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Modeling fire spread as an infection process is intuitive: An ignition lights a patch of
fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresh-
olds, whereby fire spreads only when fuel connectivity and infection probability are
sufficiently high. These thresholds are fundamental both to managing fire and to theo-
retical models of fire spread, whereas applied fire models more often apply quasi-
empirical approaches. Here, we resolve this tension by quantifying thresholds in fire
spread locally, using field data from individual fires (n = 1,131) in grassy ecosystems
across a precipitation gradient (496 to 1,442 mm mean annual precipitation) and evalu-
ating how these scaled regionally (across 533 sites) and across time (1989 to 2012 and
2016 to 2018) using data from Kruger National Park in South Africa. An infection
model captured observed patterns in individual fire spread better than competing mod-
els. The proportion of the landscape that burned was well described by measurements
of grass biomass, fuel moisture, and vapor pressure deficit. Regionally, averaging across
variability resulted in quasi-linear patterns. Altogether, results suggest that models aim-
ing to capture fire responses to global change should incorporate nonlinear fire spread
thresholds but that linear approximations may sufficiently capture medium-term trends
under a stationary climate.
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Fire is a fundamental component of the Earth system, with widespread impacts on eco-
system structure and function, the global carbon cycle, and human society (1). The
majority of global burned area and fire-related emissions originate in grassy savanna
ecosystems (2, 3), making a process-based understanding of fire in these systems crucial
for future fire predictions (4). Among fire managers in grassy systems, fire spread is
often discussed in terms of thresholds: Fires spread only if grassy fuel is sufficiently
abundant and dry. Fire managers exploit these thresholds by cutting firebreaks into
continuous fuel layers or spraying water ahead of an advancing fire front to halt its pro-
gress. The existence of thresholds in fire spread is also frequently discussed in the fire
science literature. Fire is discussed as spreading only if multiple “switches” are on,
which could include fuel amount, fuel moisture, fire weather, and ignition (5). Addi-
tionally, thresholds in fire spread have been neatly demonstrated in controlled labora-
tory experiments with matchsticks (6) and in established theoretical physics models
based on percolation theory (7, 8). However, despite the abundance of cross-
disciplinary support for the existence of thresholds in fire spread, many applied local-
and global-scale fire models include, at most, limited possibilities for thresholds [e.g.,
those using equations from ref. 9, inter alia CLM-Li (10), CTEM (11), ORCHIDEE-
SPITFIRE (12), JSBACH-SPITFIRE (13), LPJ-GUESS-SPITFIRE (14), LPJ-LMfire
(15), and MC-FIRE (16)]. The discrepancy between fire science and applied fire models
prompts the question: Are thresholds in fire spread central to its landscape scale behavior,
and should we be accounting for them when modeling fire’s ecological and Earth system
impacts at large spatial scales?
Nonlinear thresholds may be intrinsic to the process of fire spread. Intuitively, fire

spread can be described as an infection process (e.g., ref. 8) whereby an ignition ignites
a flammable patch of fuel, which ignites, or “infects,” at least one neighboring patch of
fuel, which infects other neighboring patches, and so on (17, 18). This approach can
be formalized into a simple process-based model that predicts landscape burned area
(proportion burned) based solely on the proportion of the landscape covered in fuel
(fuel connectivity, ρ) and the probability that fire spreads from a burning patch of fuel
to a neighboring patch of fuel (infection probability, λ). Within this framework, fire
spread displays a strong threshold response to fuel connectivity and infection probabil-
ity, spreading readily across landscapes with sufficient flammable fuel patches but dying
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out when fuel is too sparse or fuel flammability too low (e.g., if
fuel moisture is too high).
Variants of the model described above have long been used

in the theoretical literature to explore emergent behaviors in
fire pattern (e.g., refs. 19–21) but have to date seen limited
adoption in more applied contexts (e.g., ref. 17). The lack of
uptake of fire thresholds in global fire models may be because
the relationships between fire spread thresholds and fuel and
weather conditions have not yet been quantified. Fuel condi-
tion is driven by seasonal to multiannual weather that regulates
biomass accumulation and curing (22), while shorter-term vari-
ation in temperature, humidity, and wind speed further modify
fuel flammability and thus fire behavior (9, 23). To integrate
the theoretical and empirical perspectives on fire spread, we
hypothesize that fuel biomass should capture the constraints of
landscape-scale fuel connectivity on fire spread. Additionally,
we hypothesize that the physical factors affecting ignition suc-
cess and flame propagation, including fuel characteristics (mois-
ture content) and weather conditions (temperature, humidity,
and wind speed), should capture the constraints of infection
probability on fire spread (17). We also expect infection proba-
bility to be correlated with the rate of spread of the fire front,
an applied measure in grassy systems of how readily fire is
spreading (17, 24).
Many regional and global coupled fire-vegetation or fire-

vegetation-climate models use fire models that employ Rother-
mel’s equations (9) to predict the rate of spread of the fire front
from fuel, moisture, topographic variables, and wind speed
(although see refs. 25–27). Although mostly linear, Rothermel’s
equations do include one important nonlinear threshold: the
“moisture of extinction,” or the fuel moisture above which the
rate of fire spread decreases to zero. Despite being widely
applied, Rothermel’s “moisture of extinction” threshold may
not be entirely correct (28). The threshold takes a maximum
value of 40% of dry biomass and in grassy ecosystems is most
commonly set to 15 to 20% of dry biomass (29), whereas
empirical evidence suggests fire can burn when fuel is much
wetter than this [as high as 100% of dry biomass (30)]. More-
over, theoretical models suggest that percolation processes may
prevent fires from becoming large even when fire can spread
locally with apparent success (i.e., when measured fire spread
rate > 0, and infection probability > 0 but is not large), a
phenomenon not captured in Rothermel’s approach. Third,
Rothermel’s equations assume a linear relationship between fuel
biomass and fire spread rate, and models using these equations
assume a linear relationship between a landscape’s fuel connec-
tivity and its proportion burned. This linear relationship is sup-
ported by empirical data collected over time at a regional scale
in grassy systems (e.g., refs. 31–34) but is at odds with the pre-
dictions of percolation theory and with remotely sensed data,
both of which show threshold-type declines in burned area
when fuel connectivity is below ∼0.6 (22, 35). Together, these
three limitations suggest that, while clearly useful, Rothermel’s
equations do not offer the final picture for understanding how
thresholds affect the process of fire spread at larger scales.
Given the need for reliable fire predictions, especially under

climate change, it is imperative that we provide a timely direc-
tion for fire model development by bridging the sizeable gap
between theoretical and applied fire models. Here, we begin to
build this bridge by asking whether a simple fire infection
model is useful for explaining emergent patterns in fire spread
in grassy systems, how its parameters relate to widely recog-
nized determinants of fire behavior, and whether this model
explains patterns of burned area at larger scales and over time.

To do this, we evaluated outcomes of model simulations
against detailed field observations of 188 experimental fires in
grassy savanna ecosystems in Kruger National Park (Kruger)
and Hluhluwe-iMfolozi Park (HiP), South Africa, in Lop�e
National Park (Lop�e), Gabon, and at the Cedar Creek Long
Term Ecological Research site (Cedar Creek), East Bethel,
MN, spanning a total mean annual precipitation (MAP) gradi-
ent of 496 mm to 1,442 mm. Then, using data from 1,004
fires in Kruger across a precipitation gradient of 496 to 737
mm MAP, we explicitly relate the model’s fuel connectivity
and infection probability parameters to fuel moisture, fire
weather (specifically, ambient temperature, relative humidity,
and wind speed), and the rate of spread of the fire front.
Finally, we used park-level observations of grassy biomass and
burned area in Kruger to examine how landscape-scale observa-
tions scale to regional patterns over time. See Materials and
Methods for more information about simulations, fire sampling,
and regional monitoring datasets.

Results and Discussion

Using the infection model, we simulated a landscape’s propor-
tion burned for 500 values of fuel connectivity and 100 values
of infection probability (Materials and Methods). Consistent
with past work (7, 8), model simulations suggested, first, that
landscape burned area (proportion burned) should increase
with fuel connectivity nonlinearly, such that below a threshold
fuel connectivity proportion burned should be zero (or close to
zero, since simulation landscapes are necessarily finite) but
should rapidly approach the 1:1 line above this threshold
(Fig. 1A). The actual value of the fuel connectivity threshold
depends on the infection probability, and vice versa. For exam-
ple, a minimum infection probability of 0.50 was needed for
fire spread when fuels were continuous and fuel connectivity
was at a maximum (ρ = 1). However, when fuel connectivity
dropped to 0.55 and grass became patchy, fires would only
spread if the infection probability was at a maximum (λ = 1).
Both of these model characteristics are already well-established
within percolation theory, although note that actual threshold
values depend on details of landscape configuration (7).

The characteristic emergent properties of a fire infection
model have not previously been demonstrated to exist in real
fires. Here, by burning 108 fires, we showed that the modeled
threshold-type relationships between fuel connectivity and pro-
portion burned described patterns in real fires better than linear
or other nonlinear models (Materials and Methods and Fig. 1
B–E). The only site to deviate from this pattern was the one
with the highest rainfall (Lop�e), where productivity is so high
that fuel connectivity was always above the threshold value and
thus proportion burned was always at its maximum potential.
Our findings thus suggest that, at least at the scale of an
individual fire, fire behavior is strongly nonlinear and that
accounting for threshold behaviors in fire spread may improve
predictions of fire size. Accurate prediction of fire size is essen-
tial for accurate prediction of fire-related emissions, and global
fire model predictions currently diverge from each other and
reality (36).

Moreover, as predicted by fire infection models, in the field
data the fuel connectivity threshold value varied with changes
in infection probability, and vice versa. We estimated the infec-
tion probability at the threshold for fire spread to evaluate
whether the minimum possible infection probability increased
as the fuel landscape became more disconnected (lower ρ) (17).
Fires occurring at the threshold were those where proportion
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burned was above the minimum threshold for fire spread
(where burned area approaches 0) but below the maximum
possible (proportion burned >0.2 and <0.6) (Materials and

Methods). We found that the behavior of “threshold” fires (Fig.
2B) closely approximated the predictions of the fire infection
model (Fig. 2A) and that, as predicted, fire successfully spread
at a lower infection probability when fuel connectivity was
higher (Fig. 2C; expected vs. observed: R2 = 0.96, P < 0.0001,
with slope = 0.99 and intercept = �0.01). These results sug-
gest that percolation processes and their associated thresholds
may indeed govern fire spread at the landscape scale, at least in
grassy systems.

To maximize the real-world applicability of our results, we
next examined whether estimates of fuel connectivity and infec-
tion probability could be parameterized using measurements of
fuel biomass, fuel moisture, and instantaneous fire weather. As
expected, fuel connectivity increased with grass biomass
(ρ¼ 1:03 � e�6:42�e�0:98�mean grass biomass

; adjusted R2 = 0.98, P <
0.0001, n = 57; SI Appendix, Fig. S2). Consequently, the
observed minimum fuel connectivity required for fire spread
equated to a grass biomass of 2.4 tons�ha�1, an estimate that is
close to managers’ operational estimates of 2 tons�ha�1 of grass
biomass required to burn a successful fire (37). Moreover, this
suggests that fires should occur more frequently in more pro-
ductive systems, e.g., with higher rainfall (38), and that the fuel
connectivity threshold can, in some grassy ecosystems, be
parameterized using precipitation (39).

Also as expected, the infection probability increased linearly
with the rate of spread of the fire front (adjusted R2 = 0.53,
P < 0.0001; Fig. 3A). Both infection probability and mean rate
of spread of the fire front decreased with fuel moisture and
increased with vapor pressure deficit, but to a lesser degree
(R2 = 0.64, P < 0.0001 and R2 = 0.77, P < 0.0001, respec-
tively; Fig. 3 B–E). Fuel moisture was the strongest predictor of
infection probability, which suggests that, once a landscape has
crossed the fuel connectivity threshold (i.e., has accumulated
more than 2.4 tons�ha�1 of grass biomass), fire spread is largely
dictated by grass curing and by whether rain or dew recently
fell. Currently, although global fire models do incorporate fuel
moisture effects on fire spread, most set the fuel “moisture of
extinction” at 15 to 20% of dry biomass in grassy ecosystems
(sensu ref. 9). However, we found that 9% of fires in this study
spread successfully with a fuel moisture of more than 100% of the
dry biomass (SI Appendix, Fig. S3). This large discrepancy suggests
that Rothermel’s laboratory-based controlled fuel-bed estimates may
not be appropriate for use at larger scales, at least for predominantly
fine, grassy fuels. A reevaluation of the “moisture of extinction”
used in fire models may improve burned area predictions.
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Fig. 1. Response of burned area (proportion burned) to fuel connectivity
(ρ) in simulation (A; also depending on infection probability λ) and in empiri-
cal observations from Kruger National Park, South Africa (B; 496 to 737 mm
MAP), Hluhluwe-iMfolozi, South Africa (C; 600 to 1,000 mm MAP), the Cedar
Creek Ecosystem Science Reserve, East Bethel, MN (D; 775 mm MAP), and
Lop�e National Park, Gabon (E; 1,442 mm MAP). In B–E, dotted lines show
the infection model simulation for λ = 1 and solid lines show the simulation
with λ that minimized distance index (Materials and Methods) for the
observed data (Kruger λ = 0.71, n = 61; HiP λ = 0.74, n = 30; Cedar Creek
λ = 0.77, n = 66; Lop�e λ = 1, n = 31). In all cases (B–E) the infection model
was a better fit (lower distance index) to the data than linear, quadratic,
two linear, exponential, logistic, van Bertalanffy, and Gompertz models.
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model simulations (B). The response of the fire spread threshold to fuel connectivity (ρ) and infection probability (λ) is also explored in theory and in
observed fires in Kruger through examination of “threshold fires” (those with burned area between 0.2 and 0.6, shown in purple in A and B). (C) The mean
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0.58, 0.98), respectively.
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Surprisingly, we found that neither the estimated infection
probability nor the rate of spread of a fire was associated with
mean, maximum, or minimum wind speed during the burn.
However, at shorter time intervals (<2 min), the instantaneous
spread rate of fires increased with minimum wind speed (SI
Appendix, Fig. S4), suggesting that wind does increase the speed
of fire spread but that it varies so much on short time scales
that extremely detailed measurements are required to capture
its effects. Unfortunately, global wind speed products and pre-
dictions are not accurate (40), and thus fire models that depend
on Rothermel’s equations to predict fire spread may not be
robust. There are fire models that do not predict burned area
using rate of spread [e.g., LPJ-GUESS-SIMFIRE (25), JULES-
INFERNO (26, 27), GlobFIRM in LPJ-DGVM (41), and the
fire model in refs. 42 and 43], but it is outside of the scope of
this work to assess whether the approaches used in these models
are more robust than those used in fire models using Rother-
mel’s equations. Until global wind speed products are more
reliable, we should interpret Rothermel-based fire model pre-
dictions with caution and pay close attention to their associated
sensitivity analyses. However, we also note that we did not

capture fires under extreme wind conditions and so may have
overestimated the severity of this problem.

Observations of individual fires clearly showed that fires
grew large (higher proportion burned) nonlinearly in response
to fuel connectivity and infection probability (Fig. 1). This
contrasts with observations of regional burned area, where
burned area increases linearly with rainfall (e.g., refs. 31–34).
To resolve this apparent conflict, we evaluated how spatial and
temporal variation in rainfall drives variation in thresholds that
stop fires from spreading in Kruger, where wet-season rainfall
variation largely determines grass productivity (38), fuel con-
nectivity, and, therefore, fire extent. Across 533 long-term sites
monitored from 1989 to 2018 (Materials and Methods), the
probability that a site burned increased with fuel connectivity
(estimated via grass biomass), with a shallow slope at ρ < 0.64
but a fivefold higher slope above ρ = 0.64 (SI Appendix, Fig.
S5A). The 0.64 breakpoint is similar to the fuel connectivity
threshold in infection model simulations (ρ = 0.53) and to the
0.6 grass cover (= 0.4 tree cover) threshold in remote sensing
data below which burned area declines precipitously (22, 44, 45).

However, despite this nonlinearity, responses averaged in
space or in time were more linear than the responses of individ-
ual fires to fuel connectivity. Across both models and data, spa-
tial variation in fire frequency and temporal change in regional
burned area increased linearly with fuel connectivity (Fig. 4
and SI Appendix, Fig. S5 B and C). These linearities, induced
by averaging both in space and in time, suggest that widely
observed linear responses of burned area and fire frequency to
rainfall may also be the result of regional- to continental-scale
averaging, rather than to linearity in the underlying relation-
ship. This finding suggests that linear approximations of fire
behavior may be appropriate in some contexts, for example under
climate stablization scenarios or for medium-term forecasting, but
that models that more completely capture nonlinear processes are
likely to yield better projections of fire behavior, both on short
time scales and, when climate is changing, on longer ones.

However, we also note that the definition of “short” vs. “long”
time scales is likely to differ between grassy and nongrassy sys-
tems, since the times for fuel accumulation and drying differ. In
grassy ecosystems, biomass accumulates quickly and burns fre-
quently. As such, assuming a linear relationship between propor-
tion burned and fuel connectivity may be sufficient to capture
fire dynamics over just a few years of interest. Alternatively, in
nongrassy ecosystems, like boreal forests or Mediterranean-type
shrublands, where fuel accumulates more slowly and burns less
frequently, far fewer burns are likely to occur over the same time
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Fig. 3. Response of the estimated fire infection probability (λ) to its mean
rate of spread (ROS) (A) and response of fire infection probability (λ) and
fire rate of spread to fuel moisture (FM) (B and D) and vapor pressure defi-
cit (VPD) (C and E). Fitted curves show linear model results with SEs of fits
shown in gray. A: k¼ 0:92 � ROSþ 0:55; adjusted R2 = 0.53, P < 0.0001. B
and C: k¼�0:15 � ln FMð Þ þ 0:07 � ln VPDð Þ þ 0:88; adjusted R2 = 0.65, P <
0.0001. D and E: ROS ¼�0:13 � ln FMð Þ þ 0:02 � ln VPDð Þ þ 0:59; adjusted R2 =
0.77, P < 0.0001. In B and D, the curve shows predictions when VPD is held
at a constant value of 2,004 Pa, and in C and E when FM is held at a cons-
tant value of 43% (the median value observed in the dataset). In A–C,
dashed lines show the minimum infection probability (λ = 0.58) in observed
“threshold fires” (those with burned area between 0.2 and 0.6) below which
fire cannot successfully spread.
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period, such that averaging or linearizing the response of propor-
tion burned to fuel connectivity is far less appropriate and may
result in unreliable predictions (46). Consequently, we hypothe-
size that the nonlinearities in fire spread demonstrated in this
study are as important, if not more important, to account for in
nongrassy ecosystems as in grassy ecosystems. Direct observation
of nongrassy systems is clearly required, especially to establish the
correspondence between fuel connectivity and fuel biomass and
between infection probability and fuel moisture and fire weather
in these systems where the fuel bed may be more structurally
complex. Long-distance infection (also known as ignition via
“firebrands” or “spotting”) is also more prominent with woody
fuels, which may change both theoretical predictions (20) and the
relative importance of, e.g., wind speed (47).

Conclusion

In our study we demonstrate, using field data, that the nonlin-
ear threshold dynamics of fire spread in grassy ecosystem are
well captured by a process-based infection model (Figs. 1–3).
Our parameterization of the fire-spread threshold using com-
monly measured and predictable fuel and weather variables
now allows managers to plan their burns around conditions
that allow intense daytime fires that safely extinguish them-
selves at night (see discussion of “open-ended firebreaks” in,
e.g., ref. 48). This capacity is especially advantageous in areas
where resources to construct firebreaks or supervise safe burns
may be scarce but where regular burning is required to main-
tain ecosystem function and prevent excessive fuel accumula-
tion. Additionally, given that our model is parameterized with
commonly measured fuel and weather variables, we believe it
can be widely applied by managers of grassy ecosystems to pre-
dict which parts of their managed landscapes are most vulnera-
ble to climate change–induced extreme shifts in fire regimes. In
doing so, we increase information flow to managers, and thus
increase the feasibility of climate change adaptation, specifically
in African systems (49).
In addition to the above, our findings imply that when an

ecosystem crosses a threshold in either fuel connectivity or
infection probability we would expect it to switch suddenly
from a flammable to a nonflammable state, or vice versa. As cli-
mate change alters both the fuel connectivity and infection
probability of fire-prone ecosystems, these types of transitions
may become increasingly likely, and in some systems have
already been observed (50, 51). As we step further into a
no-analog future, fire models will play an increasingly impor-
tant role in increasing resilience and facilitating adaptation to
changing fire regimes. Although our analysis highlights impor-
tant issues with running processed-based fire models at global
scales, it also suggests some promising avenues of further
research toward achieving an intermediate-complexity global
fire model (44). First, the proportion of a landscape that burns
during a fire is determined by the grass biomass available to
burn, the fuel moisture content at the time of burning, and the
vapor pressure deficit during the burn. Once enough grass bio-
mass is available to support fire spread, fuel moisture is the
strongest determinant of proportion burned. Our field data
show that the fuel “moisture of extinction” threshold com-
monly used in fire models for grassy ecosystems is set at a value
four to five times less than what the field data suggest is appro-
priate. This discrepancy may result in an underestimate of
burned area in grassy ecosystems, a known problem in global
fire models (52), but should be relatively easy to adjust. Second,
wind speed did not affect the proportion burned, at least within

the range of conditions examined in this study. Most global fire
models rely on wind speed data that are far less precise than
was available in our study, and this is a key parameter used by
these models to predict rate of spread and thus burned area.
Our findings highlight the urgent need to improve global-scale
wind speed products and suggest caution in relying on fire
models whose predictions are sensitive to changes in wind
speed. Finally, although reconciling the infection model’s non-
linear predictions with observed linear patterns in burned area
at regional and continental scales is possible, it is not always
appropriate. The linear relationships currently used in many
fire models may give reasonable predictions on long time scales
spanning environmentally static conditions, but nonlinearities
may substantially change predictions on shorter timescales or
under changing environmental conditions. Thresholds in fire
spread are central to its landscape-scale behavior, and we should
be accounting for them when modeling fire’s ecological and
Earth system impacts at large spatial scales.

Materials and Methods

Our infection model, based on ref. 17, was a simple cellular automaton with
500 × 500 cells with no interaction on the diagonals (Von Neumann neighbor-
hood) and nonperiodic boundary conditions. Cells within the grid were arranged
randomly and could be either flammable or nonflammable, with the proportion
flammable representing the fuel connectivity parameter (ρ). Ignitions occurred
randomly within the grid and an ignition falling on a flammable cell caused it to
become a burning cell at T1. At T2, a burning cell either spread fire to a neighbor-
ing flammable cell with an infection probability of λ or the burning cell was
extinguished with a probability of (1 � λ). The burning cell thus became a
burned cell (nonflammable) at T2, while the flammable neighboring cell became
a burning cell (with a probability of λ). Once all burning cells had become
burned cells (at Tx), the fire was extinguished and the proportion burned was
recorded. The model was run for 500 values of ρ and 100 values of λ (equally
space intervals between 0 and 1 in both cases), with each combination of param-
eters simulated for 100 ignitions and the mean proportion burned by these igni-
tions recorded. These simulations produced 100 infection curves of proportion
burned as a function of ρ, or one curve for each value of λ.

To evaluate the model, we used data from 1,131 individual fires in grassy
savanna ecosystems across a precipitation gradient (SI Appendix, Fig. S1). The
wettest grassy system was Lop�e (31 fires, 1,442 mm MAP), followed by HiP (30
fires, 600 to 1,000 mm MAP). Drier grassy sites all fell within Kruger (1,004
fires) and included Pretoriuskop (PKP, 212 fires, 737 mm MAP), Skukuza (SKZ,
240 fires, 550 mm MAP), Satara (SAT, 347 fires, 54 4mm MAP), and Mopani
(MOP, 205 fires, 496 mm MAP). One non-African grassy system, Cedar Creek
(66 fires, 775 mm MAP), was also included. See SI Appendix, Extended Methods
for details on fire datasets. There were some unavoidable small differences in
data collection across sites, and to avoid this confounding our results we have
avoided doing any direct comparisons of parameters between sites.

For 188 fires (31 in Lop�e, 30 in HiP, 61 Kruger, and 66 in Cedar Creek), ρ
and proportion burned were measured directly by evaluating grass biomass and
burn scarring (SI Appendix, Extended Methods). For the remaining fires, ρ was
estimated from mean grass biomass using a Gompertz model [within the pack-
age easynls (53)] (adjusted R2 = 0.98, P < 0.0001, n = 57) (54) (SI Appendix,
Fig. S2), and proportion burned was estimated visually by consensus of two to
five experts who drove or walked around the fire scar immediately after the
burn. For all Kruger and Lop�e fires, mean rate of spread of the fire front (meters
per second), fuel moisture (percent of dry mass), vapor pressure deficit (a com-
posite metric of air temperature and humidity, pascals), and wind speed (meters
per second) during burning were measured (SI Appendix, Extended Methods).

To determine λ for a group of fires, we identified the simulated infection curve
(described above) that best fitted the observed data by calculating a “distance
index.” For each fire in the group, we calculated the minimum XY distance

XY distance¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðobserved X� predicted XÞ2 þ ðobserved Y � predicted YÞ2

q
Þ

� �
to

each of the 100 simulated infection curves. We then determined the mean
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“distance index” for the group of fires, which was the mean of the minimum
XY distances. We took the mean, and not the median, because we wanted our
index to be sensitive to extreme deviations from the curve. The simulated infec-
tion curve that had the lowest distance index for the group of fires was consid-
ered to be the λ that best fit the data. The distance index of this fit was then
compared to the same distance index of a linear and other nonlinear [quadratic,
two linear, exponential, logistic, van Bertalanffy, and Gompertz; fitted with the
package easynls (53)] fits. The model with the lowest overall distance index was
considered the best fit to the observed data.

To estimate a λ for each of the 1,004 Kruger fires, we assumed that fires that
burned under similar fuel moisture and fire weather conditions would have a
similar λ. We thus binned fires according to their fuel moisture (0 to 32%, 32 to
64%, 64 to 96%, 96 to 128%, >128%), vapor pressure deficit (0 to 850 Pa,
850 to 1,700 Pa, 1,700 to 2,550 Pa, 2,550 to 3,400 Pa, >3,400 Pa), and wind
speed (0 to 0.88 m/s, 0.88 to 1.76 m/s, 1.76 to 2.64 m/s, 2.64 to 3.52 m/s,
>3.52 m/s). The size of the bins was the upper 98th percentile of the data
divided into five equally sized bins. The resulting 125 groups of fires were all
assigned a λ using the distance index fitting process described above, and
groups with fewer than three fires were excluded. Each fitted λ was then associ-
ated with a mean rate of spread, fuel moisture, vapor pressure deficit, and wind
speed, and each fire was associated with a fitted λ.

To evaluate fire spread occurring at the threshold values of ρ and λ we exam-
ined “threshold fires.” True threshold fires, occurring exactly at the threshold for
fire spread, are, by definition, extremely rare. Therefore, we defined “threshold
fires” to be those where proportion burned was above 0.2 (exceeding the mini-
mum threshold for fire spread) and below 0.6 (not yet asymptoting at the
maximum possible 1:1 line). The 0.2 cutoff was used because most of the exper-
imental fires were burned in perimeter ignitions. A value of 0.2 ensured that
fires that did not spread successfully but had some burning at the ignition loca-
tions were excluded from the threshold fires group. Using this group of thresh-
old fires, we binned fitted λ into 0.05-wide bins and calculated the mean ρ and λ
for each bin. These values were compared to model predicted estimates (Fig. 2).

To parameterize λ, we used data from the 1,004 Kruger fires. We modeled λ
as a linear function of rate of spread. Then, we used generalized additive models
(GAMs) [function gam in the package mgcv (55)] to model both λ and rate of
spread as a function of mean fuel moisture, vapor pressure deficit, and wind
speed during the burn. All smooths used “ts” thin plate splines (56), a smooth-
ing parameter of 0.6, and the minimum number of knots that allowed the
k-index to be nonsignificant (k0 < 1, P < 0.05) (57) (SI Appendix, Table S1).
Although grass biomass may affect λ, since it had already been used to infer ρ
for most fires it was not included as an independent variable. Similarly, fire
intensity was also calculated using grass biomass and was not included as an
independent variable. From the GAMs, we found 1) that wind speed was not a

significant predictor of either λ or mean rate of spread of the fire front and 2)
that the curves fitted by the GAM were not obviously nonlinear, but rather
appeared log-linear (SI Appendix, Fig. S6). Therefore, we fitted linear models to
the data, excluding wind speed as a predictor, and log-transforming fuel mois-
ture and vapor pressure deficit. These linear models had lower Akaike informa-
tion criterion values than the GAM models, and therefore these fits are presented
in the main text.

To assess whether the predictions of our percolation model can be reconciled
with observed linear trends between rainfall or grass biomass and burned area,
we used long-term data on 533 sites in Kruger (SI Appendix, Extended
Methods). Each site had grass biomass measured nearly every year since 1989.
From this a ρ for each site for each year could be inferred. Whether or not a site
burned in a year was inferred from park records of fire scars. The proportion of
sites burned in a year and the fire frequency of sites across years were examined
as a function of ρ, and these relationships were fitted using a linear model. The
observed proportions of sites burned in a year and the fire frequencies of sites
across years was also compared to model predictions using a linear model
(assuming λ = 1 since Kruger fires mostly occur in the hot, dry season).

Data Availability. Ecological fire data have been deposited in Dryad (58).
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