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ABSTRACT: Phenyl-perfluorophenyl polar−π interactions have been revisited for the design and fabrication of functional
supramolecular systems. The relatively weak associative interactions (ΔG ≈ −1.0 kcal/mol) have limited their use in aqueous self-
assembly to date. Herein, we propose a strategy to strengthen phenyl-perfluorophenyl polar−π interactions by encapsulation within a
synthetic host, thus increasing the binding affinity to ΔG= −15.5 kcal/mol upon formation of heteroternary complexes through
social self-sorting. These heteroternary complexes were used as dynamic, yet strong, cross-linkers in the fabrication of supramolecular
gels, which exhibited excellent viscoelasticity, stretchability, self-recovery, self-healing, and energy dissipation. This work unveils a
general approach to exploit host-enhanced polar−π interactions in the design of robust aqueous supramolecular systems.

Fluorinated small molecules and macromolecules have been
widely utilized in organic synthesis,1,2 polymer science,3

medicinal chemistry,4,5 drug delivery,6 liquid crystals,7 and
supramolecular chemistry.8−11 Noncovalent interactions be-
tween aromatic molecules are important in both natural and
artificial supramolecular systems.12 The introduction of
electron-withdrawing fluorine substituents onto aromatic
molecules serves to polarize their π-conjugated systems,
enhancing π−π stacking through electrostatic interactions.13,14

Phenyl-perfluorophenyl polar−π interactions are an elegant
example of electrostatic reinforcement. This interaction
emerged from the first discovery of a 1:1 cocrystal of
hexafluorobenzene and benzene in 196015 (Figure 1a)
followed by structural elucidation in 1992 by William et al.16

Coates and co-workers further developed phenyl-perfluor-
ophenyl polar−π interactions to align diyne molecules for
photopolymerization in the crystalline state.17

While the perfluorophenyl group maintains preferential
stacking selectivity with electron-rich arene groups, it also
offers a position for functionalization. Thus, this interaction
has been extensively adopted as a facile binding motif for
crystal engineering,18−22 and protein/peptide folding,23−26

alongside small molecule and polymer self-assembly.27−30

Although significant progress has been made, the relatively
low binding affinity of phenyl-perfluorophenyl polar−π
interactions in water (ΔG ≈ −1.0 kcal/mol, K ≈ 1.5 M−1)24

limits its widespread application.
Herein, we propose a host−guest strategy to mediate

phenyl-perfluorophenyl polar−π interactions, leading to a
substantial increase in overall binding strength. There are
several different host molecules capable of encapsulating
multiple guests simultaneously. Among them, cucurbit[8]uril
(CB[8]) is one of the ideal options on account of its high-
energy water release from its nanocavity upon guest
incorporation, which can provide tremendous enthalpic
contributions for stabilizing ternary host−guest complexes.31

CB[8]-mediated ternary interactions often exhibit high binding
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Figure 1. Schematic representation of (a) the first 1:1 cocrystal of
hexafluorobenzene and benzene; (b) design concept of CB[8]-
mediated polar−π interaction between perfluorophenyl (5FBVI) and
phenyl (BVI) guests; (c) overview of thermodynamic pathways
toward ternary complexation: social and narcissistic self-sorting. Br−

counterions omitted for clarity.
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affinity (ΔG < −13.6 kcal/mol, K > 1010 M−2);32 both
homoternary and heteroternary interactions have been widely
used as the driving force for fabrication of various aqueous
supramolecular systems including supramolecular
oligomers33−35 and polymers,36−43 supramolecular hydro-
gels,44−47 supramolecular organic frameworks,48,49 protein/
peptide self-assemblies,50,51 and functional interfaces.52−54

Therefore, we posited that CB[8] could enhance phenyl-
perfluorophenyl polar−π interactions. Heteroternary complex-
ation of singly charged guest molecules within CB[8] mediated
by polar−π interactions would represent a new class of CB[8]-
mediated heteroternary interaction, generating a promising and
powerful noncovalent driving force for supramolecular self-
assembly.
Two N-vinyl imidazolium guests were designed (Figure 1b),

consisting of perfluorophenyl (5FBVI) and phenyl (BVI)
groups. We envisioned that an equimolar mixture of 5FBVI,

BVI, and CB[8] should result exclusively in a 1:1:1
heteroternary complex. Perfluorophenyl moieties should not
form homoternary complexes on account of electrostatic
repulsion, instead favoring secondary binding with an electron-
rich phenyl group. To study the influence of electrostatic
repulsion, a series of guest molecules varying in fluorine
substituents and cationic side groups were synthesized (Chart
S1). We utilized the 5FBVI-BVI-CB[8] complex as a
supramolecular cross-linker for fabricating robust transparent
polyacrylamide networks exhibiting excellent mechanical
properties and ionic conductivity.
Extensive 1H and 19F NMR titrations were performed to

study formation of the 5FBVI-BVI-CB[8] complex. Titration
of BVI into an equimolar mixture of 5FBVI and CB[8] resulted
in the gradual appearance of the BVI phenyl protons at 6.39,
6.49, and 6.59 ppm, respectively (Figure 2a (left), S4). The
phenyl proton peaks had similar chemical shifts to the

Figure 2. (a) 1H and 19F NMR titrations (D2O, 298 K) and (b) HR ESI-MS titrations (H2O) of BVI (10.0 mM) into 5FBVI-CB[8] (1.0 mM). Br−

couterions omitted for clarity.

Figure 3. ITC curves (H2O, 298 K) of (a) BVI (1.0 mM) into CB[8] (0.05 mM); (b) 5FBVI (1.0 mM) into CB[8] (0.05 mM); and (c) BVI (5.0
mM) into 5FBVI-CB[8] (0.5 mM). Br− counterions omitted for clarity.
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homoternary complex (2·BVI-CB[8]) at 6.23, 6.46, and 6.54
ppm, suggesting the phenyl group in the 5FBVI-BVI-CB[8]
complex is in a different chemical environment compared to 2·
BVI-CB[8]. 19F NMR (Figure 2a (right), S5) showed three
peaks in the binary mixture of 5FBVI-CB[8] (−146.2, −153.0,
and −162.8 ppm), which gradually disappeared while three
new peaks at −141.2, −152.2, and −160.9 ppm appeared. Both
titrations indicated formation of a new host−guest complex,
5FBVI-BVI-CB[8]. Additionally, a series of MS titration
experiments were conducted. Titration of BVI into a 1:1
solution of 5FBVI-CB[8] yielded the heteroternary complex
with an intense ion peak at m/z = 894.2794, Figure 2b, which
gradually increased with a concomitant decrease of the binary
complex at m/z = 802.2300, confirming the CB[8]-mediated
polar−π interaction.
Isothermal titration calorimetry (ITC) was employed to

study the thermodynamic mechanism behind this new
complexation. Titration of BVI and 5FBVI into CB[8] led to
two different cooperative binding curves. A clear transition at a
2:1 molar ratio was observed upon titration of BVI into CB[8]
(Figure 3a), indicating formation of a homoternary complex.
This binding curve is indicative of positive cooperativity, as
reported previously.55 In contrast, titration of 5FBVI into
CB[8] showed a sharp transition at 1 equiv (Figure 3b),
indicating favored formation of a binary complex 5FBVI-
CB[8] (K1 = 6.83 × 106 M−1, Table 1). Incorporation of a

second 5FBVI guest into the binary complex is significantly
suppressed, exhibiting negative cooperativity. Free BVI was
then titrated into the 1:1 binary complex of 5FBVI-CB[8]
resulting in a secondary binding curve, Ka = 3.36 × 104 M−1

(Figure 3c). The calculated overall binding constant of the
heteroternary 5FBVI-BVI-CB[8] complex is 2.29 × 1011 M−2.
Compared to the homoternary complex, 2·BVI-CB[8], this
heteroternary complex exhibits higher binding strength on
account of the additional electrostatic interactions between the
phenyl and perfluorophenyl units.
Binding cooperativity plays a critical role in stabilizing the

heteroternary 5FBVI-BVI-CB[8] complex; unexpectedly, a
strong negative cooperativity with an interaction parameter55

α = 0.0004 was observed between 5FBVI and CB[8]. To gain
insight into the importance of cooperativity, three N-vinyl
imidazolium guests (4FBVI, 3FBVI, 2FBVI) containing
2,3,5,6-tetrafluorophenyl, 3,4,5-trifluorophenyl, and 3,5-difluor-
ophenyl groups, respectively, were synthesized. ITC indicated
that 2:1 complexation with CB[8] was dramatically enhanced
compared to 5FBVI, Figure 4.
Table 1 reports key thermodynamic parameters; α values of

4FBVI, 3FBVI, and 2FBVI showed a steady increase, indicating
a change from negative cooperativity for 5FBVI and 4FBVI to
positive cooperativity for 3FBVI and 2FBVI. These data
indicate that weakening electrostatic repulsion between guests
by decreasing the number of fluorine substituents leads to

favorable 2:1 homoternary complexation, thus changing the
binding cooperativity from negative to positive. A previous
report38 of a heteroternary complex between tetrafluorophenyl,
naphathalenyl, and CB[8] could support this effect; however,
in this case additional long-range Coulombic and CH···O
interactions are required to achieve binding as the complex-
ation lacks strong negative cooperativity. In our study the
5FBVI-CB[8] complex is the only dominant 1:1 complex
observed, Figure 3b.
To validate this point, and further extend the structural

diversity for CB[8]-mediated polar−π interactions, three
additional perfluorophenyl guests bearing N-methyl imidazo-
lium, pyridinium, and trimethylammonium moieties were
evaluated. The homoternary complexations of these three
guests with CB[8] all exhibited strong negative cooperativity as
expected (Figure S7), unambiguously demonstrating that the
perfluorophenyl motif displays strong electrostatic repulsion
within the CB[8] cavity, key to favoring the formation of a 1:1
complex.
The mechanism behind the formation of the heteroternary

5FBVI-BVI-CB[8] complex is attributed to social self-sorting,
Figure 1c. Two complexation pathways exist for an equimolar
mixture of 5FBVI, BVI, and CB[8]: social and narcissistic self-
sorting.56 Thermodynamic data showed a substantial prefer-
ence for social self-sorting with a difference in Gibbs free
energy of 3.1 kcal/mol (Figure 1c), and a relative ratio
between heteroternary and homoternary complex formation of
nearly 200:1. Recently it was reported that a mixture of both
social and narcissistic self-sorting is obtained with difluor-
ophenyl guest motifs.57 In contrast, we are able to control the
outcome of the self-sorting process, which results solely in the
formation of the CB[8]-mediated phenyl-perfluorophenyl
complex through polar−π interactions.
To demonstrate the utility of quantitative social self-sorting

in CB[8]-mediated polar−π interactions, we employed the
heteroternary complex 5FBVI-BVI-CB[8] as a supramolecular
cross-linker to fabricate robust viscoelastic polyacrylamide
networks. A mixture of 2.5 mol % of 5FBVI-BVI-CB[8] cross-
linker and 95 mol % of acrylamide monomer with 0.003 mol %
photoinitiator was photopolymerized for 6 h (λ = 350 nm,
Figure 5a). The resultant transparent gel could be readily
stretched to 8-fold its original length demonstrating complete
self-recovery within 3 min. By reducing the ratio of
supramolecular cross-linker, the storage and loss moduli of

Table 1. Overview of Thermodynamic Data for
Homoternary Complexations (H2O, 298 K)

K1 (10
4 M−1) K2 (10

4 M−1) α

5FBVI 683 ± 187 0.07 ± 0.01 0.0004 ± 0.0001
4FBVI 230 ± 36 33 ± 6 0.57 ± 0.14
3FBVI 95 ± 28 102 ± 54 4.27 ± 2.61
2FBVI 61 ± 25 69 ± 43 4.52 ± 3.35
BVI 44 ± 5 14 ± 1 1.29 ± 0.16

Figure 4. ITC plots (H2O, 298 K) of CB[8] homoternary
complexation with 5FBVI, 4FBVI, 3FBVI, and 2FBVI. [Guest] =
1.0 mM, [CB[8]] = 0.05 mM.
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the obtained gels are readily tuned over a wide range,
102−105 Pa, Figures 5b and S12.
The supramolecular gels (Figure 5b; green, blue, and red

data sets) showed higher viscoelasticity with both storage and
loss moduli 1−2 orders of magnitude above the functionalized
copolymer gel without CB[8] present (yellow data set).
Furthermore, when the 2.5 mol % cross-linked gel was
subjected to multiple step−strain cycles (5% and 500% strain
at 1 rad/s), a reversible sol−gel transition was observed, Figure
5c. This reversible behavior was replicated over a substantially
longer time period (>1 h) without loss of material integrity,
Figure S13. The resilience of the 5FBVI-BVI-CB[8] cross-
linked gel toward step-strain measurements demonstrates the

reversible and robust nature of the network and highlights its
rapid self-healing properties.
Owing to the dynamic nature of CB[8]-mediated cross-links,

the transient polymeric networks dissipate energy upon
application of a force, giving rise to excellent mechanical
properties.46 To obtain the activation energy for local chain
motion, a series of time−temperature superposition (TTS)
experiments were carried out, quantifying the energy-
dissipation capability of the 5FBVI-BVI-CB[8] cross-linked
gel (Figure S14). Fitting the shift parameters (aT, bT) revealed
the activation energy to be 18.0 kcal/mol, comparable to the
unfolding barrier of the I27 domain of the human muscle
protein titin, which has an activation energy of 17.0 kcal/mol.58

On account of the charged 5FBVI and BVI guest moieties,
we probed the ionic conductivity of the obtained material
through incorporation within a series circuit connected to two
LEDs, Figure S15. The high brightness of the LEDs connected
to the gel in its original state illustrates its considerable ionic
conductivity. Stretching the gel reduced its cross-sectional area,
leading to an increase in resistance and an observed decrease in
brightness of the LEDs. Removal of the stretching force
returned the gel to its original length with concomitant
increase in brightness over a 2 min period, demonstrating the
gel’s self-recovery properties.
In conclusion, we have successfully developed a new type of

CB[8]-mediated polar−π interaction in aqueous media.
Through host−guest complexation within CB[8], the binding
affinity of phenyl-perfluorophenyl polar−π interactions is
significantly enhanced with an increase in ΔG from
−1.0 kcal/mol to −15.5 kcal/mol, assuring sole formation of
the heteroternary complex upon social self-sorting. To
demonstrate the utility of CB[8]-mediated polar−π inter-
actions, we applied a model complex (5FBVI-BVI-CB[8]) as a
supramolecular cross-linker in the fabrication of completely
transparent polyacrylamide gel networks, which exhibited
excellent viscoelasticity, stretchability, self-recovery, self-heal-
ing, and ionic conductivity. These materials are promising
candidates for research in areas including structural bio-
materials, flexible electronics, artificial muscles, soft robots, etc.
We highly anticipate that this work will inspire renewed
interest and research into the exploitation of polar−π
interactions as robust building blocks in supramolecular
chemistry and materials science.
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