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Abstract: Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and
is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala
(CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol
consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral
changes are not well understood. Here, we examined the effects of alcohol on global gene expression
in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-
Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as
the number of differentially expressed genes (DEGs) was significantly greater than those expected
by chance. Over-representation analysis of cell types, functional groups and molecular pathways
revealed biological categories potentially important for the development of alcohol dependence in
our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were
over-represented in the DEG category, suggesting that these cell types were particularly affected by
the CIE procedure. The majority of the over-represented functional groups and molecular pathways
were directly related to the functions of glial and endothelial cells, including extracellular matrix
(ECM) organization, myelination, and the regulation of innate immune response. A coordinated
regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple
collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a
specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate
neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our
results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure
on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence
in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.

Keywords: RNA-Seq; central nucleus of the amygdala (CeA); chronic intermittent alcohol vapor;
extracellular matrix; alcohol use disorder (AUD); differentially expressed genes (DEGs)
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1. Introduction

The current Diagnostic and Statistical Manual of Mental Disorders (DSM-5) integrates
the two DSM–IV disorders, alcohol abuse and alcohol dependence, into a single disorder
called alcohol use disorder (AUD) [1]. The severity of AUD is based on the number
of criteria a person meets, with 6 or more out of 11 criteria indicating severe AUD [1].
Alcohol dependence is evident in most advanced AUD cases and is associated with adverse
consequences of alcohol (ethanol) use, as well as indicators of alcohol tolerance, withdrawal,
and uncontrolled drinking. Rodent models of alcohol dependence have been widely used
to study the molecular and cellular mechanisms underlying the progression of AUD. The
chronic intermittent ethanol (CIE) vapor inhalation method consistently produces physical
dependence in mice and rats, as expressed by behavioral signs of withdrawal as well as
increased alcohol drinking and anxiety-like behaviors [2–7]. The central nucleus of the
amygdala (CeA) is implicated in the negative affective state of alcohol dependence and
plays a key role in regulating stress-related behaviors and dependence-associated escalation
of alcohol consumption [8–18]. As a result, alcohol-induced molecular and cellular changes
in the CeA have been proposed to contribute to the pathophysiology of AUD [5,10,19]. Of
note, alcohol-related physiological changes at a whole cell level and the role of different
neuronal populations in the CeA have been studied extensively [5,9,10,20–30]. For example,
one study showed that inactivation of a specific dependence-induced neuronal ensemble
in the CeA reversed excessive alcohol drinking and somatic signs of alcohol dependence
in rats [27]. However, the molecular changes underlying these cellular and behavioral
responses to alcohol are not well understood.

Perturbation-induced gene expression serves as a sensitive measure of changes in
cell functions, and numerous studies have used transcriptome profiling to investigate the
mechanisms underlying brain plasticity and brain pathology [8,31–42]. Alcohol causes
widespread changes in gene expression in the brain [31,39,42–48], some of which contribute
to the development of AUD. Because AUD is a complex disease, with various brain
circuits playing particular roles at different stages of AUD progression, it is important
to determine alcohol-induced molecular changes across brain regions, AUD stages and
animal models. To date, numerous alcohol-related gene expression studies have generated
a wealth of transcriptomic data, providing insight into the molecular mechanisms of
AUD [8,31–33,35–37,41,42,49–55]. In the present study, we complemented this valuable
resource with transcriptomic profiling of the CeA in a rat model of alcohol dependence.
We identified individual genes, biological functional groups and molecular pathways as
mechanistic candidates for alcohol-induced behavioral changes. We used published cell
type-specific molecular markers to define cellular identity of alcohol-regulated genes and
to propose mechanistic roles for individual cell types in alcohol dependence. These cell
type-specific molecular targets may be used in future studies to develop therapeutics to
treat AUD.

2. Materials and Methods
2.1. Animals and Chronic Intermittent Ethanol (CIE) Exposure

All procedures were approved by The Scripps Research Institute (TSRI) Institutional
Animal Care and Use Committee and were consistent with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. Adult male Sprague Dawley
rats (ordered at 200–250 g; 330–360 g at sacrifice) were obtained from Charles River Lab-
oratories (Raleigh, NC) and randomly assigned into Ethanol (CIE) and Control groups
(n = 6 per group). All rats were group housed throughout the study (n = 3 per cage), with
ad libitum access to food and water. CIE rats received 5–7 weeks of daily ethanol vapor
(14 h vapor/10 h air) with a target blood alcohol concentration (BAC) of 175–250 mg/dl, as
previously described [5]. BACs were measured 1–2 times/week by tail-bleeding and upon
sacrifice, and the mean BAC of the subset of rats used in this study was 188 ± 4 mg/dL.
Rats from the Control group were treated similarly except with continuous air exposure.
Animals were anesthetized with isoflurane and decapitated at the end of the last vapor
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exposure, and their brains dissected and split into two hemispheres for either gene expres-
sion analysis or electrophysiological recordings. Electrophysiological data were published
previously [5]. Randomly chosen hemispheres were shipped on dry ice to the University
of Texas at Austin for the gene expression analysis.

2.2. Gene Expression Using RNA-Seq

Brains were mounted in OCT and cryosectioned (300 µm coronal sections). The CeA
was identified [56] and removed using a tissue puncher 1 mm in diameter (Stoelting, Wood
Dale, IL, USA). CeA total RNA was isolated using the MagMAX™-96 Kit (Life Technologies,
Carlsbad, CA, USA) and checked for quality control (all RIN values were >8.6). RNA library
preparation and sequencing occurred locally (https://wikis.utexas.edu/display/GSAF).
Illumina NextSeq of poly-A enriched total RNA sequencing was performed (PE 2 × 75,
average of 40 million reads per sample). Individual sample libraries were mapped to
Rattus norvegicus (Rnor_6.0; https://useast.ensembl.org/Rattus_norvegicus/Info/Index)
reference genome using Burrows–Wheeler Aligner (BWA) [57]. Aligned sequencing reads
were quantified using the python-based library HTSeq. Quantified expression data was
analyzed for differential expression between treatment groups using the R Bioconductor
package DESeq2 (v1.26) [58] within RStudio (v. 3.6.3), producing fold change, p values, and
estimated false discovery rate (FDR).

2.3. Bioinformatics Analysis

To nominate candidate differentially expressed genes (DEGs) and biological groups
we used two approaches, the first highlighting individual DEGs using a 5% FDR threshold
and a convergent validity approach that combines nominal statistical significance and bio-
logical significance of bioinformatics analysis to control for Type 1 and Type 2 error rates.
For the second approach, a list of genes differentially expressed between the two groups at
a nominal p < 0.05 was subjected to bioinformatics analysis using two resources: (1) En-
richR (http://amp.pharm.mssm.edu/Enrichr, accessed on 1 July 2020), which identifies
over-represented functional groups and molecular pathways using several well-curated
databases including Gene Ontology (GO), KEGG and Wiki pathways, and (2) Ingenuity
Pathway Analysis (IPA, www.ingenuity.com, accessed on 1 July 2020), a knowledgebase
that identifies perturbation-related biological pathways and gene networks. In addition,
a public database containing molecular markers of different brain cell types [59,60] was
used to define cellular identity of DEGs. The criterion for a cell type-specific marker was
at least 3-fold enrichment in a given cell type compared to a cell type with the second
highest abundance. Molecular markers for astrocytes, neurons (general neuronal markers),
oligodendrocyte progenitor cells (OPCs), myelinating oligodendrocytes, microglia and
endothelial cells were used in the analysis. Over-representation p-values for each functional
group, biological pathway, gene network and cell type were calculated using a hyperge-
ometric test. The total number of DEGs, as well as numbers of up- and down-regulated
DEGs, in specific cell types and functional groups were compared to chance using a X2 test
with a Bonferroni correction. Finally, we searched for DEGs that are mechanistic candidates
for cellular changes observed in our previous study using the same rat model [5]. Specif-
ically, we focused on corticotropin releasing factor (CRF) and calcium channel systems.
Because we obtained molecular and electrophysiological data from the same animals, we
were able to correlate expression of DEGs with spontaneous GABAA-mediated inhibitory
postsynaptic current (sIPSC) frequencies recorded from medial CeA neurons.

2.4. DEG Validation with qRT-PCR

Total RNA was reverse transcribed using Applied Biosystems High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific Inc., Rockford, IL, USA) and then
Taqman Fast Advanced Master Mix (Thermo Fisher Scientific, Rockford, IL, USA) were
used to perform quantitative reverse transcription PCR (qRT-PCR). Applied Biosystems
Taqman Gene Expression Assays included Mmp14 (Rn01489226_g1), Plp1 (Rn01410492_m1),

https://wikis.utexas.edu/display/GSAF
https://useast.ensembl.org/Rattus_norvegicus/Info/Index
http://amp.pharm.mssm.edu/Enrichr
www.ingenuity.com
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Gapdh (Rn01775763_g1), and 18s (Hs99999901_s1). Reactions containing 5 ng of cDNA were
performed in triplicate on the CFX384 Real-Time System (BioRad, Hercules, CA). Relative
expression was determined using the 2−∆∆Ct method and samples were normalized to
the geometric mean of 18s and Gapdh. One statistical outlier from the Control group
determined by the Grubbs test was removed and results were compared using a Student’s
t-test with a threshold of p < 0.05 as statistical significance (Graph Pad 8.0.0).

3. Results

The main objective of this analysis was to identify individual genes, functional groups
and molecular pathways affected by chronic intermittent ethanol (CIE) in the CeA. Overall,
1837 genes were differentially expressed (DEGs) between the CIE and Control groups
at a nominal p value of <0.05, with 985 DEG being up-regulated and 852 DEGs being
down-regulated. Two hundred and eighty-five genes reached the statistical threshold of 5%
FDR, with 115 DEGs being up-regulated and 170 DEGs being down-regulated (Figure 1,
Supplemental Table S1). The total number of DEGs was significantly greater than those
expected by chance (X2 p < 1.0 × 10−7), indicating marked effects of CIE on global CeA gene
expression. Many top statistical DEGs were cell type- and tissue type-specific. For example,
the top two statistical DEGs, matrix metallopeptidase 14 (Mmp14) and fatty acid binding
protein 7 (Fabp7) are highly enriched in astrocytes. The C-type lectin transmembrane
receptor, Cd93 and the vascular endothelial growth factor receptor 2, Kdr, are markers of
endothelial cells, whereas the proteolipid protein 1, Plp1, is a marker of oligodendrocytes.
We validated RNA-Seq data of two cell type-specific genes using qRT-PCR (Figure 2).
Astrocyte-specific Mmp14 and oligodendrocyte-specific Plp1 genes were shown to be down-
regulated in the CIE group compared to control using both techniques. Future studies will
validate prioritized DEGs at a protein and functional levels.

Brain Sci. 2021, 11, x FOR PEER REVIEW 5 of 16 
 

 
Figure 1. (A) Volcano plot showing differentially expressed genes (DEGs) (in color). Highlighted are the top statistically 
significant DEGs, up-regulated in the CIE group (on the right) and down-regulated in the CIE group (on the left). (B) Heat 
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Figure 2. qRT-PCR validation of two cell type-specific DEGs, Mmp14 (astrocytes) and Plp1 (oli-
godendrocytes), differentially expressed at FDR < 5%. *** p < 0.001; ** p < 0.01 based on Student’s t-
test. 
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Figure 1. (A) Volcano plot showing differentially expressed genes (DEGs) (in color). Highlighted are the top statistically
significant DEGs, up-regulated in the CIE group (on the right) and down-regulated in the CIE group (on the left). (B) Heat
map of DEGs at 5% false discovery rate. Ethanol CIE group (E) and control air group (C). Representative cell and tissue
type-specific genes are shown on the right.
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Figure 2. qRT-PCR validation of two cell type-specific DEGs, Mmp14 (astrocytes) and Plp1 (oligodendrocytes), differentially
expressed at FDR < 5%. *** p < 0.001; ** p < 0.01 based on Student’s t-test.

Over-representation analysis of cell types, functional groups and molecular pathways
revealed biological categories potentially important for the development of alcohol de-
pendence in our model (Table 1, Supplemental Table S2). Genes specific for astrocytes,
myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG
category, suggesting that these cell types were particularly affected by the CIE procedure.
The majority of the over-represented functional groups and molecular pathways were
directly related to the functions of glial and endothelial cells, including extracellular matrix
(ECM), myelination, vasculogenesis, and regulation of innate immune response, pointing
to the importance of non-neuronal cells in responses to chronic alcohol and the develop-
ment of alcohol dependence. The majority of oligodendrocyte-specific and endothelial
genes were down-regulated (all adjusted X2 p < 0.005), while astrocyte- and neuron-specific
DEGs had a tendency to be more up-regulated (Figure 3A). The majority of DEGs from
two highly over-represented functional groups, ECM and myelination, were also down-
regulated (both adjusted X2 p < 0.005, Figure 3B). ECM organization was one of the top
over-represented functional groups and included several metalloproteinases, including
Mmp2, Mmp14, Mmp15, Adam17, Adamts4, which were all down-regulated in the CIE group;
in contrast, Adam8 and a metalloproteinase inhibitor, Reck, were up-regulated (Supple-
mental Table S1). Several known substrates of metalloproteinases were also regulated by
alcohol, including several down-regulated collagen genes (Col1a1, Col1a2, Col3a1, Col4a1,
Col4a2, Col4a5, Col5a3) and myelin basic protein (Mbp). One of the top statistically sig-
nificant DEGs was interleukin 6 receptor (Il6r) (Figure 1B). This receptor is part of the
pro-inflammatory cytokine IL-6 pathway that has been involved in the neuroimmune
response to alcohol and may play a critical role in alcohol dependence [61–63].

The present set of experiments was part of a larger study, with the electrophysiological,
pharmacological and biochemical data published previously [5]. Of note, in this manuscript
we will use the term corticotropin releasing factor (CRF) when referring the neurobiological
actions of the peptide system and the equivalent term, corticotropin releasing hormone
(CRH), as it relates to the gene symbol nomenclature. The Varodayan and colleagues
paper highlights the importance of L-type calcium channels (LTCC) and the CRF system in
mediating the effects of alcohol dependence on CeA gamma aminobutyric acid (GABA)
neuron activity, and its role in the escalated alcohol intake in alcohol-dependent rats. To
uncover molecular determinants of these neurobiological effects we searched for DEGs
related to the LTCC and CRF systems. We found that two different types of LTCC and two
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CRH-related genes were changed in the CIE group, compared to control. Specifically, LTCC
Cacna1f (Cav1.4) was down-regulated, whereas LTCC Cacna1d (Cav1.3) was up-regulated.
In addition, Crh was down-regulated, whereas corticotropin releasing hormone binding
protein, Crhbp, was up-regulated (Supplemental Table S1). An IPA-based gene network
shows literature-based relationships between calcium channels and CRF and GABA sys-
tems (Figure 4). Correlational analysis of DEG expression with previously published sIPSC
frequency values identified 220 statistically significant correlations (nominal p < 0.05) (Sup-
plemental Table S1). In particular, Cacna1f (Cav1.4) was negatively correlated with sIPSC
frequency (which reflects basal CeA GABA release), supporting its potential role in alcohol
dependence.

Table 1. Over-represented cell types and representative biological functional groups and molecular
pathways. For a full list of over-represented functional groups and pathways, see Supplemental
Table S2.

Biological Category # of Genes p Value

Cell type

Myelinating Oligodendrocyte 60 9.20 × 10−12

Endothelial Cells 100 5.40 × 10−7

Astrocyte 46 3.00 × 10−12

Functional Group

Extracellular Matrix (ECM) organization 59 1.57 × 10−6

Ensheathment of neurons 18 1.94 × 10−5

Brain development 33 9.51 × 10−5

Myelination 16 1.09 × 10−4

Leukocyte migration 36 2.82 × 10−4

Regulation of cell adhesion 47 5.28 × 10−4

Regulation of cytokine production 62 5.60 × 10−4

Response to alcohol 40 6.43 × 10−4

Vasculogenesis 14 2.55 × 10−3

Response to oxidative stress 39 2.83 × 10−3

Regulation of innate immune response 34 5.41 × 10−3

Regulation of blood vessel size 11 2.11 × 10−2

Molecular Pathway

NF-kappa B signaling pathway 16 1.09 × 10−2

IL-6 signaling pathway 16 2.90 × 10−2

IL-1 signaling pathway 8 3.01 × 10−2
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over-represented functional groups (B). Individual DEGs are represented by small circles. Median expression of DEGs for
each biological category is shown as a horizontal line within the 50% interquartile range. OPC: oligodendrocyte progenitor
cells; MO: myelinating oligodendrocytes; ECM extracellular matrix.
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differentially expressed between CIE and control animals. Another CRF system-related DEG, Crhbp is not shown (see text
for detail). Green color = down-regulation and red color = up-regulation in the CIE group, compared to control. These
changes serve as molecular correlates of alcohol-induced cellular and behavioral effects mediated by CeA ([5]).

4. Discussion

We identified numerous genes and functional groups regulated in the CeA of alcohol-
dependent rats. Many of these genes are expressed in a cell type-specific manner and
many of the functional groups represent known functions of specific brain cells, providing
a more focused interpretation of the data. The CeA is a key brain region implicated
in the regulation of escalated alcohol drinking in alcohol-dependent subjects [32,64–68].
It is the major output nucleus of the amygdala, and is connected to other parts of the
extended amygdala, as well as other key brain regions involved in the regulation of alcohol
effects. Therefore, transcriptional changes in CeA could significantly influence the activity
of other brain regions [10,13]. The CIE vapor treatment produces a robust escalation of
alcohol consumption [2,7,22,69], a hallmark of alcohol dependence, and we hypothesize
that the identified molecular changes may be mechanistically linked to the CeA-mediated
behavioral effects.

Our dataset is complementary to previous transcriptomic studies focusing on AUD
models [8,22,31,32,35–37,42,52,68,69]. The previous work investigated various brain re-
gions, including the CeA, using different alcohol paradigms, and mainly focused on time
points corresponding to acute and protracted withdrawal from chronic alcohol (1 h to
3 weeks). For example, Repunte-Canonigo and colleagues [53] used a rat model of depen-
dent alcohol self-administration to study transcriptional changes in the CeA and other brain
regions at 3 weeks after the end of alcohol vapor exposure. The study focused on molecular
networks of the glucocorticoid receptor, Nr3c1, and their role in alcohol dependence-
induced drinking, and no cell type-specific analysis was performed. Compared to this and
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other studies, we investigated gene expression at the end of last alcohol vapor session,
when the dependent animals were still intoxicated. We hypothesize that transcriptional
changes at this time point reflect cellular adaptations to long-term alcohol exposure, some
of which may contribute to behavioral phenotypes associated with alcohol dependence,
such as behavioral tolerance, withdrawal severity, and escalated alcohol consumption. In
our study, no behavioral measurements were obtained, and, therefore, no correlations with
gene expression can be measured, a weakness that can be addressed in future experiments.
Such an analysis may hint at which DEGs are causative to alcohol-related behaviors and
which ones are simply compensatory to alcohol effects.

Our cell type-specific approach highlighted the importance of glial and endothelial
cells in chronic alcohol effects on the CeA, as numbers of cell type-specific DEGs were
greater than those expected by chance in astrocytes, oligodendrocytes and endothelial cells.
Interestingly, the Nr3c1 gene differentially expressed in the Repunte-Canonigo et al. study is
enriched in these cell types [59], and, although it was not regulated in our study, this further
highlights the importance of these cell types in alcohol dependence and provides some
validation of our approach. Not surprisingly, biological functions typically associated with
these cell types were also over-represented in the DEG list, including ECM organization,
myelination, leukocyte migration, angiogenesis, vasculogenesis and a number of immune
functions and molecular pathways. Myelin dysfunction has long been implicated in
the effects of alcohol on the brain [70,71] and recent studies have also implicated ECM
reorganization and neuroimmune processes in AUD-related conditions including alcohol
dependence [35,64,72–75]. Microglia, the resident immune cells of the central nervous
system, play an important role in brain normal processes and disease, including AUD.
Recent reports showed that CIE treatment resulted in robust changes in gene expression in
isolated microglia and astrocytes [76] and implicated these cell types in the regulation of
alcohol consumption and development of alcohol dependence in mice [77–79]. Our data
complement these findings by identifying specific molecular processes associated with
glial functions in alcohol dependence in rats.

ECM organization was a top over-represented functional group in our study, with sev-
eral different families of ECM genes being regulated, including matrix metalloproteinases
(MMP), a disintegrin and metalloproteinases (ADAM), ADAM with thrombospondin mo-
tifs (ADAMTS), and collagen factors. Metalloproteinases are capable of digesting ECM
macromolecules and non-ECM molecules, including some membrane proteins, growth
factors, cytokines, collagen and myelin basic protein, all of which are determinants of the
tissue microenvironment [72,80,81]. In the brain, metalloproteinases are critical for tissue
formation, neuronal network remodeling, and blood–brain barrier integrity [72,82,83].
MMPs are Zn+2 dependent endoproteinase that are important for the cleavage of extracel-
lular proteins and inactivation of certain chemokines and cytokines (i.e., cleavage of TNF-α,
glycoproteins, and collagen) [84–86]. MMPs have been linked to several biological func-
tions within the brain such as synaptic plasticity [65,72,87], upregulation in gliomas [88],
chronic inflammatory diseases [89], AUD [72,87], and neuron/CNS repair mechanisms [83].
Similar to MMPs, ADAMs are membrane anchored enzymes that are regulated by Zn+2

and play a similar role to MMPs. Several genes from this family, including Adam8 and
Adam17 were differentially expressed between the groups. A recent study proposed a role
for ADAM8 in cell adhesion during neurodegeneration [90]. There is currently limited
information on the role of Adam8 as it relates to alcohol dependence. A quick literature
search revealed a regulation of this gene in genetic mouse models of high alcohol con-
sumption [35]. Regarding Adam17, a study by Bell and colleagues showed that there was
a five-fold lower expression of Adam17 in the nucleus accumbens of alcohol preferring
(P) rats [48]. Interestingly, in a study of post-mortem brain samples in individuals with
Schizophrenia and bipolar disorder, the levels of TNF-α were negatively correlated with
those of Adam17 [91], suggesting anti-inflammatory properties for this gene. Another ECM
gene, reversion-inducing, cysteine-rich protein with Kazal motifs (Reck) was upregulated
by alcohol. RECK is a glycosylphosphatidylinositol-linked glycoprotein, which inhibits
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MMP-2, MMP-9, and MT1-MMP (MMP-14) [80,92,93]. There is limited information on
the role of RECK in AUD, with the exception that it was differentially expressed in the
postmortem brains of AUD subjects comparted to control [51]. A report by Wang and col-
leagues implicated RECK in the protection of tissue integrity and promotion of functional
recovery in the brain after cerebral ischemia [94], suggesting a possible compensatory
role of Reck upregulation in response to alcohol-induced tissue damage. Gene expression
studies in alcohol mouse models reported ECM as an over-represented functional group.
For example, our recent study showed that a decitabine-induced decrease in voluntary
alcohol consumption in non-dependent C57BL/6J male mice was associated with changes
in several ECM genes in the ventral tegmental area [75]. Some of the genes (e.g., Kdr,
Adam17) overlapped with our current study, while many others were different, suggesting
that alcohol-related changes in ECM genes are, at least in part, specific to species, alcohol
model, or brain region.

Collagens, that can serve as MMP substrate, are ubiquitous proteins that constitute the
main structural element of the ECM, and their main function is participation in cell-to-cell
adhesion. We identified several differentially expressed collagen-producing genes includ-
ing Col4a1, Col4a2, Col1a1, Col3a1, Col4A5, Col15A1, Col5a3, Col1a2, Col6a1, Col19a1, and
Col22a1. It has been shown that Col4a1 mutations may lead to gross morphological changes
to mouse brains as well as neurological inflammation and cortical hemorrhage [95,96].
Col3a1 and Col1a1 are the most abundantly expressed genes in the ECM. One study by
Mouton and colleagues looked at the effects of Col3a1 and Col1a1 in the ECM of cardiac
cells and showed that alcohol decreased the expression ratio of Col3a1 and Col1a1 [97]. This
research group also showed that Lox was attenuated after alcohol administration in cardiac
ECM [86,97]. Additionally, Lox is important for the cross-linking of collagen fibers [86,97].

A coordinated regulation of several ECM metalloproteinases including Mmp2 and
Mmp14, their substrates (e.g., several collagen genes and myelin basic protein, Mbp), and a
metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in
response to chronic alcohol, which may modulate neuronal activity and result in behavioral
changes, such as an escalation of alcohol drinking. This mechanism may link alcohol-
induced demyelination, changes in endothelial cell functions and blood-brain barrier
integrity, leukocyte migration and other immune responses to the action of several ECM
metalloproteinases on their substrates. The majority of metalloproteinases in our study
were down-regulated by alcohol. It is important to note that the direction of changes at
an mRNA level does not necessarily imply the same direction at the protein or functional
levels, as many mRNA changes indicate a compensatory response of a cell to a loss or gain
of function [98–100]. mRNA changes simply implicate a biological process or function, and
additional experiments at a functional level are necessary to define the exact mechanism.

It has been shown that CRF (Crh) and its primary receptor subtype 1, CRF1 (Crhr1)
and more recently the binding protein, Crhbp, are implicated in several alcohol-related
behaviors including, but not limited to, binge [101,102] and chronic alcohol exposure [103].
We have shown that alcohol dependence recruits the CRF system and alcohol consumption
is strongly driven by the CRF1 receptors [4]. Our previous study highlighted the functional
role of CeA CRF1 and L-type calcium channel signaling in the development of alcohol
dependence [5]. Specifically, acute alcohol increased CeA neuronal activity in naive rats by
engaging LTCCs, and intra-CeA LTCC blockade reduced alcohol intake in nondependent
rats. Alcohol dependence disrupted this LTCC-based mechanism and revealed the impor-
tance of the CRF1 pathway in driving escalated alcohol drinking in dependent animals.
Here, we found that Crh, Crhbp and 2 LTCC genes (Cacna1f and Cacna1d) were differentially
expressed between the CIE and control groups, supporting their role in the mechanisms
observed at the cellular and behavioral levels. Although the directionality of transcriptional
regulation does not imply a gain or reduction of function, these four genes are primary
molecular candidates for alcohol-induced CeA-mediated behavioral effects. It is currently
not clearly understood how Crhbp interacts with CRF and CRF1 receptors. However, there
is some evidence of alcohol effecting Crhbp in the VTA [104,105], PFC [106], and CeA [105].



Brain Sci. 2021, 11, 1149 11 of 16

For example, Haass–Koffler and colleagues showed that a selective reduction of Crhbp
expression in the CeA decreases ethanol consumption in ethanol-dependent rats, a result
consistent with an up-regulation of this gene in our ethanol-dependent animals, which are
expected to drink more ethanol after the CIE treatment [105].

5. Conclusions

In summary, we propose a critical role for non-neuronal cells and cellular functions in
the effects of chronic alcohol on the brain and the development of alcohol dependence. The
specific role of metalloproteinases and other ECM molecules in the development of alcohol
dependence remains unclear and warrants further investigation. The glial- and endothelial-
related changes may contribute to changes in neuronal activity, which ultimately leads to
the escalated alcohol intake in alcohol-dependent subjects. The current study nominates
potential targets for developing therapeutics to treat AUD.
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