
Molecular mediators of the
association between child
obesity and mental health

Evangelos Handakas1, Yiwen Xu2, Alexa Blair Segal2,
Maria Carmen Huerta2, Kirsty Bowman3,4, Laura D. Howe3,4,
Franco Sassi2 and Oliver Robinson1*
1Medical Research Council Centre for Environment and Health, Imperial College London, London,
United Kingdom, 2Centre for Health Economics and Policy Innovation, Department of Economics and
Public Policy, Imperial College Business School, London, United Kingdom, 3MRC Integrative
Epidemiology Unit at the University of Bristol, Bristol, United Kingdom, 4Population Health Sciences,
University of Bristol, Bristol, United Kingdom

Biological mechanisms underlying the association between obesity and

depression remain unclear. We investigated the role of metabolites and DNA

methylation as mediators of the relationship between childhood obesity and

subsequent poor mental health in the English Avon Longitudinal Study of

Parents and Children. Obesity was defined according to United Kingdom

Growth charts at age 7 years and mental health through the Short Mood and

Feelings Questionnaire (SMFQ) completed at age 11 years. Metabolites and DNA

methylation were measured by nuclear magnetic resonance spectroscopy and

Illumina array in blood at the age of 7 years. The associations between obesity

and SMFQ score, as continuous count data or using cut-offs to define

depressive symptoms (SMFQ >7) or depression (SMFQ >11), were tested

using adjusted Poisson and logistic regression. Candidate metabolite

mediators were identified through metabolome-wide association scans for

obesity and SMFQ score, correcting for false-discovery rate. Candidate DNA

methylation mediators were identified through testing the association of

putative BMI-associated CpG sites with SMFQ scores, correcting for look-up

false-discovery rate. Mediation by candidate molecular markers was tested.

Two-sample Mendelian randomization (MR) analyses were additionally applied

to test causal associations of metabolites with depression in independent adult

samples. 4,018 and 768 children were included for metabolomics and

epigenetics analyses, respectively. Obesity at 7 years was associated with a

14% increase in SMFQ score (95% CI: 1.04, 1.25) and greater odds of depression

(OR: 1.46 (95% CI: 0.78, 2.38) at 11 years. Natural indirect effects (mediating

pathways) between obesity and depression for tyrosine, leucine and conjugated

linoleic acid were 1.06 (95% CI: 1.00, 1.13, proportion mediated (PM): 15%), 1.04

(95% CI: 0.99, 1.10, PM: 9.6%) and 1.06 (95% CI: 1.00, 1.12, PM: 13.9%)

respectively. In MR analysis, one unit increase in tyrosine was associated

with 0.13 higher log odds of depression (p = 0.1). Methylation at cg17128312,

located in the FBXW9 gene, had a natural indirect effect of 1.05 (95% CI:

1.01,1.13, PM: 27%) as a mediator of obesity and SMFQ score. Potential

biologically plausible mechanisms involving these identified molecular

features include neurotransmitter regulation, inflammation, and gut
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microbiome modulation. These results require replication in further

observational and mechanistic studies.
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Introduction

The association between obesity and depression is well

established, with bi-directional associations widely reported in

observational studies (Milaneschi et al., 2019). Recent Mendelian

Randomization (MR) studies have confirmed a causal

relationship between obesity and depression (Tyrrell 2019).

Poor mental health has been proposed as one mechanism

through which obesity during childhood may lead to poorer

social and economic outcomes in later life (Segal et al., 2021). It

was recently shown in the Avon Longitudinal Study of Parents

and Children (ALSPAC) cohort that depressive symptoms

mediated approximately 11% of the relationship between body

mass index (BMI) and General Certificate of Secondary

Education (GCSE) scores in girls, demonstrating the

importance of mental health to human capital development

(Bowman et al., 2022). Both psycho-social and biological

mechanisms appear to be important in the causal chain from

obesity to depression. The role of psycho-social mediators such

as bullying and social stigma has been relatively well-described in

population studies (Gini and Pozzoli, 2009; Moore et al., 2017).

However, biological mechanisms may explain a significant

proportion of the association between obesity and depression

in children, which may have implications for policy interventions

to improve mental health.

Proposed biological pathways in the causal pathways

between obesity and mental health include alterations to the

hypothalamic–pituitary–adrenal (HPA) axis, immuno-

inflammatory activation, neuroendocrine regulators of energy

metabolism, and the microbiome (Marazziti et al., 2014;

Milaneschi et al., 2019). Biological mechanisms may be traced

using biomarkers such as DNA methylation, an important

regulator of gene expression, and metabolites, small molecules

that reflect metabolic alterations. Obesity induces widespread

changes in methylation levels across the genome (Wahl et al.,

2017; Campanella et al., 2018) that may play a role in mood

disorders. Differential methylation of a handful of the same genes

involved in inflammatory pathways has been identified across

separate studies of obesity and mood disorders (Gharipour et al.,

2020). In addition, evidence shows BMI-associated DNA

methylation predicts diseases, including T2D and cancers

(Wahl et al., 2017). Similarly, as a metabolic disorder, obesity

leads to widespread perturbation of the metabolome, which may

influence mood. For instance, branched-chain amino acids

(BCAAs) may influence brain function by modifying large,

neutral amino acid transport at the blood–brain barrier,

interfering with neurotransmitter synthesis (Fernstrom, 2005)

(Gruenbaum et al., 2019). Recent reviews of the effects of obesity

on the epigenome and metabolome in children identified

consistent increases in both BCAAs and aromatic amino acids

(AAAs) (Handakas et al., 2021) and methylation at multiple

CpGs (sites of DNA methylation), albeit with less consistency

between studies (Alfano et al., 2021).

In this study, we investigated the role of obesity-related

metabolic and epigenetic signatures (measured through

nuclear magnetic resonance (NMR) spectroscopy and DNA

methylation array, respectively) in the onset of poor mental

health in childhood in the ALSPAC cohort. We aimed to test

the role of metabolites and differentially methylated CpGs as

mediators of the relationship between childhood obesity and

subsequent poor mental health or depression, assessed through

the Short Mood and Feelings Questionnaire (SMFQ).

Materials and methods

Study population

The study population included participants from ALSPAC.

Initially, the ALSPAC study recruited 14,541 women living in

Avon, England, with an expected delivery date between 1 April

1991 and 31 December 1992 (Boyd et al., 2013; Fraser et al.,

2013). Participants have been followed up with questionnaires

and clinical measures at regular intervals, providing lifestyle,

socioeconomic, behavioral and biological data. The ALSPAC

study website contains details of all the data that is available

through a data search tool (http://www.bris.ac.uk/alspac/

researchers/data-access/data-dictionary/). A total of 4,018 had

anthropometric data available at 7 years (early childhood) and

the SMFQ available at 11 years. The timepoints were chosen to

maintain the temporal relationship with the molecular data

measured at 7 years and preceding the mental health

assessment. A flowchart of individuals that were considered

eligible for the analysis is shown in Supporting Information

S1 (Supplementary Figure S1).

Obesity classifications

Child height and weight were measured at a clinic visit at age

7. Obesity was defined as a BMI at or above the 95th percentile of

the British 1990 population growth reference (Cole et al., 1995).
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The Sitar package in R was used to classify the study population

as either with obesity or without obesity (Cole and Cole, 2021).

Mental health classifications

Mental health and depression in children were assessed in the

ALSPAC cohort at a clinic visit at age 11 years, using the SMFQ

(Ancold and Stephen, 1995). This questionnaire consists of a 13-

item checklist of depression symptoms experienced in the

previous 2 weeks. The children completed the SMFQ at

research clinics with trained interviewers. Each item is rated

on a 3-point scale: zero (not true), one (sometimes true) or two

(true), giving a total score of 0–26. Higher scores suggest higher

depression symptoms. To increase power in our analysis, we

primarily used the SMFQ score as a count variable to assess the

percentage change in score across the whole score distribution

(Delmastro and Zamariola, 2020). In the larger subset with

metabolomic data available, we also used pre-defined cut-offs

to assess consistency across different definitions commonly used:

Children with “depressive symptoms” were defined as those with

scores over 7 (Ancold and Stephen, 1995) and “depression” cases

were defined as those with scores over 11 (Turner et al., 2014).

Covariates

Maternal education was classified into three categories

according to mothers’ highest educational achievement

(Handakas et al.): 1) low: Ordinary- (O-) level, educational

qualifications generally obtained at 16 years of age, Certificate

of Secondary Education (CSE); 2) intermediate: Advanced- (A-)

level; 3) high: university degree and above. Family income at

7 years was classified into two categories: 1) low/medium:

<£400 per week, and 2) high: ≥£400. Physical activity at

5 years was classified into two categories based on the

frequency of going to the park or playground compared with

other children: 1) less often and 2) similarly or more often than

other children. Birth weight was obtained from notifications or

clinical records. Maternal pre-pregnancy BMI was calculated

from self-reported weight and height at the 12th week of

gestation.

Metabolomics

Metabolomic profiling was carried out using 1H nuclear

magnetic resonance spectroscopy on fasting plasma samples

from 4,018 individuals of the ALSPAC cohort at 7 years. This

molecular signature of systemic metabolism consists of

230 metabolic traits (Supporting Information S2, Codebook).

The platform provided quantification of 14 lipoprotein

subclasses (particle concentration, lipid concentrations and

composition), fatty acids and fatty acid composition, ketone

bodies, amino acids, gluconeogenesis-related metabolic traits

and glycolysis and gluconeogenesis-related metabolites

(Soininen et al., 2009; Kujala et al., 2013). Details related to

the used platform have been published previously (Soininen

et al., 2009). Data were log-transformed and scaled before

analysis.

Epigenetic data

The Accessible Resource for Integrated Epigenomics Studies

(ARIES) is a sub-study drawn from the ALSPAC mother-child

cohort that consists of 1,018 mother-child pairs (Relton et al.,

2015a) and includes 5469 DNA methylation profiles obtained

from umbilical cord blood at birth or at clinic visits at several

time points after birth. After DNA extraction, samples were

bisulphite converted using the Zymo EZ DNAMethylation™ kit

(Zymo, Irvine, CA, United States). Genome-wide methylation

was measured using the Illumina Infinium

HumanMethylation450 (HM450) Bead-Chip. The arrays were

scanned using an Illumina iScan, and an initial quality review was

assessed using GenomeStudio. The preprocessing and

normalization of data were carried out using the meffil R

package (Min et al., 2018). The LIMS also reported quality

control (QC) metrics from the standard control probes on the

Illumina 450 K array for each sample (Relton et al., 2015b). Low-

quality profiles were removed from further processing. The

remaining profiles were normalized using the Functional

Normalization algorithm with the first 10 control probe

principal components (Fortin et al., 2014). For additional QC

steps, we cross-checked candidate CpGs of arrays using a list of

cross-reactive probes and polymorphic CpGs (Chen et al., 2013).

Moreover, probes as well as samples with more than 5% missing

values were removed from the dataset. Finally, we converted the

beta values to M-values using the logit transformation to avoid

severe heteroscedasticity for highly methylated or unmethylated

CpG sites as well as to improve performance in terms of

Detection Rate (DR) (Du et al., 2010).

Methylation risk score

To combine information across loci, we calculated two

weighted methylation risk scores (MRS) as the sum of the

standardized methylation values. The first risk score was

calculated as weighted by marker-specific effect size MRS

from the Wahl et al. (2017) study in adults. The second was

calculated using CpGs from the Alfano et al. (2021) systematic

review, respectively (Figure 1). We calculated the weights for the

Alfano et al. (2021) MRS using ALSPAC data and the conducting

elastic net using the R Glmnet package (Friedman et al., 2010).

Elastic net model parameters, alpha (that defines mixing between
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lasso and ridge penalties) and lambda (overall strength of

penalty), were found following 10-fold cross-validation. The

10-fold routine was performed on the training set (random

80% of the total observations) for each model to estimate

elastic net model parameters, alpha and lambda, similar to the

methodology of Robinson et al. (2020). The model performance

was evaluated on the relevant test set (remaining 20% of the total

observations) using a mean square error classifier.

Data imputation

To maximize power and potentially reduce bias in our analysis,

we applied a multivariable multiple imputation procedure to impute

the missing values of covariates. To further ensure the results’ power

and reduce potential bias, proportions and patterns of missingness

were checked before imputation. Normalized root-mean-square

error and out-of-bag error were used as the evaluation metrics of

imputation for the set of continuous and categorical variables,

respectively. The subsets for epigenetic and metabolomic data

were imputed separately. Imputation was carried out based on

the multiple chained equations method with the R package mice

(Buuren andGroothuis-Oudshoorn, 2010) with the assumption that

data were missing at random. First, we performed 100 imputations

by 1,000 chains of regression, and then we applied Rubin’s rule

(Rubin, 2004) for combining the separate estimates and standard

errors from the analytical models performed on each of the

100 imputed datasets.

FIGURE 1
Overview of the analysis and methodological workflow. Mediation analysis is a directed acyclic graph analytical framework of the hypothetical
causal relationship between an exposure (X) and an outcome (Y) through a mediator (M). The blue rectangles are the statical analysis steps.
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The metabolomics data were imputed using the random

forest (RF) (Breiman, 2001) approach. This is a non-

parametric method that allows for interactive and non-linear

(regression) effects and has a high performance ability in

imputing missing values at random and not at random (Wei

et al., 2018). The imputation was carried out using the missForest

R package (Stekhoven and Bühlmann, 2012) with default

parameter settings.

Statistical analysis

Logistic regression was used to investigate the association

between obesity at 7 years and depression or the presence of

depressive symptoms at 11 years (total effect). Poisson regression

was used to model the association between obesity at 7 years and

SMFQ scores as a continuous (count) variable (total effect). Both

models were adjusted for sex, age, mother’s pre-pregnancy BMI,

birth weight, physical activity at age 5, maternal education, and

family income, selected based on literature and univariate

associations (t-test and chi-squared tests) in the dataset.

We applied aMetabolome-Wide Association Study (MWAS) to

investigate the associations between obesity at 7 years and

metabolomics at 7 years and the associations between

metabolomics at 7 years and the depression outcomes at 11 years.

Multiple logistic regressionmodels were used to analyze associations

between metabolites and depressive symptoms of depression, and

multiple Poisson regression models were used to analyze

associations between metabolites and the SMFQ score. The

models were adjusted for the same covariates aforementioned.

Additionally, an Epigenome-Wide Association Study

(EWAS) was applied to investigate the association between

DNA methylation and BMI using multiple linear mixed-

effects models at the age of 7. The model was adjusted for

age, sex, and BMI as fixed effects, and position on chip

(“pos”) and beadchip (“slide”) were accounted for through

random effects. Additionally, Houseman-estimated cell

proportions (Houseman et al., 2012) (B cells, CD8+ T cells,

CD4+ T cells, granulocytes, NK cells, and monocytes) were

used as fixed effects to adjust for cellular heterogeneity in

blood DNA. The methylation beta values were expressed as a

logit transformation of the percentage of the methylation (Du

et al., 2010). To account for multiple testing, we applied a false

discovery rate (FDR) using a cut-off of 5%.

Then, we explored the associations of these CpGs with SMFQ

score at 11 years old by filtering the EWAS results by a look-up list of

putative BMI-associated CpGs. These included 184 CpGs from the

study of Wahl et al. (2017) in adults (Supporting information S2,

Supplementary Table S1), and 299 CpGs reported at least once to be

associated with adiposity in children from a recent review by Alfano

et al. (2021) (Supporting information S2, Supplementary Table S2).

Starting from the look-up list of 483 CpGs plus the four CpGs

identified in the applied EWAS, we investigated associations with

SMFQ score using multiple adjusted Poisson models. CpGs were

considered significant using an FDR 5% correction on this CpG list.

Finally, we conducted a sensitivity analysis stratified by sex

for both the MWAS and EWAS models.

The analysis workflow is available in Figure 1. The analysis

was carried out in the R programming language and these R

libraries are presented in Supporting information S1.

Mediation analysis

Mediation analysis was conducted to assess whether the

effect of obesity at age seven on depressive symptoms of

depression or SMFQ score at age 11 was mediated by

metabolome and DNA methylation profile. In brief, the aim

of the mediation analysis was to quantify the effect of X on Y

mediated by M (X → M → Y) (natural indirect effect, NIE) and

the effect of X on Y that does not operate through themediator (X

→ Y): controlled direct effect (CDE), Figure 1.

We used the imputation approach (Vansteelandt et al., 2012)

to estimate the conditional natural direct effect (NDE) (not

mediated by metabolites and DNA methylation sites) and the

conditional natural indirect effect (NIE) (mediated by

metabolites and DNA methylation sites) of obesity on

depressive symptoms of depression, using the medflex package

in R (Steen et al., 2017). We modelled the effect of obesity on

SMFQ as a continuous count variable using Poisson regression.

Themediator and outcomemodels were adjusted for sex, age,

mother’s pre-pregnancy BMI, birth weight, physical activity at

age 5, maternal education, and family income. For all the

mediation models, confidence intervals of 95% (95% CI) were

calculated by a non-parametric bootstrap with 1,000 replications.

Bootstrapping was used for testing the indirect effect because it

does not assume normality in sampling distribution (Hayes and

Rockwood, 2017). The mediation proportion was calculated

using the following formula: Proportion Mediated = NIE/(NIE

+ NDE) (Rijnhart et al., 2019).

Similarly, we carried out a sensitivity analysis on the

mediation models by applying stratification by sex.

Two-sampleMRofmolecular features and
depression

MR analyses were performed to assess the causal influence of

molecular features, identified as potential mediators in the

observational analyses, on depression in independent adult

samples (Figure 1).

Two-sample MR was conducted using the TwoSample R

package (Hemani et al., 2018). For the metabolites, genetic

instruments were downloaded through the IEU Open GWAS

Project (Elsworth et al., 2020). Summary statistics for SNPs

associated with metabolites came from the most recent

Frontiers in Genetics frontiersin.org05

Handakas et al. 10.3389/fgene.2022.947591

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.947591


United Kingdom Biobank analysis (IEU Open GWAS Batch ID:

“met-d”), while instruments for depression were obtained from

analysis in the round four data release from the Finnish FinnGen

Biobank ((IEU Open GWAS ID: “finn-a-F5_DEPRESSIO”) https://

www.finngen.fi/en).

For CpGs identified in this study, we downloaded available

summary statistics from http://mqtldb.godmc.org.uk/. SNPs in

linkage disequilibrium were pruned using the European

reference panel and default parameters using the “clump_

data” function. In the CpG analysis, we used as the

instrument for depression the summary statistics from the

most recent United Kingdom Biobank analysis (IEU Open

GWAS ID: “ukb-d-F5_DEPRESSIO”) as the largest available

and non-overlapping study.

Results

Study population of metabolomic analysis

After the removal of children without metabolomic data at

7 years and those with a SMFQ score at 11 years, this study

included 4,018 children (Supporting information S2,

Supplementary Figure S1). Table 1 includes the participant

TABLE 1 Descriptive statistics in study population with metabolomic and epigenetic data available.

Metabolomic
analysis population

Epigenetic
analysis population

(N = 4,018) (N = 768)

Child age (years)

Mean (SD) 7.51 (0.303) 7.45 (0.127)

Sex of child

Male 2037 (50.7%) 382 (49.7%)

Female 1981 (49.3%) 386 (50.3%)

Child weight (kg)

Mean (SD) 25.7 (4.41) 26.0 (4.48)

Child height (cm)

Mean (SD) 126 (5.55) 126 (5.17)

Children with obesity

Without obesity 3,852 (95.9%) 725 (94.4%)

With obesity 166 (4.1%) 43 (5.6%)

Age of mother during pregnancy (3rd month)

Mean (SD) 29.5 (4.25) 29.8 (4.32)

Maternal pregnancy BMI (kg/m2)

Mean (SD) 22.8 (3.32) 22.7 (3.45)

Family income

< £400 2065 (51.4%) 346 (45.1%)

> £400 1953 (48.6%) 422 (54.9%)

Maternal education

O level/CSE/none/vocational 2,593 (64.5%) 491 (63.9%)

A level/ 782 (18.1%) 175 (22.8%)

Degree and above 643 (17.3%) 102 (13.3%)

Frequency of going to park or playground compared with other children at 5

Less 807 (20.1%) 154 (20.1%)

Similar or more 3,211 (79.9%) 614 (79.9%)

Depression score over 7

Case 262 (6.5%) 39 (5.1%)

Control 3,756 (93.5%) 729 (94.9%)

Depression score over 11

Case 85 (2.1%) 17 (2.2%)

Control 3,933 (97.9%) 751 (97.8%)

SD: Standard deviation. Obesity classification based on the British 1990 population growth reference (Cole et al., 1995).
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information for subsamples included in the metabolomic and

epigenetic analyses. Figure 2A shows the distribution of SMFQ

scores, which was left-skewed (Figure 2A). 85 children were

classified as being depressed, and 262 children were classified as

having depressive symptoms (Table 1).

Associations between obesity and mental
health

In adjusted analyses, obesity was associated with a 14% increase

in SMFQ score (rate ratio (RR): 1.14, 95% CI: 1.04, 1.25, p = 0.01).

Using defined screening cut-offs of SMFQ score, children with

obesity had a 46% higher risk (Odds Ratio (OR): 1.46 95% CI: 0.78,

2.38, p = 0.16) of depressive symptoms (SMFQ >7) and a 3-fold

higher risk (OR: 2.25, 95% CI: 0.96, 5.24, p = 0.06) of depression

(SMFQ >11) at age 11 than their peers without obesity. (Figure 2B).

Stratifying by sex, we observed a stronger effect with SMFQ

score and depressive symptoms in boys, but a stronger effect with

depression in girls. Obesity was associated with a 23% increase in

SMFQ score in boys (OR: 1.23, 95% CI: 1.08, 1.41, p = 0.02) while

obesity was associated with a four-fold increased risk of depression

in girls (OR: 3.24, 95% CI: 1.04, 10.21, p = 0.04) (Figure 2B).

Metabolite associations with obesity

We examined the associations between obesity and metabolites

measured at 7 years using anMWAS approach. As expected, obesity

had a strong influence on the metabolome, with 146 metabolic

measures associated with obesity after correction for 5% FDR

(Supporting Information S2, Supplementary Table S3). Obesity

was positively associated with amino acids (tyrosine,

phenylalanine, isoleucine, leucine, and valine), fatty acids,

glycoprotein acetyls, apolipoprotein B, and small, medium, and

large low-density lipoproteins (LDL) and very low-density

lipoproteins (VLDL) measures. Obesity was negatively associated

with high-density lipoprotein (HDL) measures, apolipoprotein A,

degree of unsaturation of fatty acids, lactate, citrate, and glycine.

Metabolite associations with mental
health

In MWAS analysis (Figure 3), we observed associations passing

FDR 5%with SMFQ score for 83 metabolites, including lower mean

diameter of low-density lipoproteins, glycoprotein acetyls, and

glucose and higher levels of histidine, leucine, tyrosine, citrate,

apolipoproteins, conjugated linoleic acid, and various lipoprotein

measures (Figure 3, Supporting Information S2, Supplementary

Table S3). No associations with metabolic measures passed FDR

correction for depressive symptoms of depression, although the

directions of effect were similar to those with the SMFQ score

(Supporting Information S2, Supplementary Table S3).

Mediation of obesity and mental health by
metabolites

To identify candidate metabolites that may play a mediating

role between obesity and mental health, we filtered the

metabolites by those associated with both obesity and SMFQ

FIGURE 2
(A) Histogram of SMFQ score at 11 years. The vertical orange and red lines are the cut-offs of depressive symptoms (SMFQ>7) and depression
(SMFQ>11), respectively. (B) Rate ratio per standard deviation (95% CI) of obesity at 7 years (exposure variable) for SMFQ score (outcome), and odds
ratio of obesity at 7 years (exposure variable) for depressive symptoms (SMFQ>7) (outcome), and depression (SMFQ>11) at 11 years (outcome). The
model is adjusted for sex and age, physical activity at age 5, mother’s age at birth, birthweight, mother’s pre-pregnancy BMI, average weekly
family income at age 7, and mother’s highest education qualification. The error Bars show 95% confidence intervals (calculated through parametric
methods).
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score after FDR correction and that had consistent directions of

effect. Eleven candidate metabolites were identified as shown in

Table 2.

We tested for evidence of mediation by these metabolites of

the relationship between obesity at 7 years and SMFQ score at

11 years using a counterfactual framework. As shown in Figure 4

and Supplementary Table S4 (Supporting Information S1), most

NIEs were positive, suggesting potential mediation, although for

many of the candidate metabolites, effects were small with

confidence intervals of the NIEs overlapping 1. The largest

effect sizes were noted for tyrosine with a NIE for the SMFQ

score of 1.11 (95% CI:1.00, 1.27, Proportion Mediated (PM):

12.5%), For leucine, we observed slightly smaller effects with a

NIE for the SMFQ score of 1.08 (95% CI: 0.99, 1.19, PM: 9.3%).

Additionally, for conjugated linoleic acid (CLA), we noted that

for the SMFQ score the NIE was 1.03 (95% CI: 0.94,1.119, PM:

4.1%). Similar effects were observed when CLA was expressed as

a ratio to total fatty acids.

FIGURE 3
Associations ofmetabolicmeasures at 7 years SMFQ score at 11 years (outcome). Bars show strength of association (-log10 p-value), colored by
direction of effect. Model is adjusted for sex and age of child, physical activity at age 5, mother’s age at birth, birthweight, mother’s pre-pregnancy
BMI, average weekly family income at 7, mother’s highest education qualification. FDR at 5%. The abbreviation of the metabolites is available in the
Codebook (Supporting Information S2).
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A similar overall pattern was observed using the cut-off to

define depressive symptoms (SMFQ>7): for tyrosine, the NIE for

the depressive symptoms of 1.01 (95% CI: 0.99, 1.03, PM: 8.9%);

for leucine, the NIE was 1.01 (95% CI: 1.00, 1.03, PM: 8.7%); and

for CLA, the NIE was 1.02 (95% CI: 1.00, 1.04, PM: 12.5%)

(Figure 4). Results using the cut-off to define depression

(SMFQ>11) are given in Supporting Information S2,

Supplementary Table S4, and follow a similar pattern.

Analysis by sex

The results of MWAS, stratifying by sex, showed that in the

case of boys, 94 metabolites–including histidine, leucine,

tyrosine, citrate, apolipoproteins, conjugated linoleic acid and

various lipoprotein measures–were associated with SMFQ score

after controlling the FDR at 5% (Supporting Information S2,

Supplementary Table S5). In the case of girls, we found that two

metabolites (very large HDL and lipoprotein particle size) were

associated with the SMFQ score after controlling the FDR at 5%.

In the mediation analysis, stratified by sex, we observed generally

stronger mediation by tyrosine for boys compared to girls

(Supporting Information S1, Supplementary Figures S3, S4, S5

and Supporting Information S2, Supplementary Tables S7, S8).

Study population of epigenetic analysis

The population with DNA methylation and outcome data

included 764 children (Table 1). The low number of children that

would be classified as depressed or having depressive symptoms

using a binary classification in this subset precluded analyses on

these outcomes (Table 1). We therefore only used the SMFQ

score as a continuous variable in the epigenetic analysis. In an

adjusted analysis in the subset population with epigenetic data

available, we found that obesity was associated with a 20%

increase in SMFQ score (Rate Ratio (RR): 1.20, 95% CI: 0.98,

1.46). Although the effect size was similar to the larger subset

with metabolomic data available, the confidence intervals

overlapped 1. Similar results were obtained when stratified by

sex: the RR was 1.29 (95% CI: 0.96, 1.74) in boys and 1.16 (95%

CI: 0.89, 1.52) in girls.

Identification of CpGs for mediation
analysis

To select CpGs that may mediate this association, we first

performed a genome-wide EWAS for BMI at 7 years. The EWAS

analysis showed that cg07462932, cg16332631, cg26271891 and

cg26224499 located in the SEPT7, RPS6KA4, ZNF385B and

TIMM44 genes respectively were associated with child BMI,

after FDR of 5% correction (at genome-level, Table 3,

Supporting Information S1, Supplementary Figure S5,

Supporting Information S2, Supplementary Table S9).

Considering the low statistical power to identify BMI-

associated CpGs from within our own dataset, we additionally

selected putative BMI-associated CpGs from a look-up list. This

included 184 CpGs from the study ofWahl et al. (2017) for adults

and 276 CpGs reported to be associated with adiposity in

TABLE 2 Metabolites simultaneously associated with obesity at 7 years and with SMFQ score at 11, with consistent directions of effect.

Associations with obesity Associations with SMFQ
score

Associations depressive
symptoms (SMFQ >7)

Associations with
depression (SMFQ >11)

Metabolite Odds
ratio

p-value Rate
ratio

p-value Odds
ratio

p-value Odds
ratio

p-value

Tyr 1.399 (1.219,1.605) 3.86E-06 1.029 (1.008,1.05) 5.81E-03 1.147 (1.018,1.291) 1.78E-06 1.276 (1.025,1.588) 2.94E-02

Leu 1.395 (1.216,1.6) 4.38E-06 1.03 (1.009,1.052) 4.34E-03 1.101 (0.975,1.243) 2.06E-06 1.24 (0.993,1.548) 5.80E-02

ApoB 1.733 (1.51,1.989) 1.71E-14 1.028 (1.007,1.05) 9.06E-03 1.024 (0.901,1.162) 5.04E-15 0.977 (0.762,1.253) 8.56E-01

CLA 1.368 (1.216,1.539) 4.15E-07 1.038 (1.018,1.059) 2.19E-04 1.124 (1.005,1.257) 1.77E-07 1.083 (0.861,1.364) 4.96E-01

CLAFA 1.282 (1.139,1.443) 7.75E-05 1.037 (1.017,1.058) 3.17E-04 1.128 (1.011,1.258) 3.81E-05 1.103 (0.882,1.38) 3.90E-01

SLDLTG 1.201 (1.049,1.375) 1.35E-02 1.031 (1.01,1.052) 3.72E-03 1.055 (0.934,1.192) 8.18E-03 1.23 (1.003,1.509) 4.69E-02

MLDLPL 1.25 (1.07,1.46) 8.47E-03 1.047 (1.025,1.069) 1.58E-05 1.075 (0.947,1.22) 4.90E-03 1.098 (0.858,1.406) 4.57E-01

LLDLCE_P 1.246 (1.037,1.497) 3.09E-02 1.043 (1.021,1.066) 1.28E-04 1.089 (0.951,1.248) 1.91E-02 1.022 (0.792,1.318) 8.69E-01

IDLCE 1.193 (1.021,1.393) 4.14E-02 1.034 (1.013,1.056) 1.47E-03 1.043 (0.919,1.183) 2.59E-02 0.971 (0.755,1.249) 8.17E-01

XSVLDLL 1.429 (1.233,1.656) 4.38E-06 1.027 (1.005,1.049) 1.35E-02 1.031 (0.908,1.171) 2.04E-06 0.933 (0.723,1.205) 5.97E-01

XSVLDLPL 1.189 (1.016,1.391) 4.87E-02 1.033 (1.012,1.055) 2.12E-03 1.047 (0.922,1.188) 3.11E-02 1.05 (0.818,1.347) 7.02E-01

*Logistic and Poisson regression odds ratio per standard deviation (95% CI) for obesity at seven and year SMFQ at 11 years. Model is adjusted for sex, age of mother at birth, birthweight,

mother’s pre-pregnancy BMI, average weekly family income at 7, mother’s highest education qualification. Where ApoB: Apolipoprotein B, CLA: Conjugated linoleic acid, CLAFA:

Conjugated linoleic acid (%), IDLCE: Cholesteryl esters in IDL, Leu: Leucine, LLDLCE_P: Cholesteryl esters to total lipids ratio in large LDL, MLDLPL: Phospholipids in medium LDL,

SLDLTG: Triglycerides in small LDL, Tyr: Tyrosine, XSVLDLL: Total lipids in very small VLDL, XSVLDLPL: Phospholipids in very small VLDL.
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children in at least one study from a recent review (Alfano et al.,

2021).

We next explored the associations of these CpGs with the

SMFQ score at 11 years old. Starting from the look-up list of

483 CpGs plus the four CpGs identified in the genome wide

EWAS, we analyzed associations with SMFQ score using

multiple adjusted Poisson models. Sixty-eight of these CpGs

were associated with SMFQ after 5% FDR correction on

included look-up CpGs (Supporting Information S2,

Supplementary Table S10, Figure 5). Four of these

(cg04878366, cg25487405, cg09152259, and cg18548288) had a

p-value lower than 1.0 × 10−6, which is generally considered a

suggestive association in genome-wide epigenetic studies

(Duggal et al., 2008).

Then, we selected those CpGs associated with 1) BMI and 2)

SMFQ in the ALSPAC cohort to further investigate their

potential mediation role between obesity at age seven and

SMQF at age 11. Ten CpGs remained for mediation analysis

(Table 4), after filtering those that had a look-up p-value of p <
0.05 with BMI and an association with SMFQ of FDR-corrected

p < 0.05, However, only four of these CpGs–cg17128312,

cg25435714, cg26224499, and cg26687842—had matching

directions of association (i.e., both hypomethylated or

hypermethylated with both BMI and SMFQ score) that may

indicate a mediation role.

Mediation of obesity and mental health by
CpGs

The natural indirect effects of these CpGs (mediating

pathways) are shown in Figure 6. The mediation analysis

FIGURE 4
Forest plot of mediation analysis for mood related outcomes, (A) SMFQ score and (B) depressive symptoms (SMFQ score> 7), across
11 metabolic compounds. Models are adjusted for sex and age of child, physical activity at the age of 5 years, age of mother at birth, birthweight,
mother’s pre-pregnancy BMI, average weekly family income at 7, mother’s highest education qualification. The rate and odds ratio are presented as
dots. Bars show 95%CI calculated based on a bootstrapping approach (1,000 replications).
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TABLE 3 Ten strongest associations between DNA methylation site (CpGs) and BMI. The model is adjusted for age, sex, CD4T, Bcell, CD8T, Gran,
Mono, NK as fixed effect and chip and position bead array as random effect.

Number CpG Estimate Std errora p-value FDR Chrb UCSCc

RefGene
name

UCSC
RefGene
group

Position

1 cg07462932 0.023 0.004 6.37E-08 1.58E-02 chr7 SEPT7 TSS200; TSS200 35840534

2 cg16332631 -0.023 0.004 1.17E-07 1.58E-02 chr11 RPS6KA4 TSS1500 64126102

3 cg26271891 0.027 0.005 1.31E-07 1.58E-02 chr2 ZNF385B; MIR1258 TSS200; TSS1500 180726249

4 cg26224499 0.015 0.003 1.46E-07 1.58E-02 chr19 TIMM44 TSS200 8008578

5 cg25627403 0.024 0.005 7.72E-07 6.70E-02 chr19 HNRNPUL1; HNRNPUL1 TSS1500; 5′UTR 41769009

6 cg26120617 0.023 0.005 1.55E-06 1.09E-01 chr12 NCAPD2; MRPL51 TSS200; TSS1500 6603256

7 cg15592690 0.021 0.004 1.98E-06 1.09E-01 chr18 IMPA2 TSS200 11981389

8 cg04719491 0.026 0.005 2.01E-06 1.09E-01 chr8 HAS2; HAS2AS TSS1500; Body 122654045

9 cg21845817 0.015 0.003 3.03E-06 1.38E-01 chr2 FAHD2A; FAHD2A 5′UTR; 1stExon 96068451

10 cg21088514 0.027 0.006 3.18E-06 1.38E-01 chr21 KCNE1 TSS1500 35884376

aStandard error.
bChromosom.
cUCSC: university of california, Santa Cruz.

FIGURE 5
Volcano plot of the p-value and β coefficient for the association between 483 putative BMI-associated CpGs and the SMFQ score. The linear
mixed-effect model is adjusted for sex and age of child, physical activity at the age of 5 years, age of mother at birth, birthweight, mother’s pre-
pregnancy BMI, average weekly family income at 7, mother’s highest education qualification, CD4T, Bcell, CD8T, Gran, Mono, NK as fixed effect and
chip and position bead array as random effects. The red dots are the CpGs with FDR<0.05. The vertical black dashed line indicates the rate ratio
at 1. The vertical axis is the significance (p-value) on a log10 scale, and the horizontal axis is the beta estimate.
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indicated that the effect of obesity on SMFQ scores at age 11 may

be mediated by cg17128312 (RR: 1.05, 95% CI: 1.01, 1.13, PM:

27%). There was no evidence for mediation by cg26687842 (RR:

1.01, 95% CI: 0.97, 1.05, PM: 3%) or by cg25435714 (RR: 1.00,

95% CI: 0.98, 1.02, and PM: 2%) (Supporting Information S2,

Supplementary Table S11). On the other hand, there was

evidence of a negative mediation (suppression) by cg1196813

(RR: 0.94, 95% CI: 0.88, 097, PM: 30%).

Methylation risk score

To combine information across loci, we calculated two weighted

MRS: 1) the MRS proposed by Wahl et al. (2017) and 2) based on

CpGs reported by (Alfano et al., 2021). Themean square error of the

MRS based on Wahl et al. (2017) was 1.95 and the MRS based on

CpGs reported by (Alfano et al., 2021) was 0.82, respectively.We did

not observe evidence of mediation for either MRS (Figure 7).

TABLE 4 CpGs simultaneous significantly associated (p < 0.05) with BMI at 7 years and (FDR 5%) SMFQ at 11 years.

CpG Chromosome Position UCSCa RefGene
name

UCSC
RefGene
group

Association
with BMI at
7 years

Association with
SMFQ at 11 years

Beta p-value Rate
ratio

p-value

cg03431111 chr11 62621406 SNORD30; SNORD22; SNORD29; SNORD31;
SNHG1

TSS1500; Body 0.017 1.06E-03 0.685 2.47E-04

cg09664445 chr17 2612406 KIAA0664 5′UTR 0.010 3.59E-02 0.668 4.57E-04

cg11969813 chr17 79816559 P4HB Body 0.017 1.01E-02 0.697 3.20E-05

cg13781414 chr9 138951648 NACC2 5′UTR 0.010 3.72E-02 0.668 3.90E-04

cg17128312 chr19 12806824 FBXW9 Body -0.018 4.20E-04 0.720 2.20E-03

cg18219,562 chr17 41773643 0.016 8.33E-03 0.778 3.76E-03

cg21486834 chr17 74477542 RHBDF2; RHBDF2 Body 0.012 7.49E-03 0.643 2.56E-04

cg25435714 chr7 157083381 0.012 4.57E-02 1.308 2.90E-03

cg26224499 chr19 8008578 TIMM44 TSS200 0.015 1.46E-07 1.550 5.31E-04

cg26687842 chr13 41055491 LOC646982 TSS1500 -0.009 3.74E-02 0.643 2.79E-04

aUCSC: uniersity of california, Santa Cruz.

FIGURE 6
Forest plot of the natural indirect effect of the mediation analysis for the relation between obesity at 7 years and SMFQ score at 11 years as
mediated by 10 CpGs simultaneously associated (p < 0.05) with BMI and (FDR 5%) SQFM at 11 years. Red dots and bars show rate ratio and 95% CI for
natural directed effect, respectively. The model is adjusted for sex, age of mother at birth, birthweight, mother’s pre-pregnancy BMI, average weekly
family income at 7, mother’s highest education qualification. 95% CI was calculated by bootstrapping with 1,000 replications.
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Two-sample MR analysis of molecular
features and depression

Following the principle of triangulation (Lawlor et al.,

2016), we applied two-sample MR based on publicly available

summary statistics on candidate metabolites to test causal

associations with depression. None of the tested metabolites

showed significant associations at p < 0.05. However, again the

strongest effects were observed for tyrosine, with one unit

increase in tyrosine associated with 0.13 great log odds of

depression at p = 0.1, estimated using the inverse-variance

weighted method (Table 5). Results estimated with MR-Egger

and weighted median were similar and shown in

Supplementary Tables S1, S2 (Supporting Information S1),

respectively. MR-Egger tests did not indicate the presence of

pleiotropy. No evidence of association was observed for the

other metabolites tested. We were unable to find genetic

instruments for conjugated linoleic acid.

A limited number of genetic instruments were available for

only four CpGs that were associated with SMFQ score in the

observational analysis: cg09664445 (1 SNP), cg21486834

(1 SNP), cg25435714 (3 SNPs) and cg26687842 (1 SNP). The

results of MR analysis are given in Supplementary Table S3

(Supporting Information S1). All associations were non-

significant: the strongest association was with cg21486834 in a

consistent direction with the observational analysis at p = 0.27.

FIGURE 7
Forest plot of the mediation analysis by methylation risk scores at age 7 years of obesity at 7 years and SMFQ score at 11 years, follow-up. Rate
ratio and 95% CI(bars) for natural direct effect (red line), natural indirect effect (green line) and total effect (blue line) from single mediation analysis of
obesity at 7 years on SMFQ through MRS. Rate ratio refers to MRS 1) based on Wahl et al. (2017) study (Supporting Information S1, Supplementary
Table S1) and 2) based on 275 CpGs associated with child adiposity (Alfano et al., 2021) (Supporting Information S1, Supplementary Table S2).

TABLE 5 Two-sample summary statistics Mendelian Randomisation (inverse-variance weighted method) between candidate metabolites and
depression. Beta estimate represents the change in the log odds of depression per unit increase in metabolites.

Metabolite Number of SNPs Beta estimates Standard error p-value

Tyrosine 21 0.13 0.08 0.10

Leucine 13 0.11 0.12 0.36

Apolipoprotein B 34 −0.07 0.07 0.31

Triglycerides in small LDL 47 −0.01 0.06 0.81

Phospholipids in medium LDL 33 −0.08 0.07 0.23

Cholesteryl esters in IDL 43 −0.09 0.07 0.21

Cholesteryl esters to total lipids ratio in large LDL 27 −0.12 0.09 0.18

Phospholipids in very small VLDL 54 −0.01 0.05 0.88

Total lipids in very small VLDL 49 0.01 0.06 0.87
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Discussion

In this study, we investigated the role of metabolites in blood

and DNA methylation in the relationship between obesity and

depression in children. We found that the amino acids tyrosine

and leucine, and conjugated linoleic acid may mediate the

association between obesity at age seven and depression at age

11. While we found less evidence for a role of methylated CpG

loci as mediators of the obesity-depression relationship, we

identified one CpG, cg17128312, located in the FBXW9 gene,

that had a potential mediation effect.

Higher levels of tyrosine (an AAA) and leucine (a BCAA)

were associated with obesity, SMFQ, and depression symptoms

with consistent effects. Both tyrosine and leucine are widely and

consistently associated with childhood obesity (Handakas et al.,

2021). A recent study in children showed that high tyrosine levels

during life are associated with more internalizing behaviors and

negative emotions (Van Vliet et al., 2019). Additionally, tyrosine

and the AAA phenylalanine are direct precursors for the

synthesis of brain neurons catecholamines (neurotransmitters),

including norepinephrine, dopamine, and epinephrine. Studies

indicate these neurotransmitters can be manipulated by gut

microbiota and vice versa, suggesting an impact on host

physiology (Strandwitz, 2018). Animal studies showed that gut

microbiota play a causal role in the development of features of

depression (Kelly et al., 2016) and anxiety (De Palma et al., 2017),

supporting further evidence that there is a modulation of

neurotransmission that is likely a route of communication

along the gut-brain axis. Plasma AAAs, which are directly

modulated by the gut microbiota (Handakas et al., 2021)

could therefore influence later propensity for mental health

disorders through metabolic processes of gut and brain

interaction. BCAAs, including leucine, play an important role

in the activation of the mammalian target of rapamycin (mTor)

pathway–a pathway involved in the control of cell growth and

proliferation–and has been associated with a short-term decrease

in depressive symptoms (Baranyi et al., 2016). Additionally,

Orešič et al. (2011) found that elevated levels of BCAAs were

associated with schizophrenia. BCAAs may compete with AAAs

for transport across the brain-blood barriers (Fernstrom, 2005;

Gruenbaum et al., 2019), and their increase may lead to

concentration decreases in neurotransmitters derived from the

AAAs, including tryptophan, in the brain. However, evidence

produced in this study contrasts the findings from Baranyi et al.,

2016, who observed a reverse association of blood plasma BCAAs

in adult patients with depression in their cross-sectional study

(Baranyi et al., 2016).

Conjugated linoleic acid (CLA) is a positional isomer of

linoleic acid where the two double bonds are conjugated

(i.e., separated by a single bond) and may be either in cis- or

trans-configurations, with 28 possible isomeric forms (Yang

et al., 2015). We found evidence for a mediating role of CLA

between obesity and mental health but not for linoleic acid itself.

There is mixed evidence for the role of CLA in health, with both

athero-protective (Bruen et al., 2017) and pro-inflammatory

effects (Mazidi et al., 2017) reported. The effects on

inflammation, which may underlie effects on mood, are

thought to result from a reduction in the arachidonate pool,

leading to a reduced production of downstream eicosanoid

products, which modulate cytokine production (Yang et al.,

2015). The mixed health effects reported for CLA may be due

to differences between isomeric forms (Yang et al., 2015), but we

were unable to distinguish these with the NMR analytical

platform employed. We also found LDL measures to be

associated with both obesity and SMFQ scores, mainly direct

associations. Perturbations in lipid metabolism, and lipoprotein

concentrations are typical symptoms of childhood obesity

(Daniels, 2011; Lamb et al., 2011). Beasley et al. (2005)

suggested that cholesterol-mediated alterations in nerve

terminal structure and function regulate the relationship

between low cholesterol and depression pathogenesis.

However, Persons and Fiedorowicz (2016) conducted a meta-

analysis on the relationship between depression and serum LDL,

and observed a U-shaped relationship between the two,

suggesting that both high and low levels of serum LDL are

associated with an increased risk of depression. However,

despite the associations observed in this study, we did not

observe evidence that LDL measures may have a mediating role.

This study showed little evidence for a mediating role of

differentially methylated CpGs. We found evidence that

methylation cg17128312 had a potential mediation effect.

cg17128312 is located in the FBXW9 gene, one of a few

evolutionarily conserved F-box proteins. FBXW9 is widely

expressed in the nervous system (Gu et al., 1996) and is

involved in the promotion of neurotransmitter release from

GABAergic motor neurons (Sun et al., 2013), presenting a

plausible mechanism related to mood regulation. Although

this CpG was identified through the EWAS approach and

therefore strongly associated with obesity in this study, it was

not among the 483 CpGs identified as putatively associated with

body mass in the literature review (Alfano et al., 2021) or the

study of (Wahl et al., 2017), suggesting that while it may

contribute to poorer mental health among ALSPAC children

with obesity, this relationship is unlikely to be generalizable to

other populations. To date, few CpGs have been consistently

associated with body mass in children (Vehmeijer et al., 2020;

Alfano et al., 2021), in contrast to adults (Wahl et al., 2017) and

indeed metabolites (Handakas et al., 2021). This lack of

consistency may be related to the length of time in an obese

state, which is shorter for children (Vehmeijer et al., 2020).

DNA methylation at four CpGs (cg07462932, cg07462932,

cg07462932, and cg26224499) was associated with BMI at an

FDR of p < 1.06 × 10–7. Additionally, in a look-up analysis on

probes previously associated with childhood BMI and obesity, we

found that 10 cpgs were associated with both BMI and SMFQ

scores, including cg25435714 and cg13781414. Somineni et al.
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(2019) applied an EWAS analysis in paediatric patients and

showed that cg25435714 and cg13781414 were associated with

Crohn’s disease (CD), an inflammatory bowel disease, associated

with a reduction of faecal microbial diversity (Pascal et al., 2017).

A range of studies demonstrated the potential association

between obesity and mental disorders and the role of

dysbiosis in the gut-brain (Ligezka et al., 2021) and this

dysbiosis can alter the functionalities of the central nervous

system, behavior and cognitive function (Carding et al., 2015).

Studies have shown that bioactive nutrients and gut microbiota

can alter either DNAmethylation or signatures through a variety

of mechanisms (Tateishi et al., 2009; Lester et al., 2013; Alfano

et al., 2021). Hence, microbes within the human gut can influence

inflammatory cytokines and the production of antimicrobial

peptides, affecting the epigenome through their involvement

in generating short-chain fatty acids, vitamin synthesis, and

nutrient absorption (Alam et al., 2017).

The strength of our study includes both plasma blood

metabolome and epigenome from childhood and a large

cohort, enabling assessment of the mood disorder at

preadolescence and thus limiting reverse causality. The lack of

full assessment by trained psychologists is a weakness, although

we used the SMFQ that has been developed to enhance

epidemiological use (Thapar and McGuffin, 1998) and has

demonstrated significant discrimination of depression in

several validation studies (Thapar and McGuffin, 1998; Rhew

et al., 2010). We included several sociodemographic and clinical

factors in our analysis. However, we did not have complete data

related to child nutrition that could be linked to both the

metabolome and epigenome in life. Nevertheless, we used

family socioeconomic factors and maternal clinical factors

such as BMI that can reflect general patterns of family

nutrition (Williams et al., 2017) and physical activity

(Lampinen et al., 2017). Additionally, we used the BMI

reference curves for the United Kingdom to define obesity as

this BMI chart provides a more detailed monitoring of both the

size and shape of the United Kingdom child population. We

examined the mediation role of a range of metabolites on the

effect of obesity on mood-related outcomes using both single

metabolites and an MRS which further revealed the potential

mediation role of the metabolic traits in central biological

mechanisms. Although the temporal nature of the study

design tested the role of obesity-associated molecular features

on subsequent depression, we lacked data on mental health at

earlier ages to test whether these features may be associated with

depression already present at earlier ages (downstream effects).

However, the study population had a limited number of cases of

depression (less than 5% of the total population), which limited

statistical power, particularly for the epigenetic and stratified

analyses. For this reason, we also analyzed the SMFQ score using

a Poisson regression and used a bootstrapping approach in the

mediation analysis. Hence, our results suggest a potential

directionality of the effects, encouraging the conduct of

further observational and mechanistic studies (Hernán, 2021).

Future studies, with gut-microbiota and high-quality dietary data

available, should explore the role of nutrition and the mediating

role of gut-bacteria in the central nervous system.

In conclusion, we identified three metabolites, tyrosine,

leucine and conjugated linoleic acid and methylation at one

CpG site that may potentially mediate the association between

obesity and later depression in children. Potential biological

plausible mechanisms involving these molecular features

include regulation and production of neurotransmitters,

inflammation, and modulation of the gut microbiome. These

results require replication in further well-powered observational

and mechanistic studies.
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