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ABSTRACT

When messenger RNA splicing occurs co-
transcriptionally, the potential for kinetic control
based on transcription dynamics is widely recog-
nized. Indeed, perturbation studies have reported
that when transcription kinetics are perturbed
genetically or pharmacologically splice patterns
may change. However, whether kinetic control is
contributing to the control of splicing within the
normal range of physiological conditions remains
unknown. We examined if the kinetic determinants
for co-transcriptional splicing (CTS) might be re-
flected in the structure and expression patterns of
the genome and epigenome. To identify and then
quantitatively relate multiple, simultaneous CTS
determinants, we constructed a scalable mathemati-
cal model of the kinetic interplay of RNA synthesis
and CTS and parameterized it with diverse next
generation sequencing (NGS) data. We thus found a
variety of CTS determinants encoded in vertebrate
genomes and epigenomes, and that these combine
variously for different groups of genes such as
housekeeping versus regulated genes. Together, our
findings indicate that the kinetic basis of splicing is
functionally and physiologically relevant, and may
meaningfully inform the analysis of genomic and
epigenomic data to provide insights that are missed
when relying on statistical approaches alone.

INTRODUCTION

Messenger RNA (mRNA) synthesis is a highly regulated
process in which transcription factors and chromatin mod-
ifying factors coordinate with Pol II to produce a nascent
strand of RNA. The nascent pre-mRNA is processed by 5′
capping, 3′ polyadenylation and pre-mRNA splicing––the
removal of non-coding introns. Complete splicing is neces-
sary for proper mRNA export, stability and protein func-
tion. RNA processing steps can in principle be initiated
and completed during the transcription process, i.e. co-
transcriptionally, but may also occur post-transcriptionally
(1–9). It is now well established that a large fraction of splic-
ing occurs co-transcriptionally in metazoan genomes (9,10).

Because of the constraints imposed on co-transcriptional
splicing (CTS) by the parallel process of transcriptional
elongation, an intron’s fate may be dramatically affected by
the elongation dynamics of Pol II. Indeed, a slower Pol II
can result in increased use of a weak 5′ splice site in re-
porter gene constructs (11,12) or alternative exon skipping
by allowing a negative factor to bind (13). Splice site choice
can be altered in human cell lines by removing downstream
pausing sites (14) or pharmacologically slowing down Pol
II (15), and Pol II pausing may cause an increase in CTS
(5,6,16). Also, spliceosome recruitment may be coordinated
with transcription (17–21), for example via the carboxy-
terminal domain (CTD) of Pol II (22), and Pol II mu-
tants lacking the CTD produce splicing defects (23). Fur-
ther, CTS may regulate chromatin modifications to rein-
force transcription initiation (24) or may facilitate rapid
gene induction during the inflammatory response (25,26).
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However, splicing may also occur post-transcriptionally
(27–29), and studies of how splice patterns of specific
genes are achieved have generally identified trans-acting
splicing factors, which may function both co- and post-
transcriptionally, as key determinants. Indeed, statistical
machine learning approaches are the basis for computa-
tional tools that predict splice patterns based on splice fac-
tor expression and cognate binding site sequences (30).

Thus, whether the kinetic control implicit in co-
transcriptional splicing is in general functionally impor-
tant remains an open question. The answer determines (i)
whether a kinetic modeling framework will be required to
improve predictions of splice patterns. Indeed, no scalable
mechanistic modeling framework amenable to genome-
wide experimental testing has yet been established. It also
determines (ii) whether the annotation of the genome itself
may gain from applying kinetic considerations.

Here, we examined how the kinetics of transcription and
splicing may affect the control of CTS within the normal
ranges of metazoan physiologies. We constructed a scalable
mathematical model of splicing coupled to transcriptional
elongation in order to identify genetic and epigenetic fea-
tures that regulate CTS. Using this model we developed
methods to extract kinetic information from next genera-
tion sequencing (NGS) data (29,31), thus allowing us to pa-
rameterize the kinetic CTS model in a species-specific man-
ner. We reasoned that while splicing of specific introns may
be critically determined by trans-acting splicing factors, the
common kinetic basis of CTS may be apparent when con-
sidering cohorts of introns.

Our analysis revealed a variety of gene features that con-
tribute to CTS efficiency and that these are over-represented
in specific cohorts of genes. By expanding the model we
were able to simulate co-transcriptional outcomes of multi-
intron genes genome-wide as a function of genomic and
epigenomic determinants. Our results show that while genes
may differ widely in their cis-determinants of CTS, the ki-
netic integration of transcription and splicing is an intrin-
sic feature of gene expression control, and that mechanis-
tic mathematical models that account for these kinetic pro-
cesses may form the basis for genome analysis tools that use-
fully complement statistical approaches.

MATERIALS AND METHODS

Computational modeling

We simulate the elongation of a single polymerase and the
transformation of its associated transcript. The probabil-
ity that an intron has spliced by the time that transcription
has terminated is a function of the time it takes to cleave
and polyadenylate the mRNA subsequent to the intron’s
synthesis, and the kinetic rate of splicing. Splicing can be
modeled as a series of j sequential reactions (32). By assum-
ing that the time of each reaction is an independent, ex-
ponentially distributed random variable with forward rate
constant ks*j, we can model the probability of splicing at
time t as a gamma-distributed random variable with shape
j and mean 1/ks. Thus, the probability Pt

i that an intron i

has spliced by time t is the cumulative distribution:

Pt
i ( j, ks) = σi (t, j, ks) = 1

�( j )

∫ jkst

0
xj−1e−xdx

For a single-step reaction (j = 1), this simplifies to the
exponential distribution:

σi (t, 1, ks) = 1 − e−kst

If we assume a constant elongation rate kE, the total elon-
gation time Ti downstream of intron I is proportional to the
distance Di from intron I to the poly(A) site:

σi (Ti , 1, ks) = 1 − e−ksTi = 1 − e−ks Di /kE

Splicing rate constants are reported in the manuscript as
kE/(ks*j).

Multi-intron model

Each potential transcript for a gene with N introns
and N + 1 exons can be represented as a string S =
[S1, S2, . . . , SN], Si ∈ {0, 1}, where Si = 1 if intron i has
been spliced out, and 0 if it is retained. Therefore the prob-
ability of each transcript S is:

P(S) =
N∏

i=1

[σi (Ti , j, ks) ∗ I(Si = 1) +

(1 − σi (Ti , j, ks)) ∗ I(Si = 0)]

where I(x) is the indicator function. To predict the abun-
dance of each transcript at the end of CTS, we calculate
P(S) for all possible transcripts: co-transcriptional splic-
ing efficiency was defined as the abundance of the tran-
script S whose introns have all been removed (all Si ,=
1∀i ∈ {1, 2, . . . , N − 1, N}). Therefore, CTS efficiency can
be computed simply as:

CTS efficiency =
N∏

i=1

1 − e−ksi Di /kE

This is an O(n) operation and is therefore extremely fast,
making this model scalable to genes of any complexity.

RESULTS

A model of co-transcriptional constitutive splicing

We first modeled co-transcriptional splicing of individual
introns using a one- or two-step splicing model (cf. (32)).
An intron’s probability of being spliced co-transcriptionally
� is determined by its splicing rate constant and the dura-
tion of the transcriptional phase following the synthesis of
the 3′ splice site but prior to mRNA polyadenylation (Sup-
plementary Figure S1A). We next combined models of in-
dependent introns to generate a model of co-transcriptional
constitutive splicing (CTCS). Our CTCS model enables sim-
ulations of multi-intron genes of any complexity and allows
us to quantitatively assess the effects of genome structure
and kinetic rates on genome-wide splicing outcomes (Fig-
ure 1A). Using parameters fit to RNA-seq data to simulate
a test gene (see Supplemental Methods, and Supplementary
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Figure 1. Model of co-transcriptional constitutive splicing (CTCS). (A) Model schematic showing all possible reactions and species for a 3-intron gene.
The eight possible isoforms that can exist when transcription is complete are color-coded at right. (B) Model simulations of the 3-intron gene. Each
column represents the distribution of the eight species after each simulation. Left: the lengths of all introns and exons were scaled up and down by a
constant factor. Middle: length of exon 3 was varied; Right: length of exon 4 was varied. (C) Distribution of exon lengths among last and internal exons
in the human genome. (All error bars indicate SEM; P-values are the results of t-tests). (D) Average splicing acceptor scores in last and non-last introns
genome-wide. (E) Nucleosome stability scores in the first 147 bp of last versus internal exons. (F) Average genome-wide MNase-seq signal in K562 cells
and GM12878 cells over internal exon starts versus last exon starts. t-Test was performed by averaging the signal across the 147 bp and comparing this
average in internal versus last exons.

Figure S1B), the CTCS model recapitulated a central point
of the kinetic theory of CTS control (6,7,9): namely, that
long genes (Figure 1B, left), and specifically genes with long
last exons (Figure 1B, right) would favor CTS (because they
provide more time for splicing), whereas the length of the
penultimate exon (which has no influence on the splicing
time of the last intron) would be less important (Figure 1B
middle). These conclusions are robust to specific splicing pa-
rameter values (data not shown).

It has previously been suggested that long last exons may
have evolved to optimize CTS (Figure 1C, Supplementary
Figure S2A; (6)). We expected that if complex genomes
evolved under pressure to maintain high CTS efficiency,
other genomic signatures besides last exon length, that in-
fluence CTS, may be identifiable. Since our model predicted
the excision of last introns to be the limiting step in deter-
mining the CTS efficiency, we compared acceptor splice site
strengths across several genomes based on species-specific
sequence motifs. Indeed, we found evidence for conserva-
tion of higher average acceptor scores in last introns com-
pared to non-last introns in several vertebrate genomes
(Figure 1D, Supplementary Figure S2B: P = 8.3 × 10−126).
Since the presence of nucleosomes can inhibit transcription
elongation (33) and thus provide more time for CTS, we
next tested whether nucleosome stability was enriched at 3′
exons. We first evaluated nucleosome stability across sev-
eral species using a simple algorithm based on biophysical

considerations (34), and found that nucleosomes are indeed
expected to be more stable at terminal exons than at in-
ternal exons (Figure 1E, Supplementary Figure S2C: P =
1.1 × 10−24). Furthermore, analysis of human cell MNase-
seq data (ENCODE Project 35) revealed that nucleosomes
are enriched in the proximity of last exons compared to in-
ternal exons (Figure 1F). Interestingly, it was previously ob-
served that nucleosomes are present in higher abundance in
exons flanking weaker splice sites, both in internal and last
exons (36), reinforcing the hypothesis that nucleosome oc-
cupancy and splice sites may balance each other to control
CTS.

Fitting the model to RNA-seq data

To parameterize our model, we took advantage of ex-
isting RNA-seq measurements of purified cellular com-
partments in K562 cells (31) to estimate the steady-state
spliced fraction (�) for each intron (17 266 introns in
2768 genes; see ‘Materials and Methods’ section). For this
analysis, we restricted our set of genes to those that use
their most downstream annotated poly(A) site, as deter-
mined by RNA-seq of the cytoplasmic fraction (13 650 in-
trons in 2136 genes). Examining non-poly-adenylated nu-
clear transcripts, median � strongly correlates with dis-
tance to the poly(A) site, in K562 cells, as reported pre-
viously (9), and in other cell types (Supplementary Fig-
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ure S3). By fitting our model to the median � of introns
binned according to distance from poly(A) site, we obtained
a ratio of splicing rate to elongation speed (see Supple-
mental Methods). We also examined RNA-seq data from
the chromatin fraction of mouse macrophages (29), but
this dataset contains many polyadenylated mRNAs that are
post-transcriptionally associated with chromatin (Supple-
mentary Figure S4, (26,29)).

Fitting the CTCS model to the nuclear poly(A)-depleted
K562 data resulted in a ratio of elongation rate to splicing
rate of 615 bp/splicing event, equating to an intron half-
life of 9 s if elongation is 3 kb/min (37). The fit was robust
to the binning procedure used (Supplementary Figure S1B
and C), and a two-step model did not improve the fit to
the model (Supplementary Figure S1C). However, previous
studies have derived estimates of co-transcriptional splicing
rates in diverse organisms ranging from a 30 second half-life
to a 5–10 min ‘splicing completion time’ (4,27,32,38).

A close inspection of the poly(A)-depleted nuclear RNA-
seq data revealed that the CTCS model underestimated
the steady-state spliced fraction of introns proximal to the
poly(A) site (Figure 2A, Supplementary Figure S1B), sim-
ilar to findings in yeast (6). This disconnect could be due
in part to conditions that prolong association of nascent,
un-polyadenylated RNA with the chromatin template be-
yond the time predicted by the poly(A) site (39), such as
a transcriptional pause near 3′ ends (6), or transcriptional
read-through past the poly(A) site. We therefore modified
our CTCS model to include a post-poly(A) site time delay
(model CTCS + T), and fit this model to the chromatin-
associated RNA-seq data.

Remarkably, allowing for this additional time interval
(TFIT) in our model dramatically improved the fit to the
data (Figure 2A, Supplementary Figure S3). The best fit
was obtained when the median time delay was equivalent
to elongating 4.7 kb past the poly(A) site (see Supplemen-
tal Methods), and with a new value of 3.1 kb/splicing event
for the elongation to splicing ratio. Assuming an elongation
rate of 3 kb/min, these values equate to a median 3′ delay of
94 s and a median intron half-life of 43 s. This second esti-
mate of median splicing half-life is more consistent with,
though still on the fast side of those previously reported
(4,27,32,38). If elongation rates turned out to be slower,
those half-life estimates would proportionally increase.

To investigate whether transcriptional read-through
could account for the extra time observed in CTCS + TFIT,
we measured the extent of active transcription associated
with each gene using a novel software tool (40) to analyze
GRO-seq (41) data. We used our GRO-seq dataset (42) in
mouse macrophages (Figure 2B), and an existing dataset of
human MCF7 cells (43) to measure how far pol II activity
extends. As cleavage and polyadenylation may occur prior
to termination of pol II activity, these measurements put an
upper limit on the pre-cleavage read-through distance.

Most genes showed pol II activity well beyond the an-
notated poly(A) site (Figure 2B) indicating median read-
through distances in macrophages and MCF7 of 3.2 and
3.8 kb (equivalent to 68 and 76 s), respectively (Figure 2C).
These data suggest that transcriptional read-through may
contribute but does not fully account for the estimated de-
lay in polyadenylation after traversing the poly(A) site.

To investigate the effect of the 3′ delay T on CTS, we cal-
culated the CTS efficiency of all human and mouse genes
using the CTCS and CTCS + T models and a splicing rate of
3.1 kb/splice (Figure 2D). CTS efficiency was defined as the
fraction of transcripts in which all introns are removed prior
to cleavage and polyadenylation (see Supplemental Meth-
ods), though some level of co-transcriptional splicing may
be occurring even for transcripts that are scored as incom-
pletely spliced. With no 3′ delay T, <50% of transcripts were
predicted to be completely spliced upon polyadenylation.
Genes with many introns, especially short genes, showed
even lower CTS efficiency. With the 3′ delay equated to ei-
ther the median fitted delay time (+TFIT), or to the time
equivalent of GRO-seq-measured read-through distances in
individual genes (+TGRO), resulted in an increase in CTS
efficiency. However, CTS efficiency remained dependent on
gene length and the number of introns, such that even these
time delays are not sufficient to ensure that all introns are
spliced in short genes, especially those with many introns.

Predicting selective Pol II pausing at 3′ ends

Our model revealed that some genes’ structures predispose
their transcripts for inefficient CTS. However, if efficient
CTS were selected for during the evolution of complex
genomes, we would expect to find compensatory signatures
of other CTS determinants. Indeed, we found that nucle-
osome stability of genes is markedly higher in short genes
than long genes in vertebrate genomes (Figure 3A, Supple-
mentary Figure S5A). This trend could explain the find-
ing that Pol II elongation rate is positively correlated with
gene length (44). Furthermore, among short genes, those
with high numbers of introns had very high average nucle-
osome stability scores. No similar compensatory signatures
were observed for splice site scores (Supplementary Figure
S5B), which correlate with intron length and are univer-
sally stronger in last introns (Supplementary Figures S2C
and S5C). We examined nucleosome occupancy in K562
and GM12878 cells using the MNase-seq data. Within short
genes, nucleosome density increased with increasing num-
bers of introns (Figure 3B).

We next tested whether we could find evidence of differ-
ential Pol II dynamics in long and short genes by examining
Pol II CTD SerineS2 phosphorylation (PolS2) in K562 cells
in the vicinity of poly(A) sites that were not within 1 kb of
any other genes’ starts or ends. In the 1 kb upstream of the
poly(A) site, PolS2 read densities were higher for short genes
than long genes (Figure 3C) (though PolS2 read densities
also correlate with gene expression levels), and genes with
more introns have disproportionately high PolS2 densities.
Furthermore, short genes generally had prominent peaks of
PolS2 signal after the poly(A) site (Figure 3D), whereas long
genes had lower and broader peaks. These data indicate that
differential regulation of Pol II elongation could be suffi-
cient to confer high CTS efficiency to all genes, regardless
of gene structure.

To test this hypothesis we simulated all human genes (Fig-
ure 3E) and mouse genes (Supplementary Figure S5E) with
our CTCS + TFIT model using variable elongation param-
eters. Using experimentally determined elongation rates of
long genes in K562 cells (44), we tested that elongation rates
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Figure 2. Pol II read-through may contribute to delay time following transcription of the poly(A) site. (A) Deriving kinetic parameters by fitting CTCS
model to median spliced fraction � of 100 equally populated bins of introns. Green and blue lines are the fits to the CTCS or CTCS + TFIT models,
respectively. TFIT refers to the average additional time after Pol II transcribes the poly(A) site, as determined by the model fit. (B) UCSC browser tracks
showing GRO-seq traces in mouse macrophages for representative gene irf2bp2. Schematic boxes indicate the read-through lengths and transcription
units determined computationally (40). (C) Distribution of transcriptional read-through as measured by GRO-seq in human MCF7 cells (top) and mouse
macrophages (bottom). (D) Simulations of CTS in all human genes (left) and mouse genes (right). Genes were split into four evenly sized groups based on
total gene length [short (<6444 bp), medium short (6444–20 252 bp), medium long (20 257–57 229 bp) and long (>57 229 bp)], and further subdivided by
the number of introns. Boxplots of CTS efficiency for short and long groups are shown for simulations in three models: CTCS, CTCS + TFIT, and CTCS +
TGRO. TGRO refers to the additional time after Pol II transcribes the poly(A) site if transcription proceeds to the termination sites identified by GRO-seq,
in individual genes for which GRO-seq measurements are available. All boxes show the extent of the 50% inter-quartile range and the notches estimate a
95% confidence interval for the median.

were negatively correlated with nucleosome stability (Sup-
plementary Figure S5D), and we used this correlation to ex-
trapolate elongation rates for each gene based on the nucle-
osome stability scores shown in Figure 3A (see Supplemen-
tal Methods). Allowing for a variable elongation parame-
ter (+ �elong) resulted in preferentially marked increases
in CTS efficiency for short genes with many introns (Fig-
ure 3E). Next, we tested the effect of having stronger splice
sites in last introns (+ �splice). This change increased CTS
efficiency in most gene categories, but exacerbated the dif-
ferences between genes with many or few introns. When
we took into account both variable elongation and splic-
ing rates (+ �both), there was an increase in CTS efficiency
across all categories. These modeling results are consistent
with a central role for elongation control in the regulation of
CTS efficiency. Moreover, these data illustrate the power of
modeling to elucidate the combined contributions of several
factors, such as elongation, nucleosome stability, and splice
site strength, for regulating co-transcriptional splicing.

Distinct genomic CTS-determinants of housekeeping genes

Since CTS efficiency depends on Pol II dynamics, we
hypothesized that differentially regulated gene groups
would show distinct signatures of CTS. We compared
constitutively-expressed housekeeping (HK) genes with
genes whose expression is more variable across cell types
(non-HK; 45). Nascent RNA-seq revealed that HK genes
have overall higher steady-state intron spliced fraction �
than non-HK genes, especially for introns close to the
poly(A) site (Figure 4A). The CTCS + TFIT model, when
fit to this data, predicts a significantly longer post-poly(A)
site delay for HK genes (equivalent to 7.3 kb) compared to
non-HK genes (3.8 kb). Interestingly, our mouse GRO-seq
data, indicates that the average read-through is significantly
longer in HK genes than non-HK genes (4.4 versus 3.6 kb,
respectively: Figure 4B: P = 1.6 × 10−4).

Next, we analyzed how the combination of other CTS
determinants could contribute to the higher CTS effi-
ciency of HK genes. The model fit resulted in a higher
elongation/splicing ratio in HK genes: 3.5 kb/splice
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Figure 3. Variable Pol II elongation kinetics favor CTS. (A) Boxplots (50% inter-quartile range and 95% confidence interval of the median) of the nu-
cleosome stability score of each gene in indicated gene categories based on gene length and intron numbers. Nucleosome scores were averaged over the
region of the gene that encompassed the second through final exon. Stability scores of exons in genes with 1–4 introns are significantly lower (P < 10e−10,
indicated by **), or higher (P < 0.005, indicated by ‡) than stability scores of exons in genes with 8+ introns (t-tests). (B) Average MNase-seq signal over
all exon starts in K562 (left) and GM12878 cells (right) in short and long genes, split up by intron number. (C) Average PolS2 ChIP-seq signal in the 1 kb
upstream of the poly(A) site (left), and gene expression (right) for short and long genes split up by number of introns, in K562 cells. PolS2 ChIP-seq signal
in genes with 1–4 introns is significantly lower (P < 0.005 indicated by *) than PolS2 ChIP-seq signal in genes with 8+ introns (t-tests). FPKM stands for
fragments per kb per million reads sequenced. (D) Average PolS2 signal downstream of the poly(A) site. Traces are normalized to the average of the 1 kb
upstream of the poly(A) site for each category. (E) Simulations of CTS efficiency in short and long human genes using model CTCS + TFIT. Boxplots of
simulations in four separate modeling conditions (see Supplemental Methods) are shown: TFIT: same as Figure 2D; + �elong: elongation rate of each gene
was modulated as an inverse function of nucleosome stability. + �splice: kinetic splicing rate was modulated so that last introns had a rate twice the speed
of other introns. + �both: both elongation and splicing rates were modulated.
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Figure 4. Housekeeping genes have distinct CTS determinants. (A) Splic-
ing completion in nuclear poly(A)-depleted RNA-seq is higher in house-
keeping genes (red) than other genes (black). Inset shows parameter fits to
CTCS + TFIT. The asterisks indicate statistical significance (P < 0.001).
(B) Read-through in mouse genes as measured by GRO-seq. Error bars
indicate SEM; P-values are the results of t-tests. Acceptor scores (C) and
exonic nucleosome stability scores in the first 147 bp (D) in HK versus
non-HK genes based on human genome sequence. (E) Normalized PolS2
ChIP-seq signal at the poly(A) site of HK and non-HK genes, for long and
short genes.

compared 3.0 kb/splice in non-HK genes (Figure 4A).
Interestingly, introns throughout HK genes in fact have
stronger splice sites than non-HK gene introns (Figure
4C, Supplementary Figure S6A: P = 9.6 × 10−12): there-
fore the elongation/splicing ratio in HK genes is consistent
with a faster elongation rate instead of a slower splicing rate.
In support of this hypothesis, HK genes have on average
lower nucleosome stability than non-HK genes (Figure 4D,
Supplementary Figure S6B: P = 6.8 × 10−206). This faster
elongation/splicing ratio implies that HK genes would have
lower CTS efficiency were it not for a longer post-poly(A)
site delay time. As transcriptional read-through measured
by GRO-seq (4.4 kb) does not account for the expected de-
lay (equivalent to 7.3 kb), we hypothesized that transcrip-
tional pause sites may provide additional time. Strikingly,
in support of this hypothesis, HK genes have much stronger
PolS2 peaks downstream of their poly(A) sites in K562 cells
than non-HK genes (Figure 4E).

DISCUSSION

In this study, we constructed a scalable computational
model of CTS to identify and interpret the biological signif-
icance of genetic, sequence, and epigenetic features in verte-
brate genomes. We found that distinct combinations of ge-
netic and epigenetic determinants apply to different cohorts

of genes; regulated genes appear to have evolved to rely
more on nucleosomal control of pol II elongation to achieve
high CTS efficiency than housekeeping genes, which con-
tain more introns (46) but have higher splice site scores and
exhibit longer Pol II read-through. As nucleosome density
is a component of the regulated chromatin landscape, our
observation suggests that splice patterns of non-HK genes
are an integral part of their gene expression regulation.

Model simulations further suggested that many tran-
scripts remain incompletely spliced when Pol II reaches the
poly(A) site (Figure 2D), but that several mechanisms may
contribute to ensuring completed splicing prior to tran-
script release. Indeed, our analysis estimates an average in-
terval of ∼1.5 min between transcription of the poly(A) site
and cleavage of the pre-mRNA (Figure 2A). One mech-
anism may involve transcriptional read-through by which
Pol II terminates well past the poly(A) site (Figure 2C). A
second may involve increased PolS2 occupancy indicative
of pausing at the 3′ end of shorter genes. And third, sev-
eral studies have shown that even cleaved and polyadeny-
lated but incompletely spliced mRNAs are retained on the
chromatin (26,29,47). The delay in transcript release could
result from the complex requirements of termination (48),
or perhaps reflects a checkpoint that prevents release of
pre-mRNA transcripts (5). Even if the ultimate catalytic
steps of splicing occur post-transcriptionally, the recruit-
ment and assembly of splicing complexes likely occur co-
transcriptionally (7,8,27,47), and are therefore subject to
the kinetic considerations addressed here. Indeed, a detailed
quantitative delineation of post-transcriptional events will
require refinement of the current model so that the chemical
reaction of splicing is delineated starting with the recruit-
ment of splicing factors (cf. (49)). Similarly, the quantitative
impact on CTS of other mechanisms such as splicing en-
hancers or suppressors and associated trans-acting factors
(30,50), the chromatin-mediated recruitment of splicing fac-
tors, or alternative splicing may be studied by extending the
current model formulation.

The present work suggests that mathematical modeling
frameworks of splicing must include a kinetic component,
and that kinetic considerations encoded in such models lead
to new insights about the organization of the genome and
epigenome, as well as the patterns of gene expression ob-
served in RNAseq datasets. As such, the present work il-
lustrates that simple kinetic considerations of gene expres-
sion processes can be brought to bear on the analysis of
genome-wide datasets produced by Next Gen Sequencing
approaches, revealing novel insights by mechanistically con-
necting measurements of gene structure, sequence elements,
chromatin modification, and the abundance of mRNA iso-
forms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online. Code is
available at https://github.com/jdavisturak/CTCSmodel.
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