
glyeosomes (H. Dtrsam and C. Clayton, unpublished re- 
suits), but as Crithidia and T. brucei are evolutionarily quite 
distant (4, 20) the meaning of this result is debatable. 

We used immunofluorescence to assay peroxisomal im- 
port in mammalian ceils and to confirm glycosomal import 
in trypanosomes. This assay is essentially qualitative and 
might not detect low-efficiency import (14). It is certainly 
possible that the discrepancies in targeting noted here are not 
as great as they appear. However, the difference in the be- 

Table IlL Known and Inferred Glycosomal Entry Signals 

Protein Organism Location Sequence Reference 

Glyceraldehyde phosphate dehydrogenase 
Glyceraldehyde phosphate dehydrogenase 
Glyceraldehyde phosphate dehydrogenase 
Glyceraldehyde phosphate dehydrogenase 
Glucosephosphate isomerase 
Glucosephosphate isomerase 
Phosphoglycerate kinase (C) 
Phosphoglycerate kinase (A) 
Triosephosphate isomerase 
Fructose bisphosphate aldolase 
Phosphoglycerate kinase (C) 

T. brucei 
T. cruzi 

L. mexicana 
1". borelli 
T. brucei 

L. mexicana 
T. brucei 

T. brucei 
T. brucei 
T. brucei 

C. fasciculata 

COOH terminus 
COOH terminus 
COOH terminus 
COOH tern'anus 
COOH t e m u n u s  
COOH terminus 
COOH terminus 

Internal peptide? 
Unknown 

NH2 terminus or internal? 
COOH terminus? 

DRAAKL 
DRSARL 
AASSKM 
KCHAKL 
NELSHL 
NTRAHL 
NRWSSL 

(26) 
(19) 
(16) 

(25) 

(2) 
(32) 
(5) 

(33) 

* P. Michels (ICP, Brussels), personal communication. 
:~ This work. 
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havior of CAT-PGK between the two cell types is in- 
disputable. 

This is not the first time that an intracellular sorting signal 
has been shown to be related, but not identical, between 
different species. A signal for retrieval of proteins from the 
Golgi complex and retention in the ER is the COOH- 
terminal quadrapeptide KDEL or related sequences; but 
mammalian cells, plants and yeasts show varying specifici- 
ties (8). Similarly, some COOH-terminal tripeptides will 
target proteins to peroxisomes in Candida species but not in 
S. cerevisiae (1). It will be interesting to see how the speci- 
ficity is reflected in the corresponding peroxisomal and gly- 
cosomal import receptors. The differences in targeting spec- 
ificity between monkeys and trypanosomes implies that it 
may be possible to design specific inhibitors of glycosomal 
targeting. Detailed characterization of the entry signals also 
gives us the information required to attempt a blockade of 
glycosomal import in vivo, and thereby to determine the ex- 
tent to which trypanosomes are dependent on their unusual 
glycolytic compartmentation. 
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