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Introduction
Previous research has shown that the chemically and 
metabolically inert gases xenon (Xe) and helium (He) have 
neuroprotective properties in models of hypoxic-ischemic 
insults, brain ischemia, and traumatic brain injury.1-19 In line 
with the critical role played by the N-methyl-D-aspartate 
(NMDA) receptor in the mechanisms of neuronal death 
induced by these types of brain insults,20-23 Xe that is thought 
to provide neuroprotection by inhibiting the NMDA recep-
tor24,25 is considered the golden standard neuroprotective gas 
on the basis of preclinical studies. However, Xe has a mo-
lecular weight of 131 g/mol that is higher than that of nitro-
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gen, the main diluent of oxygen in air which molecular weight 
is 28 g/mol, and further possesses a thermal conductivity of 
5.5 mW/m/K and specific heat of 0.16 kJ/kg•K (at 298°K or 
25°C) that are lower than those of nitrogen, which thermal 
conductivity and specific heat are 25.8 mW/m/K and 1.04 
kJ/kg•K, respectively,26 conditions that could impair or at 
least reduce the intrinsic neuroprotective properties of Xe 
by increasing the critical care patient’s respiratory work-
load27,28 and body temperature (unpulished). In addition, in 
line with its scarcity, Xe suffers an excessive cost of produc-
tion that is a major obstacle to its clinical development. In 
contrast, He has a molecular weight of  4 g/mol, which is 
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lower than that of nitrogen, and a thermal conductivity of 
155.3 mW/m/K and specific heat of 5.19 kJ/kg•K,26 which 
are higher than those of nitrogen, but unfortunately it is far 
less neuroprotective than Xe.

Mixing Xe and He would allow reducing the cost of treat-
ment and obtaining a gas mixture with reduced molecular 
weight and increased thermal conductivity and specific 
heat as compared to Xe alone. However, although poten-
tially interesting, such a strategy would require that such 
a gas mixture contains at least 37.5% of Xe, the minimum 
concentration of Xe shown to possess neuroprotective 
properties in relevant models of thromboembolic stroke.2 
To determine whether a gas mixture containing 37.5% Xe in 
combination with 37.5% He (the highest dose of He that can 
be added to 37.5% Xe while maintaining oxygen at 25%) 
could allow providing neuroprotection, we investigated the 
neuroprotective effects of Xe and He at equimolar concen-
trations of 37.5% on cell injury induced by oxygen-glucose 
deprivation (OGD) in acute brain slices. In addition, because 
Xe and He are known to interact with tissue plasminogen 
activator (tPA),1,2 whose recombinant form (rtPA) is the 
only approved drug therapy of ischemic stroke to date, we 
further investigated in vitro and ex vivo the effects of Xe-
He on the catalytic activity and thrombolytic efficiency of 
rtPA. These effects of Xe-He were compared to those of 
37.5% He, 37.5% Xe, and 50% Xe, the concentration of Xe 
shown to provide maximal neuroprotection in various ex 
vivo and in vivo mechanical and thromboembolic models 
of acute brain ischemia.2,18,19

Materials and Methods
Animals
All animal-use procedures were performed in accordance 
with the Declaration of Helsinki, the French legislation for 
the use of animals in biomedical experimentation, and the 
corresponding European Communities Council Directive 
issued on 24 November 1986 (86/609/EEC). Adult male 
Sprague-Dawley rats (Janvier, Le Genest Saint-Isle, France) 
were used. Before being used, rats were housed at 21 ± 
0.5°C in Perspex home cages with free access to food and 
water and lights on from 8:00 p.m. to 8:00 a.m.

OGD studies in acute brain slices
Preparation of brain slices
Rats weighing 250–280 g were decapitated under halothane 
anesthesia. The brains were removed and placed in ice-cold 
freshly prepared artificial cerebrospinal fluid (aCSF). Coro-
nal brain slices (400 µm thickness; anteriority from bregma: 
+1.2 to +2 mm) were cut using a tissue chopper (Mickie 
Lab. Engineering Co., Gomshall, Surrey, UK).

Measurement of cell injury with lactate dehydrogenase 
activity assay
The effects of gas mixtures containing Xe and/or He on 
acute brain slices subjected to OGD, an ex vivo model of 
brain ischemia,29,30 were assessed by measuring the release 
of lactate dehydrogenase (LDH), a marker of cell injury,31 
as detailed previously19: Brain slices were transferred 
into individual vials with 1.3 mL of freshly prepared 
oxygenated aCSF containing 120 mM NaCl, 2 mM KCl, 
2 mM CaCl2, 26 mM NaHCO3, 1.19 mM MgSO4, 1.18 
mM KH2PO4, 11 mM D-glucose and 30 mM HEPES, and 
allowed to recover at room temperature for 45 minutes. 
Then, brain slices were placed at 36 ± 0.5°C into individual 
vials containing 1.3 mL of freshly prepared aCSF continu-
ously bubbled with 100% oxygen (25 mL/min per vial). 
After a 30-minute period, aCSF solution was renewed 
with oxygenated aCSF maintained at 36°C, and the slices 
were then incubated for 1 hour to allow recording of LDH 
basal levels. Whereas sham slices were incubated for an 
additional 20-minute period in the same conditions, OGD 
slices were incubated in a glucose-free solution continu-
ously bubbled with 100% nitrogen. After that, to mimic 
reperfusion and treatment, the medium was replaced with 
freshly prepared aCSF, saturated and continuously bubbled 
with medical air (control slices) or gas mixtures containing 
Xe and/or He (n = 28–29 per group).

In vitro tPA catalytic activity assay
The effects of Xe and/or He gas mixtures on the catalytic 
activity of rtPA were assessed as detailed previously.2 rtPA 
(Actilyse®; Boehringer Ingelheim, Ingelheim am Rhein, Ger-
many) and its specific chromogenic substrate methylsulfonyl-
D-phenyl-glycil-arginine-7-amino-4-methylcoumarin acetate 
(Spectrozyme® XF, product 444; American Diagnostica, 
Stamford, CT, USA) were diluted separately in 1 mL distilled 
water in 1.5-mL sterile tubes. Each tube containing 0.4 µM 
rtPA or 10 µM rtPA substrate was saturated for 20 minutes with 
air (controls) or gas mixtures containing Xe and/or He (n = 12 
per group). The catalytic efficiency of rtPA was assessed by 
the initial rate method by incubating 50 µL rtPA with 50 µL 
substrate in a spectrofluorometer microplate reader set at 37°C. 

Ex vivo thrombolysis experiments 
The effects of gas mixtures containing Xe and/or He on the 
thrombolytic efficiency of rtPA were assessed as detailed 
previously.2 Male Sprague-Dawley mature rats weighing 
600–650 g (n = 6) were used. Whole blood samples of 500 
mL volume were transferred in preweighed sterile tubes 
of 1.5 mL, and incubated at 37°C for 3 hours. Saline solu-
tion (45 mL) was prepared in a laboratory flask of 50 mL 
volume whose cap was drilled with two holes of 2 mm in 
diameter, and saturated for 30 minutes with medical air or 
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to those of control experiments, Xe and He alone using 
non-parametric Mann-Whitney U-test. 

Results
Control slices exposed to OGD and air exhibited an in-
crease in LDH release (P < 0.0001) compared to sham 
slices exposed to oxygen (instead of OGD) and air (see 
above Materials and Methods section). As illustrated in 
Figure 1, Xe-37.5 and Xe-50, but not He-37.5, did pro-
vide neuroprotection, leading to a significant difference 
between Xe-treated slices and air-treated control slices 
(P < 0.0001). Combining Xe and He at 37.5%, allows 
reducing OGD-induced LDH release to a similar extent 
than Xe-50 (P < 0.0001).  

Alternatively, because Xe and He have been shown to 
interact with rtPA, the only approved drug therapy of isch-
emic stroke to date, we investigated the effects of Xe and 

Xe and/or He (with the remainder being oxygen at 25% and 
nitrogen as needed; see below Gas Pharmacology section) 
at a flow rate of 80 mL/min through microtubing (2 mm in 
diameter) and a cylinder bubble stone that was introduced 
down to the bottom of the container through one of the 
two holes previously drilled. After clot formation and total 
serum removal, each tube was weighed to determine the 
clot weight. To reduce variability, we selected blood clots 
in the same weight range (0.268 ± 0.023 g). Then, each 
tube was fully filled (including the cap) with saline solu-
tion containing 1 mg/mL of rtPA in the form of Actilyse 
previously saturated with Xe and/or He or medical air (n = 
10–14 per group), quickly closed to avoid Xe, He, or Xe-
He desaturation, and incubated at 37°C for an additional 
90 minutes period. Then, the fluid was removed, and the 
tubes were weighed again to assess the percentage of clot 
lysis induced by rtPA in the presence of medical air, or 
Xe and/or He. Particular attention was paid to avoid gas 
desaturation by maintaining Xe and/or He at bubbling in 
saline while filling the tubes containing the blood clots 
with saline saturated with Xe and/or He.

Gas pharmacology
Gases of medical grade were purchased from Air Liquide 
Santé (Paris, France). Medical air composed of 75% 
nitrogen and 25% oxygen, gas mixtures containing He 
at 37.5% (He-37.5), Xe at 37.5% (Xe-37.5), Xe at 50% 
(Xe-50), and Xe-He at equimolar concentration of 37.5% 
(Xe-He-37.5), with the remainder being 25% oxygen and 
nitrogen as needed, were obtained using computer-driven 
gas mass flowmeters (Aalborg) and an oxygen analyzer 
for double checking.

Statistical analysis
Data are given as the mean ± the standard error to the 
mean. The effects of Xe-He were analyzed using Statview 
software (SAS Institute, Cary, NC, USA) and compared 

Figure 1: Effects of xenon (Xe) and helium (He) alone or in combination 
on the increase in lactate dehydrogenase (LDH) release induced by 
oxygen-glucose deprivation (OGD).  
Note: Xe-He-37.5 approximately reduced OGD-induced LDH release to a 
similar extent than Xe-50. Part of the data with xenon was obtained from a 
previous study.19 Data are expressed as the mean ± the standard error to the 
mean, and analysed by non-parametric Mann-Whitney U-test. *P < 0.0001, 
vs. OGD slices.
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Figure 2: Effects of xenon and helium alone or in 
combination on the catalytic activity (A) and the 
thrombolytic efficiency (B) of tissue plasminogen 
activator (rtPA). 
Note: Xe-He-37.5 reduced the catalytic activity and 
thrombolytic efficiency of rtPA to a similar extent than 
Xe-50. Part of the data with xenon or helium alone was 
obtained from previous studies.1,2 Data are expressed as 
the mean ± the standard error to the mean, and analyzed 
by non-parametric Mann-Whitney U-test. *P < 0.0001, 
vs. oxygen-glucose deprivation slices.
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in addition of its neuroprotective action.
If such, it is likely that Xe-He-37.5 could be adminis-

tered advantageously after rtPA-induced reperfusion has 
occurred to provide both neuroprotection and reduction 
of rtPA adverse side effects, mainly brain hemorrhages 
and disruption of the blood-brain barrier. Therefore, we 
believed that future studies should investigate the organ 
protective properties of equimolar concentrations of Xe-
He-37.5 (shown to offer similar neuroprotection as Xe-50 
with, advantageously, lower molecular weight and higher 
thermal conductivity and specific heat) in clinically relevant 
models of thromboembolic stroke, traumatic brain injuries, 
and renal and cardiac ischemia.   
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