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Abstract
In the past decade, tensors have become increasingly attractive in different aspects of signal and 
image processing areas. The main reason is the inefficiency of matrices in representing and analyzing 
multimodal and multidimensional datasets. Matrices cannot preserve the multidimensional correlation 
of elements in higher‑order datasets and this highly reduces the effectiveness of matrix‑based 
approaches in analyzing multidimensional datasets. Besides this, tensor‑based approaches have 
demonstrated promising performances. These together, encouraged researchers to move from matrices 
to tensors. Among different signal and image processing applications, analyzing biomedical signals 
and images is of particular importance. This is due to the need for extracting accurate information 
from biomedical datasets which directly affects patient’s health. In addition, in many cases, several 
datasets have been recorded simultaneously from a patient. A common example is recording 
electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) of a patient with 
schizophrenia. In such a situation, tensors seem to be among the most effective methods for the 
simultaneous exploitation of two (or more) datasets. Therefore, several tensor‑based methods have 
been developed for analyzing biomedical datasets. Considering this reality, in this paper, we aim to 
have a comprehensive review on tensor‑based methods in biomedical image analysis. The presented 
study and classification between different methods and applications can show the importance of 
tensors in biomedical image enhancement and open new ways for future studies.
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Introduction
Tensors have been proven to be effective 
tools for analyzing multimodal and 
multidimensional datasets.[1,2] Generally 
speaking, tensors are higher‑order arrays, 
basically used for recording and representing 
higher‑order datasets.[1] Vectors (1st order 
tensors) and matrices (2nd order tensors) can 
be considered as special cases of tensors.

Inefficiency of matrices in representing and 
analyzing multimodal and multidimensional 
datasets has been encouraged researchers 
to replace matrices with tensors.[3] Besides, 
emerging of new datasets with high 
dimensions and several modalities increases 
the need for tensor‑based methods for data 
analysis. This has been widely affected 
different areas in signal and image 
processing domains, such as natural image 
analysis, blind source separation, machine 
learning, hyperspectral imaging, medical 
diagnosis, and so on.[4‑10]

Among different image processing 
applications, biomedical image 
enhancement is of special consideration. 
Higher‑quality biomedical images result 
in faster and more accurate diagnoses 
of diseases. In addition, sometimes, 
simultaneous analysis of several datasets 
recorded from one patient is inevitable 
for a more accurate investigation.[11‑13] 
These facts, by keeping in mind that many 
biomedical images (datasets) are naturally 
of higher orders, show the importance of 
using tensor methods in biomedical image 
analysis (enhancement). Some examples 
of biomedical images are illustrated 
in Figure 1. In this figure, from left to 
right, an example of an optical coherence 
tomography (OCT) image[14] (https://
people.duke.edu/~sf59/Fang_TMI_2013.
htm) and a fundus fluorescein angiogram 
photograp[15] (https://misp.mui.ac.ir/en/
fundus‑fluorescein‑angiogram‑photographs‑
diabetic‑patients‑0) have been shown.

Tensor decomposition is a common method 
for processing of higher‑order datasets.[2] 
CP (CANDECOMP/PARAFAC) and Tucker 
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decompositions are two well‑known tensor decomposition 
methods.[16] The two methods have been widely used in 
different signal and image processing areas and resulted 
in promising performances.[17‑23] However, Tucker 
decomposition suffers from the curse of dimensionality.[16] 
It means that the number of elements resulting from Tucker 
decomposition of a tensor increases exponentially with the 
tensor order. This limits using Tucker decomposition for 
higher‑order tensors.

For mitigating the curse of dimensionality, several other 
tensor decomposition methods, called tensor networks, 
have been developed.[1] The important characteristic of 
tensor networks is that the number of elements resulting 
from decomposition of a tensor, increases linearly with 
tensor order. This makes tensor networks suitable for 
analyzing higher‑order datasets. Two members of tensor 
networks which have been highly exploited in different 
signal and image processing areas are tensor train (TT) and 
tensor ring (TR) decompositions.[24,25]

Tensor networks are proper for analyzing higher‑order 
tensors (more than 5th order tensors), however, many 
of the actual datasets are not as high order as expected. 
For providing a situation for using tensor networks, 
low‑order datasets are usually transferred into higher‑order 
datasets.[26‑28] This is done using different methods which 
are generally known as tensorization or folding methods. 
Hankelization or KET folding are the two well‑known 
methods for transferring a low‑order dataset into 
higher‑order spaces.[6,29‑31]

The main important issue when using tensor decomposition 
is selecting proper ranks. In general, the ranks determine the 
size of latent variables resulting from tensor decomposition. 
This includes the size of resulting factor matrices or core 
tensors. In addition, in some definitions, a tensor rank is the 
rank of different unfoldings of that tensor. There are different 
methods for determining the rank of a tensor such as using 
prior fixed ranks or rank incremental methods.[26,27,32] In the 
fixed rank methods, the ranks are determined in advance 
and as an input to the algorithm. In these methods, the 
ranks are not changed during the execution of the algorithm. 
In the rank incremental methods, the ranks are not set 
fixed but are increased gradually during several iterations. 
Simulations show that the rank incremental methods 
usually outperform fixed rank approaches.[26] However, an 

important assumption when using tensors, especially for the 
completion or denoising of different (biomedical) images, 
is low‑rankness.[33‑37] This means that the original tensor is 
low‑rank or better to say, the matrices or tensors resulting 
from tensor decomposition have small sizes. In contrast to 
matrices, rank of a tensor does not have a unique definition 
and varies with the underlying tensor structure assumptions. 
Consequently, the low‑rankness assumption also varies with 
the tensor structure. This will be discussed in more detail in 
the next sections.

In this paper, we have mainly focused on tensor methods 
for analyzing biomedical images. The importance of this 
study becomes clear when we know that many biomedical 
images are in tensor formats (usually low‑order tensors). In 
this situation, matrix methods are usually inefficient due to 
the following reasons.[38,39]

1. Transferring a higher‑order dataset into a matrix usually 
ignores local and spatial correlations among elements

2. Latent variables extracted by matrix factorization 
are usually less meaningful compared to information 
extracted by tensor decomposition.

Even, for low‑order datasets (in matrix format), 
tensor‑based methods can be more efficient compared to 
matrix‑based methods.[3] The examples show that, despite 
the higher computational burden of tensor‑based methods 
in comparison to the matrix‑based approaches, their higher 
performance and applicability in different areas cannot be 
ignored.

Above‑mentioned reasons demonstrate the need for using 
tensor methods for biomedical image analysis. Despite 
many papers that use the biomedical images in their initial 
formats (when using CP and Tucker decompositions), some 
of the recently proposed methods prefer to use biomedical 
images in higher order spaces (sometimes known as 
embedded space) and applying tensor networks.[28,31]

In this paper, the tensor‑based methods used for the 
following three important categories have been studied.

1. Biomedical image completion (super‑resolution)
2. Biomedical image denoising
3. Information fusion.

Tensor decomposition methods studied in this paper 
are limited to CP, Tucker, higher order singular value 
decomposition (HOSVD), TT, and TR decompositions. 
Some other tensor decomposition methods, such as block 
term decomposition (BTD) and tensor singular value 
decomposition (t‑SVD) which have been also exploited for 
biomedical image analysis,[40‑45] have not been reviewed 
in this paper. In addition, since this paper focuses on 
biomedical image processing methods, the tensor‑based 
signal processing approaches have not been reviewed here.

The main advantage of this paper compared to the other 
review papers is that we do not limit the review to 

Figure 1: Some examples of biomedical images. From left to right, examples 
of an optical coherence tomography image and fundus fluorescein 
angiogram image
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only one special tensor decomposition method[46] or a 
special application or dataset.[21,47‑49] We tried to present a 
comprehensive review that encompasses different image 
processing applications with different datasets and different 
tensor decomposition methods.

The rest of this paper has been organized as: notations and 
preliminaries have been reviewed in section 2. Section 
3 presented different tensor decomposition methods. 
Tenosrization methods and low‑rankness are reviewed in 
sections 4 and 5, respectively. Tensor‑based methods for 
medical image analysis have been studied in section 6. 
Discussion and future perspective are presented in section 
7, and finally, the paper is concluded in section 8.

Notations and Preliminaries
In this section, we have reviewed the notations which will 
be used in the rest of the paper. The notations are the same 
as the notations used in.[16] Vectors and matrices are denoted 
by small boldface and capital boldface letters (x and X), 
respectively. Tensors are denoted by underlined capital bold 
letters, as X_. Elements of a vector are denoted as xi, while 
elements of a matrix or tensor are denoted as 

1 2 Ni ,i ,…,ix .

Element wise (Hadamard), Khatri–Rao, Kronecker and 
outer products between two tensors (vectors or matrices) 
are denoted as ,  ,   ⊗ and ∘, respectively.

Frobenius norm, nuclear norm, transpose, and 
pseudo‑inverse of a matrix are denoted by ‖.‖F, ‖.‖*, ‖.‖

T and 
‖.‖†, respectively. Recall that the Frobenius norm of a tensor 

is defined as
1 21 2

22
, , ,, , ,

 

NN
F i i ii i i

x ……
=∑X . Also, "tr" stands 

for the trace of a matrix, i.e. sum of its diagonal elements.

Matricization of a tensor, i.e., reshaping that tensor into 
a matrix format, is a useful tool when working with 
tensors. Depending on the shape of the resulting matrix, 
several methods are defined for matricization. Mod‑{n} 
matricization of an Nth order tensor X  reshapes that tensor 
into a matrix of size 1 2 1 1n n n NI I I I I I− +× … … and denoted 
by X(n). Mod‑{n} canonical unfolding of X denoted by 
X<n>, and is an 

1 2 1n n NI I I I I+… × … matrix. Especial form 
of matricization, mainly used for TR decomposition, 
is X[n] which reshapes a tensor into a matrix of size 

1 2 1 1n n n N nI I I I I I+ + −× … … .

Notations used in this paper are summarized in Table 1. 
Furthermore, for more clarifying the paper, list of 
abbreviations used in the paper are presented in Table 2.

Tensor Decomposition Methods
As mentioned in the introduction, tensor decomposition 
is a common method for analyzing a dataset 
with tensor structure.[1] There are several tensor 
decomposition methods, such as CP decomposition, 
Tucker decomposition, HOSVD, BTD, t‑SVD, TT 
decomposition, TR decompositions, hierarchical Tucker 

decomposition, and so on.[16,24,25,50,51] In this paper, we 
have focused on five main decomposition methods, 
i.e. CP, Tucker, HOSVD, TT, and TR decompositions. 
These methods are reviewed in the following subsections.

CANDECOMP/PARAFAC decomposition

CP decomposition, illustrated in the first row of Figure 2 
is a well‑known tensor decomposition method among 
existing classic tensor decomposition methods. In CP 
decomposition, a tensor X is decomposed as a sum of R 
rank‑one tensors, where R is known as the CP rank. CP 
decomposition is denoted as[16]

( ) ( ) ( )1 2; , , ,≈ …X B B B 

N Λ , (1)

where 1 2 NI I I× ×…×∈X N is an N th order tensor to be 
decomposed, B(n) is the nth factor matrix of size nI R× and Λ 
is a diagonal matrix. CP decomposition can also denoted as:[16]

( ) ( ) ( )1 2
1

,  r=
≈ λ …∑X R N

r r rr
b b b  (2)

where ( )n
rb is the r th column of ( ) ,  λB n

r is the r th diagonal 
element of Λ and ( ) ( ) ( )

  …1 2 N
r r rb b b is a rank‑one tensor of 

size 1 2 NI I I× ×…× . Each element of tensor X is computed 
as: [16]

Table 2: List of paper abbreviations
Abbreviation Full format
CP CANDECOMP/PARAFAC
TT Tensor train
TR Tensor ring
SSA Singular spectrum analysis
SVD Singular value decomposition
HOSVD Higher order singular value decomposition
t‑SVD Tensor singular value decomposition
BTD Block term decomposition
OCT Optical coherence tomography
MRI Magnetic resonance imaging
fMRI Functional magnetic resonance imaging
MDT Multiway delay embedding transform
CT Computed tomography
PET Positron emission tomography
MRF Magnetic resonance fingerprinting
SPECT Single photon emission computed tomography
PSNR Peak signal to noise ratio
SSIM Structural similarity

Table 1: List of notations used in the paper
Vectors, matrices and tensors x, X and X_
Elements of a tensor

1 2, , , Ni i ix …

Element wise (Hadamard), Khatri‑Rao, 
Kronecker and outer products

 ,  ,  ⊗  and o

Mod‑{n} matricization and Mod‑{n} 
canonical matricization of X_

X(n) and X<n>

Frobenius norm, nuclear norm, 
transpose and pseudo‑inverse operators

‖.‖F, ‖.‖*, ‖.‖T and ‖.‖†
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( ) ( ) ( )
1 2 1 2, , , , , , ,rx b b b… = λ …∑N N

R N
i i i i r i r i rr

 
=1

1 2  (3)

where 
( )

,n

n
i rb is the ( ,ni r )‑th element of B(n).

Tucker decomposition

Another well‑known approach for tensor decomposition 
is Tucker decomposition [illustrated in the second row of 
Figure 2]. In Tucker decomposition, an N th order tensor X
of size 1 2 NI I I× ×…× is decomposed as.[16]

( ) ( ) ( )1 2; , , ,≈ …X G B B B 

N , (4)

where G is the core tensor of size 1 2 NR R R× ×…× and B(n) 

is the n‑th factor matrix of size n nI R× . 

Vector 1 2[ , , , ]NR R R… determines the size of core tensors 
and factor matrices. Tucker decomposition can be expressed 
in a mathematical format as.[16]

( ) ( ) ( )1 2

1 21 2

, , ,
, , ,1, 1, , 1

,  

R R R
r r rr r r

g…

…= = … =
≈ …∑ N

N NN

N
r r rb b b
1 2

1 2X  (5)

and the elements are calculated as: [16]

( ) ( ) ( )1 2

1 2 1 2 1 1 2 21 2

, , , 1 2
, , , , , , , , ,1, 1, , 1

,R R R
i i i r r r r i r i r ir r r

x g b b b…

… …= = … =
= …∑ N

N N N NN

N  (6)

where, 
1 2, , ,g … Nr r r is the ( )1 2, , , Nr r r… ‑th element of G and 

( )
,n n

n
r ib is the ( ,n nr i )‑th element of B(n).

HOSVD can be considered as a special case for Tucker 
decomposition, where all of the factor matrices are 
orthogonal and the core tensor is all orthogonal, i.e. the 
lateral slices are mutually orthogonal.

Tensor train decomposition

TT decomposition is a simple member of tensor networks. 
It is well‑known due to its simplicity and overcoming 
the curse of dimensionality. A tensor with TT structure is 
denoted as:[16,24]

( ) ( ) ( )1 2, , , N≈ …X G G G  , (7)

where ( )nG is the nth core tensor of size 1n n nR I R− × × . In 
TT decomposition 0 1NR R= = , so the first and the last core 
tensors are two matrices.[24] The resulting core tensors are 
interconnected with each other linearly. It is clear that Rn’s 

indeed determine the size of core tensors, i.e. larger Rn’s 
result in larger core tensors.

The number of elements resulting from TT decomposition 
of an Nth order tensor is ( ) 22    2RI N R I+ − (considering 

1 2       NI I I I= =…= = and 1 2       NR R R R= =…= = ). Hence, the 
number of elements is linearly increased with the tensor 
order (N). For higher order tensors, i.e., larger values of N, 
the resulting elements of TT decomposition are much less 
than the resulting elements of Tucker decomposition which 
is equal to   NR NRI+ . This shows that TT decomposition 
overcomes the curse of dimensionality.

Each element of a tensor with TT structure is computed 
as: [16,24]

( ) ( ) ( )
1 2 1 2

1 2
, , , , 

N N

N
i i i i i ix … = …G G G  (8)

where ( )
n

n
iG is the ni ‑th lateral slice of the n ‑th core tensor.

Tensor ring decomposition

TR decomposition is another member of tensor networks 
which can be considered as a generalization of TT 
decomposition and denoted as:[25]

( ) ( ) ( )1 2, , , N≈ …X G G G 

, (9)

where, similar to TT decomposition, ( )nG is the nth core 
tensor of size 1n n nR I R− × × . In TR decomposition, the core 
tensors are interconnected in a ring, and in contrast to TT 
decomposition, 0 1NR R= > .[25] The number of elements 
resulting from TR decomposition of an N th order tensor 
is equal to 2NIR . It shows that the number of elements 
increases linearly with tensor order which overcomes the 
curse of dimensionality. Each element of a tensor with TR 
structure is computed as: [25]

( ) ( ) ( )( )1 2 1 2

1 2
, , , .

N N

N
i i i i i ix tr… = …G G G  (10)

Illustrations of TT and TR decomposition methods are 
shown in Figure 3. In this figure, each circle shows a 
third‑order core tensor. In these two decompositions, 
an N th order tensor is decomposed into N  third order 
core tensors. In TT, the core tensors are connected 
linearly, while in TR, the core tensors are interconnected 
in a ring.

Coupled tensor decomposition

When working with big data or 
multimodal (multidimensional) datasets, sometimes, it is 
needed to decompose several datasets simultaneously. This 
enables exploiting common information among datasets 
which is not available when processing each dataset 
individually. This is an important issue in data fusion (will 
be discussed later).[52‑54]

The coupled decomposition of datasets can be divided 
into several categories: Matrix‑matrix decomposition, 
matrix‑tensor decomposition, and tensor–tensor 
decomposition.[55,56] In this paper, we mainly focus on 

Figure  2: CANDECOMP/PARAFAC  (first  row)  and Tucker  (second  row) 
decompositions of a 3rd order tensor
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matrix‑tensor and tensor–tensor decompositions. Coupled 
matrix‑tensor decomposition can be modeled as: [55]

( )  ( )
1 2

2 2
1 2,

in  ,ˆm   F Fθ θ
θ θ− + −X X X X  (11)

where X and X are the two datasets, in matrix and tensor 
formats, respectively, which are factorized simultaneously. 

( )1
ˆ θX and  ( )2θX are the factorized versions of X and X , 

respectively. ( )1
ˆ θX can be in different matrix factorization 

formats, while  ( )2θX can be in the form of different 
tensor decompositions, such as CP decomposition, Tucker 
decomposition, TT or TR decompositions, and so on. 

1θ and 2θ are the latent variables of each decomposition 
and have some common parameters, called shared factors. 
In other words, 1 1 ,s cθ θ θ =   and 2 2 ,s cθ θ θ =   , where 1

sθ
and 2

sθ , are the specific (unshared) parameters of each 
dataset and cθ contains the shared parameters between two 
datasets.

In a similar manner, coupled tensor–tensor factorization 
can be modeled as: [56]

 ( )  ( )
1 2

2 2
1 21 1 2 2,

min ,F Fθ θ
θ θ− + −X X X X    (12)

where 1X and 2X are the first and second datasets (in tensor 
formats) to be factorized simultaneously, and  ( )1 1θX
and  ( )2 2θX are the factorized versions in different tensor 
decomposition formats. 1θ  and 2θ are the resulting latent 
variables that have some shared factors.

Based on the relation among shared factors, the datasets 
can be coupled in different ways, named, hard coupling, 
soft coupling, and multimodal soft coupling. In the hard 
coupling method, the shared factors among datasets 
are assumed to be exactly the same.[57,58] This is a good 
approach for coupling the datasets of the same type. In the 
soft coupling approach, the shared factors are not exactly 
the same, but they are similar. In this approach, a penalty 
term is added to the cost function which controls the 
similarity of the shared factors.[59] This method is preferred 

for datasets that have different types. Coupled tensor 
decomposition of two datasets with soft coupling of shared 
factors can be modeled as:

 ( )  ( )
1 2

2 2 2
1 21 1 2 2 1 2,

min  ,    

c c
F F Fθ θ

θ θ θ θ− + − +λ −X X X X  (13)

where 1
cθ and 2

cθ are the shared factors of the first and 
second datasets, respectively, and 1 2 

c c
Fθ θ− controls the 

similarity of the shared factors with weight λ .

In multimodal soft coupling, it is assumed that the shared 
factors are similar to a third factor resulting from another 
modality.[60] This method is applicable when working with 
datasets that have several modalities, like audiovisual 
datasets. Coupled matrix‑tensor and tensor‑tensor 
decompositions are illustrated in Figure 4.

TT and TR decompositions (generally tensor networks) 
are mainly applicable for higher‑order tensors. In addition, 
some papers show that transferring lower‑order tensors 
into higher‑order ones can increase the performance of the 
algorithms.[26‑32] Due to these reasons, it is usually preferred to 
transfer the raw dataset into higher‑order spaces, sometimes 
known as embedded space. These methods, generally known 
as tensorization methods, are reviewed in the next section.

Tensorization Methods
Tensorization methods are for transferring a dataset into 
a tensor. In this paper, we also consider the methods for 
transferring lower‑order tensors into higher‑order ones as 
tensorization methods.

Hankelization is a classic method for transferring a vector 
into a matrix with Hankel structure.[29,30,61] Recall that in a 
matrix with a Hankel structure, all of the elements in each 
skew diagonal are the same. This method is an initial step 
in an algorithm known as singular spectrum analysis (SSA), 
basically used for time series analysis.[29,30,61] Hankelization 
of a vector is shown in Figure 5.

Recently, Hankelization has been exploited in tensor‑based 
algorithms and showed promising results in different 
applications. Multiway delay embedded transform (MDT) 

Figure 3: Tensor train (first row) and tensor ring (second row) decompositions of an Nth order tensor
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has been proposed in Yokota et al.’s study[26] for image 
completion. In this method, a lower‑order dataset is first 
multiplied by special matrices, called duplication matrices, 
and then tensorized into higher‑order spaces. Using MDT, 
an N th order tensor is reformatted into a 2N th order 
tensor.[26]

Patch Hankelization (Figure 6) is another method for 
providing higher‑order tensors.[27] In patch Hankelization, 
patches of pixels or elements of a low‑order dataset 
are used for tensorization. In this method, the original 
low‑order dataset is multiplied by matrices, called patch 
duplication matrices, and then a folding step is applied. In 
patch Hankelization, a 3rd order dataset is transferred into 
a 7th order tensor. Patch Hankelization with overlapped 
patches has been also proposed by Sedighin et al.[28]

KET augmentation is another approach for transferring a 
low‑order tensor into higher‑order spaces.[31] It transfers a 
2nd order matrix into a 3rd order tensor. The approach is done 
by extracting consecutive patches of the original matrix 
and stacked them into a 3rd order tensor. Overlapped KET 
augmentation, known as OKET, has been also proposed.[62] 
In this method, the consecutive patches have overlap with 
each other. This provides a situation for applying two steps of 
augmentation and can produce a 4th order tensor from a matrix.

There are also other reshaping methods such as decimation 
or segmentation which have been used for reshaping a 
low‑order dataset into a tensor.[6]

Low‑rankness
An important issue when working with tensors is 
determining proper ranks. In a simple word, the ranks of 
each decomposition determine the size of resulting latent 
factors. In CP decomposition, the low‑rankness means 
that the original tensor is composed of small number 
of rank‑one tensors, i.e., small R. This is the same for 
Tucker, TT and TR decompositions, where low‑rankness is 
equivalent to smaller core tensors.

Low‑rankness of the original tensor is a very useful 
and important assumption when the problem is tensor 
completion (super‑resolution) or denoising.[3,35,37,63,64] Tensor 
completion (matrix completion) is the problem of recovering a 
tensor when only a small part of its elements is available. This 
is a very important issue in many fields, such as recommender 
systems, compressed sensing, image compression, etc. In the 
first look, the problem seems to be ill‑posed, however, by 
assuming that the original tensor is low‑rank, it is possible to 
recover the missed information.[3,35,37,63,65]

The rank of a matrix has a clear definition; however, the 
rank of a tensor does not have a unique definition. Different 
definitions for tensor rank result in different performances 
of the algorithms. In this section, we briefly review the 
different definitions of tensor ranks.

CP rank

As mentioned before, CP rank of a tensor is the number 
of rank‑one tensors that construct the original tensor.[65] 
CP rank of a tensor is unique, however, its computation is 
difficult. That’s why in most of the research papers, it is 
replaced by other definitions of rank.

Tucker rank

A common definition for tensor rank is the Tucker rank 
which is defined as follows:[3]

( )( )1
,N

n nn
rank

=
α∑ X  (14)

where nα ’s are nonnegative weights <1 and 1
1.N

nn=
α =∑

Considering the above definition, Tucker rank of a 
tensor X is a weighted summation of different mod‑{n} 
unfoldings of that tensor.

Computing the rank of each resulting matrix X(n) is not 
easy, so the rank is replaced by the nuclear norm of that 
matrix, as: [3]

( ) *1
.N

n nn=
α∑ X   (15)

Figure 4: Matrix‑tensor (first row) and tensor‑tensor (second row) couplings 
of two datasets. The datasets are coupled along one mode

Figure 5: Hankelization of a vector. Using this method, a vector is transferred 
into a matrix with Hankel structure
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The algorithms based on minimizing the Tucker rank of a 
tensor try to minimize the above definition for rank. The 
main issue when using Tucker rank is that the size of X(n) is 

1 2 1 1n n n NI I I I I I− +× … … which is a highly unbalanced matrix 
and its rank is limited to nI . This reduces the efficiency of 
the algorithms based on minimizing the Tucker rank.[3]

Tensor train rank

TT rank of a tensor is computed as follows:[37]

( )1
,N

n nn
rank < >=

α∑ X  (16)

where 
1

1N
nn=

α =∑ . For simplicity in the computation, 

similar to the Tucker rank, the rank of matrices is replaced 

by their nuclear norms,[37] as:

*1
.N

n nn < >=
α∑ X   (17)

The algorithms based on low‑rankness of TT rank try 
to minimize the above rank of the original tensor. The 
superiority of using TT rank in comparison to the Tucker 
rank is that the mod‑{n} canonical unfoldings of a tensor 
is of size 1 2 1n n NI I I I I+… × … , so the rank is bounded by 

( )1 2 1min , n n NI I I I I+… … , which can be a larger value 
compared to the Tucker rank and imposes less limitation 
on the algorithm.[37] Therefore, in many of algorithms, the 
Tucker rank is replaced by the TT rank.[37]

Tensor‑based Biomedical Image Analysis
In this section, we will review the biomedical image analysis 
methods using different tensor‑based approaches. The 
methods have been categorized from two perspectives. First, 
the algorithms have been categorized into three groups based 
on their applications. The three groups are biomedical image 
completion, biomedical image denoising, and information 
fusion. Second, the algorithms have been categorized based 
on the tensor decomposition methods they have used.

Biomedical image completion

Image completion is an important issue in image 
processing area, including biomedical image 
analysis.[3,26,28,66] The problem of image completion, also 
known as image in‑painting, is to recover the missed (or 
uncertain) elements of an image using its available ones.[3] 
The problem originated from the reality that sometimes, 
achieved biomedical images have missed elements due to 
many reasons such as noise, human mistakes, hardware 
failure, or low sampling rate. In the last case (low sampling 
rate), the problem of image completion is also known as 
image super‑resolution.[66]

The problem of image completion (super‑resolution) seems 
to be ill‑posed in the first look. However, the researches 
show that if the underlying image is low‑rank, it is possible 
to recover the missed elements using the observed ones.[3]

It is worth noting that tensor‑based completion methods 
are usually categorized into two groups: The first group 
contains the low‑rank‑based methods. These methods are 
based on minimizing different ranks (defined before) of 
the tensor which is usually done by minimizing the nuclear 
norm of different unfoldings of the tensor. Recovering of 
a (biomedical) image, based on tensor rank minimization 
can be formulated as:

( )min , :  rank st Ω Ω=
X

X X T  (18)

where X and T are the estimated and original tensors, 
respectively, and Ω is the subset of observed elements.

The second group is the decomposition‑based methods.[32,67] 
These methods are based on the reality that the latent 
factors resulting from the decomposition of a tensor usually 
preserve the underlying structure of the original tensor and 
it is possible to recover the original (completed) tensor by 
factorizing the incomplete tensor into latent variables.[26,32]

CP decomposition has been used in papers such as Li and 
Hu, Becker et al., Zhou et al., Zhang and Hawkins, and 

Figure 6: Patch Hankelization of a matrix. Each square contains patch (blocks of elements) with size P × P



Sedighin: Tensor methods in biomed

8 Journal of Medical Signals & Sensors | Volume 14 | Issue 6 | June 2024

Yokota et al.[17,21,46,68,69] for biomedical image completion. 
Li and Hu[17] proposed a low‑rank CP decomposition 
framework for magnetic resonance fingerprinting (MRF) 
reconstruction. It is mentioned that the high acquisition 
speed of MRF results in aliasing artifacts in the final 
fingerprints which reduces the accuracy of the information. 
However, the high dimensional MRF is highly low‑rank, 
and, hence, low‑rank CP decomposition has been exploited 
for removing the artifacts and recovering the elements.

In Zhang and Hawkins’s study,[68] a Bayesian framework 
accompanied by the CP low‑rank assumption has been used 
for magnetic resonance imaging (MRI) data completion. In 
this paper, the MRI is assumed to be a low‑rank streaming 
dataset and CP decomposition with low‑rankness has been 
applied for completion.

Smoothed low‑rank CP decomposition has been proposed 
in[69] and shown to be effective for MRI data completion. 
In this method, smoothness has been applied to each latent 
factor resulting from CP decomposition. The superiority 
of this approach is that it is a rank incremental method. 
As mentioned before, in rank incremental methods, 
the ranks (here CP rank) are not set fixed and increased 
gradually during iterations.

Tucker decomposition has been also exploited for 
biomedical image completion. Most of these methods 
are based on minimizing the Tucker rank (defined in(15)) 
of the tensor.[3,70‑73] However, there exist some methods 
based on using Tucker decomposition of the incomplete 
dataset.[26,72,74]

In Liu et al.’s study,[3] three methods based on minimizing 
Tucker rank have been proposed and tested for MRI 
data completion. The methods are simple low‑rank 
tensor completion (SiLRTC), fast low‑rank tensor 
completion (FaLRTC), and high accuracy low‑rank 
tensor completion (HaLRTC). HaLRTC is based on 
the minimization of the following cost function, using 
alternating direction method of multipliers (ADMM).[3]

( ) ( )
1 2

( ) *1X,P ,P , ,P
min , :  ,  1, 2, ,  

N

N
i i i ii

st for i NΩ Ω=…
α = = = …∑ P X T P X  (19)

where T is the original tensor and Ω denotes the subset of 
observed elements. X is the estimated tensor and ( )i iP ’s 
are the mod‑{i} unfoldings of the tensor.

Results provided in,[3] show that low‑rank Tucker 
decomposition has the ability of recovering missed 
elements in MRI images. However, these approaches are 
inefficient in recovering missed slices (will be discussed 
later).

MRI (and dynamic MRI) recovering from partially 
observed elements, using low‑rank Tucker decomposition, 
has been also investigated in Banco et al., Roohi et al. 
and Wu et al.[71,73,75] In Roohi et al.,[73] the Tucker 
low‑rank assumption (low Tucker rank) in addition to 
the sparsity constraint has been applied for MRI data 

recovery. A similar method has been exploited in Xu 
et al.[76] for OCT image reconstruction. In Guo et al.,[77] 
a patch‑based method based on minimizing Tucker 
rank has been proposed for functional MRI (fMRI) 
super‑resolution. In the mentioned paper, low‑rankness 
has been imposed on each extracted patch, instead of the 
general image.

Methods proposed by Yokota et al., Hatvaniy et al. and 
Gui et al.[26,72,74] are based on direct Tucker decomposition. 
In[74] a Bayesian framework has been proposed for 
recovering MRI from 50% to 20% of the observed 
elements. Authors of[26] Proposed an approach that was 
capable of recovering missing slices (in contrast to HaLRTC 
method) based on transferring the original dataset into 
higher spaces and using Tucker decomposition with rank 
incremental. Figure 7 shows a better comparison between 
low‑rank‑based and decomposition‑based methods. In this 
figure, we have compared a low‑rank‑based method and a 
tensor decomposition method for recovering missed slices 
of an OCT image. As this figure shows, HaLRTC (nuclear 
norm minimization method for low‑rankness) was not able 
to recover the missed slices of a three dimensional (3D) 
OCT image of dataset,[14] while the method of,[26] called 
MDT, could recover the missed slices. The computed 
peak signal to noise ratio (PSNR) and structural similarity 
(SSIM) of the resulting images, also confirm the higher 
performance of the tensor decomposition method for 
recovering missed slices.[72] used tensor decomposition for 
dental computed tomography (CT) image super‑resolution.

HOSVD has also been widely used for biomedical image 
completion.[78‑85] In Liu et al.’s[78] and Yi et al.’s studies,[79] 
a tensor completion method based on deriving 3D tensors 
with Hankel structure and applying HOSVD has been 
proposed. Rank truncation is applied on the resulting factor 
matrices and core tensor to preserve the low‑rankness of 
decomposition. The method has an iterative structure which 
repeats the procedure until convergence. The algorithm has 
been applied for MRI reconstruction.

In Zhang et al.’s study,[80] dynamic MRI reconstruction has 
been modeled as a low‑rank tensor completion and sparse 
representation. For further improving the performance of the 
algorithm and utilizing the low‑rank structure of dynamic 
MRI, a new nuclear norm has also been defined. Lu et al., 
proposed a method based on applying multiconvolutional 
filters to the input image.[82] Then the similar cubes of 
resulting filtered images are grouped together and HOSVD 
with low‑rank assumption has been applied on each of 
them.[82] Another method based on stacking similar patches 
and applying low‑rank HOSVD has been also used in 
Bustin et al. and Daneshmand et al.[84,85] for MRI and 
OCT images reconstruction, respectively. It is worth noting 
here that, in the mentioned approaches, low rankness for 
HOSVD is usually achieved by truncating the resulting 
factor matrices and core tensor.
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TT and TR decompositions have been also exploited for 
biomedical image completion.[28,31,86,87] Methods proposed 
by Ma et al. and Chen and Cao[31,87] used low‑rank 
TT decomposition (tensor with low TT rank) for MRI 
reconstruction and Guo et al.[86] exploited this approach for 
CT image completion.

In Sedighin et al.’s study,[28] a new method based on TR 
decomposition and overlapped patch Hankelization has been 
proposed for OCT image completion (super‑resolution).

Biomedical image denoising

Denoising is one of the important pre‑processing 
steps for the effective exploitation of medical images. 
Resulting biomedical images are usually contaminated 
by noise and accurate diagnosis is not possible unless 
proper denoising is applied. Different papers have 
been published for biomedical image denoising using 
tensor methods.[18,20,85,88‑92]

Similar to image completion methods, the denoising 
methods can be divided into two groups: decomposition 
based[18,20] and low‑rank‑based methods.[85,89,94‑96] The 
low‑rank‑based methods use the following cost function for 
denosing.

( )2

X
min ,F rank− +T X X  (20)

where T is the observed noisy image (tensor) and X is the 
estimated tensor which should be low‑rank. Based on the 
underlying assumption for the structure of X (CP, Tucker, 
HOSVD, TT/TR), different low‑rank methods have been 
derived for biomedical image denoising.

CP decomposition has been used for biomedical image 
denoising. In Cui et al., and Cao et al.’s studies,[18,20] 
methods based on using Bayesian CP decomposition have 
been proposed for MRI image denoising.

In Zhang et al.’s study,[89] a low‑rank Tucker‑based method 
has been proposed for CT image denoising. In this method, 
small tensors (patches) have been extracted from the input 
multichannel CT image and low‑rankness was applied to 
each extracted tensor.

HOSVD is one of the highly exploited tensor decomposition 
methods used for image denoising.[85,88,90‑92,94,97] Fu et al. 

have proposed a low‑rank‑based method using HOSVD for 
MRI image denoising. This method exploited self‑similarity 
between different 3D patched of the original MRI and 
construct 4D tensors by putting similar 3D patches 
together. Then by applying low‑rankness and HOSVD, the 
denoised image has been recovered.[90] In[91] a Bayesian 
method has been proposed and tested for MRI image 
denoising.[91] Similar to Fu and Dong’s study,[90] similar 
patches are grouped together to provide a higher‑order 
tensor and then low‑rank HOSVD has been applied to the 
resulting tensor. Then, by assuming the Laplacian scale 
mixture for the resulting factors, a Bayesian framework 
has been presented for MRI image denoising. HOSVD 
accompanied with (first order and second order) total 
variation (TV) has been also proposed for denoising of 
OCT images.[85] In this method, similar patches of the 3D 
OCT are grouped to form a set of 3D tensors. Then, by 
applying HOSVD accompanied with low‑rank assumption 
and TV, denoising of noisy OCT images is carried out. In 
Zhang et al.’s study,[92] a two‑stage method based on putting 
similar patches together and applying HOSVD has been 
proposed. In the first stage, the input is the noisy image 
and for the second stage, the weighted summation of the 
original noisy image and the recovered image of the first 
stage is used as an input for the HOSVD. Zhang et al. have 
proposed a mixed approach for MRI image denoising.[98] In 
the first stage of this method, a low‑rank HOSVD has been 
applied to the global 3D image. In the second stage of the 
algorithm, similar patches of the resulting image of the first 
stage is grouped together and HOSVD has been applied 
to the resulting higher‑order tensor. In,[95] a patch‑based 
method for positron emission tomography (PET) denoising 
has been proposed. The method was based on aggregating 
similar patches together to form a 4D tensor and applying 
HOSVD. Then, hard thresholding has been applied on 
the resulting factors to preserve low‑rankness. Olesen 
et al. proposed an iterative method by using HOSVD and 
low‑rank assumption for MRI denoising.[99] This method 
is also a patch‑based method that applied low‑rankness on 
each patch. Another paper that has been utilized HOSVD 
for MRI image denoising is provided by Yeganli et al.[94] 
In contrast to other mentioned papers, the method of[94] is 
not patch based and general MRI image has been used for 

Figure 7: Comparison of reconstruction of a sample B‑scan of dataset[14] with missing slices, using HaLRTC and MDT algorithms. The results show that 
HaLRTC (low‑rank based approach using nuclear norm minimization) could not recover the missed slices, while MDT (decomposition based approach) 
could recover the image. PSNR and SSIM for each image have been reported beneath each image
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image denoising. The sparsity constraint has also applied 
on the core tensor resulted from HOSVD for denoising. 
Low‑rank HOSVD by exploiting a non‑convex penalty 
function has been also proposed for MRI denoising by 
Wang et al.[97]

TT decomposition has also been exploited for OCT image 
denoising.[93] In this paper, low TT rank (defined in(17)) is 
used for OCT image denoising (despeckling).

Information fusion

Information fusion is an important issue when working 
with biomedical datasets. As mentioned earlier, 
information fusion enables the effective exploitation of 
common (shared) information among different modalities 
of multimodal datasets. In addition, by fusing several 
multimodal datasets, it is possible to use the unshared 
information of all datasets simultaneously, which is not 
possible when using each modality independently.

Tensor‑based fusing of biomedical images has been widely 
studied in different literatures.[11‑13,38,100‑111] The methods 
are “usually” based of coupled decomposition of different 
datasets (Figure 4). However, some of fusion methods used 
the information of one modality for tensor decomposition 
of another modality, or applying tensor decomposition on a 
dataset which is composed of all modalities together.

Coupled CP decomposition has been exploited in[100] for 
extracting shared and distinct components among different 
fMRI tasks. The imposing constraint, results in more 
interpretable extracting components. Another CP‑based 
fusion approach for multiparadigm fMRI has been proposed 
by Zhang et al.[101] In this method, correlation matrices 
extracted for subjects have been grouped together to form a 
3D tensor. Then, CP decomposition with sparsity constraint 
of the latent factors has been applied for extracting 
parameters.

Joint analysis (fusion) of fMRI and 
electroencephalography (EEG) is an important task in 
neuroscience which is widely used for diagnosis of 
many diseases.[11‑13,110] FMRI provides information about 
brain activities with high spatial resolution but low time 
resolution. Unlike fMRI, EEG can provide information 
with high time resolution but low spatial resolution. This 
is the key point that the fusion of EEG and fMRI can 
provide information with high spatial and time resolutions. 
For this aim, usually matrix‑tensor coupling methods have 
been used. In,[11] fMRI and EEG fusion have been exploited 
for extracting patterns that differ between patients with 
schizophrenia and healthy groups. In this method, the 
EEG signals extracted from different subjects and different 
electrodes are reformatted into a tensor (subject × time × 
electrode) and fMRI extracted from different subjects are 
reformatted in a matrix (subject × voxel). Then these two 
datasets are coupled in their subject modes. A similar idea 
has been presented in,[110] however, hard coupling of the 

shared factors (equality of the shared factors) has been 
modified to the soft coupling (similarity of shared factors). 
Three neuroimaging modalities (instead of two modalities), 
including fMRI, EEG, and structural MRI (sMRI) have 
been fused together for capturing schizophrenia‑related 
patterns.[12] In this method, two matrices, containing the 
fMRI and sMRI information and one tensor containing 
the EEG dataset are factorized together. Coupled 
CP (tensor‑tensor) decomposition has been also exploited 
for EEG and fMRI fusion.[103] In such a method, in contrast 
to matrix‑tensor coupling, the fMRI dataset is resorted into 
a tensor format. The time‑frequency transforms of EEG 
signals have been grouped to form a fourth‑order tensor 
and then the two datasets are coupled in their time and 
subject modes. In[13], the information extracted from EEG 
of different subjects has been used as a constraint for CP 
decomposition of fMRI of the corresponding subjects. In 
this way, they have detected the active areas in the brain 
during special periods.

Tucker decomposition has also been used for biomedical 
image fusion. In Zhang et al.’s study,[102] coupled tensor–
tensor‑based fusion methods (with Tucker decomposition) 
have been utilized for different medical image fusion. The 
low‑frequency and high‑frequency information of images 
are coupled to form a mixed band image. In the mentioned 
paper, fusions of CT and MRI, MRI and PET, MRI, and 
single photon emission CT (SPECT) have been investigated 
using coupled Tucker decomposition.

In studies by Thomason and Gregor,[108] fusing of different 
biomedical images into a single image using HOSVD has 
been studied. Several two‑dimensional images have been 
grouped to form a 3D tensor and then HOSVD has been 
applied for fusion. The method has been tested for the 
fusion of MRI and CT images. In Yin et al.’s study,[104] 
a patch (block)‑based method has been proposed for 
biomedical image fusion. HOSVD has been applied on 
each block by imposing sparsity on the core tensor. Then, 
by weighted averaging of the resulted coefficient of similar 
blocks of different input images, the final image has been 
reconstructed.

Discussion and Future Perspective
As we have reviewed in this paper, it is clear that the 
tensor methods have highly affected the area of biomedical 
image processing. Many biomedical image processing 
algorithms have been developed based on different tensor 
decomposition methods. The reviewed methods have 
been categorized based on tensor decomposition methods 
they have used and also based on their structures, and 
the results are shown in Table 3. It is clear that classic 
tensor decomposition methods, i.e. CP, Tucker, and 
HOSVD decompositions have been widely used for many 
algorithms. However, fewer algorithms exploited TT and 
TR decompositions methods. This can have several reasons; 
first, it can be due to their shorter lifespan comparing to 
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other classic methods. Second, TT and TR decompositions 
are usually applicable for higher‑order tensors. While many 
biomedical datasets are not as high order as expected. 
Hence, classic methods have been more exploited for 
analyzing biomedical datasets. However, recent studies 
have shown the effectiveness of Hankelization for image 
processing,[26,32] not only for improving the performance of 
the algorithms but also for transferring lower‑order tensors 
into higher‑order datasets. This is an important fact that 
provides a situation for exploiting tensor networks for 
analyzing biomedical images (or even biomedical signals).

In Table 3, the algorithms have been also categorized 
based on their structures. In the patch‑based methods, 
patches (blocks) of images have been used for processing 
instead of general image. In these methods, usually similar 
patches (blocks) have been extracted from the input 
image (images) and grouped to form a higher‑order tensor 
which is usually low‑rank. The low‑rankness is usually 
accompanied by other constraints like sparsity which 
have been imposed on the latent variables resulting from 
decomposition of the tensor. On the contrary, in global 
methods, low‑rankness has been applied to the whole 
image. Patch‑based approaches usually have a higher 
computational burden comparing to the global methods, 
however, low‑rank assumption is more applicable for 
patch‑based methods. This is of high importance when the 
problem is completion or denoising where low‑rankness 
plays an important role in recovering the images. Recent 
studies show that applying Hankelization or patch‑based 
Hankelization methods also have the ability for deriving 
low‑rank tensors. It is worth noting here that, Hankelization 
is usually applied for tensor decomposition‑based methods, 
for example,[26,32] not low‑rank‑based methods. Recall that 
low‑rank‑based methods are based on minimizing the 
nuclear norm of the tensor, while tensor decomposition 

methods are based on decomposing the tensor into latent 
variables that preserve the underlying tensor structures. The 
important difference between these two methods is that the 
low‑rank‑based methods are usually unable to recover the 
missing slices of data, while tensor decomposition methods 
have this ability (Sedighin and Cichocki[32] and Figure 7). 
These together show the importance of using Hankelization 
with tensor decomposition methods, which, unfortunately, 
has been ignored in biomedical image processing and needs 
higher attentions in future.

As shown in Table 4, it is clear that many of tensor‑based 
methods used MRI (dynamic MRI) for the simulations. 
MRI images are of high importance in diagnoses of 
different diseases. In addition, since MRI and dynamic MRI 
can be considered as (steaming) tensors, tensor methods 
are more preferred for analyzing MRI images. However, 
tensor methods can be effectively used for analyzing 
the vast majority of biomedical images (with the help of 
tensorization methods), which can be studied in future 
researches.

Conclusion
This study tries to investigate and categorize different 
tensor‑based biomedical image processing methods. The 
algorithms have been categorized based on their applications 
and the tensor decomposition methods they have been used. 
It is shown that classic tensor decomposition methods have 
been widely used for different approaches, while TT and 
TR decompositions have been studied in a few biomedical 
image analysis papers. Furthermore, tensor methods are 
highly centered around MRI images and are less used for 
other biomedical images. These together, show a need for 
more attention in using tensor‑based methods, especially 
tensor networks, for different biomedical image processing.

Table 4: Categorizing the reviewed papers based on the target images they have been used
Application Target image

CT MRI fMRI OCT PET
Completion [72,83,86] [3,17,26, 31,68‑71,73,74,78‑82,84,87,98] [77] [28,85] [95]
Denoising [88], [89] [18,20,90‑92,94,96,97] ‑ [85,93] ‑
Fusion [102] [12,102,104,108] [11‑13,53,101,103,110] ‑ [102]
CT – Computed tomography; MRI – Magnetic resonance imaging; FMRI – Functional magnetic resonance imaging; OCT – Optical 
coherence tomography; PET – Positron emission tomography

Table 3: Categorizing the reviewed papers based on the tensor decomposition methods
Application Tensor decomposition method Structure of the method

CP Tucker HOSVD TT/TR Patch (block) based Global
Completion [17,21,46,68,69] [3,26,70‑74,77] [78‑85] [28,31,86,87] [28,70,77,82‑85] [3,17,31,68,69,26, 

71‑74,78‑81,86,87]
Denoising [18,20] [89] [85,88,90‑92,94‑97,98] [93] [85,88‑92,95‑98] [18,20,93,94]
Fusion [11,12,100,101,103,110] [102] [104,108] ‑ [104] [11,12,100‑103,108]
In the patch (block) based methods, patches (blocks) of the input images have been used for processing, while in global methods, the whole 
images have been exploited. HOSVD – Higher order singular value decomposition; CP – CANDECOMP/PARAFAC; TT/TR – Tensor 
train/tensor ring
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