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Summary. Thirteen monoclonal antibodies (MAbs) to the glycoprotein (G) of 
vesicular stomatitis virus (VSV) serotype Indiana were prepared and examined 
for their effects on various biological activities of VSV, including in vitro in- 
fection, hemagglutination, adsorption to cells, and mediation of cell fusion. 
Competitive binding assays with these MAbs revealed the presence of at least 
seven distinct antigenic determinants (epitopes) on the G protein. In some cases, 
overlappings among epitopes to various degrees were observed as partial in- 
hibition or binding enhancement. The MAbs to all the epitopes but one (epitopes 
1-6) reacted with the denatured G protein in a Western immunoblot analysis. 
Four of the epitopes (epitopes 2, 4, 5, and 7) were involved in neutralization 
and two (epitopes 1 and 2) in hemagglutination inhibition. None of the MAbs 
inhibited the adsorption of radiolabeled VSV to BHK-21 cells; the MAbs to 
epitope 2 slightly enhanced the virus adsorption. All neutralization epitopes 
except epitope 2 (epitopes 4, 5, and 7) were associated with inhibition of VSV- 
mediated cell fusion. These results show a direct spatial relationship between 
the epitopes recognized by the MAbs and functional sites on G protein and 
further insights into the structure and function of G protein. 

Introduction 

Many enveloped viruses including vesicular stomatitis virus (VSV), family Rhab- 
doviridae, genus Vesiculovirus, transfer their nucleocapsids to the cytoplasm of 
host cells by the adsorption and receptor-mediated endocytosis, followed by 
fusion with the endosomal membrane [20, 21]. The glycoprotein (G) of VSV 
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is the sole protein anchored in the viral envelope and plays a critical role in 
this early stage of virus infection. Many biological properties of G protein are 
associated with the virus entry [37], which include adsorption to host cells [3, 
6], hemagglutination (HA) [9, 23], and mediation of in vitro cell-cell fusion 
[7, 38]. The cell-cell fusion occurs only at low pH, which mimics the acidic 
environment of the endosomal lumen [7, 38]. As expected from its central role 
in infection, the G protein also gives rise to and reacts with neutralizing anti- 
bodies [12]. In recent years, much effort has been made to reveal the structure- 
function relationships of the G protein, especially regarding its role in fusion 
[2, 10, 27, 29, 39, 40], but the underlying molecular mechanisms are still poorly 
understood. 

One approach to the structure-function relationship of surface glycoproteins 
of viruses is to analyze for the sites and effects of the monoclonal antibody 
(MAb) binding [4, 13, 31, 33]. Production of MAbs against G proteins of two 
major serotypes of VSV (Indiana and New Jersey) has been reported by two 
research groups [5, 14, 15, 36]. These MAbs have mainly been used to map 
neutralization and non-neutralization epitopes on G protein and to analyze the 
mutat ion leading to antigenic variations of G protein [8, 11, 16-18, 35]. The 
effects of the MAbs specifically reacting with G protein on biological functions 
other than neutralization have not been reported. 

In the present study, we prepared thirteen MAbs specific for seven distinct 
epitopes on G protein of VSV-Indiana and examined for their effects on various 
biological activities of VSV including in vitro infection, HA, adsorption to the 
cells, and mediation of cell-cell fusion. Our findings defined the spatial rela- 
tionship between the epitopes recognized by the MAbs and the functions of G 
protein. 

Materials and methods 

Virus 

The San Juan strain of VSV-Indiana originally provided by Dr. R. R. Wagner, University 
of Virginia, was obtained from Dr. K. Yamamoto, National Institute of Health, Tokyo. 
The virus stock was prepared by infecting BHK-21 cells (Japanese Cancer Research Re- 
sources Bank) at a multiplicity of 0.1 PFU/cell. Virus harvested at 22 h postinfection was 
concentrated by ultrafiltration and ultracentrifugation [22, 25], and purified by sucrose 
density gradient centrifugation [22]. This preparation containing 1.1 mg/ml of viral protein 
(2.3 x 1011PFU/ml) was stored at - 80 °C. The protein content of the preparation was 
determined with BCA protein assay reagent (Pierce Chemical Co., Rockford, IL, U.S.A.) 
with bovine serum albumin (BSA) as a standard. Virus infectivity was determined by 
plaquing on monolayer cultures of BHK-21 cells [41]. 

Isolation of  the G protein and immunization 

The G protein was extracted from the purified virus with 30 mM octyl-13-D-glucopyranoside 
(Sigma Chemical Co., St. Louis, MO, U.S.A.) as described by Petri and Wagner [30]. 
After removal of the nucleocapsids by ultracentrifugation at 150,000 x g, the supernatant 
containing G protein was dialyzed against 10 mM HEPES (pH 7.4) containing 0.15 M NaCI. 
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G protein thus obtained was free from any other virus protein in sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis (SDS-PAGE) stained with Coomassie brilliant blue. 

For immunization, female BALB/c mice were subcutaneously injected twice each with 
25 gg of the purified G protein emulsified in the same quantity of Freund's complete and 
Freund's incomplete adjuvants, respectively. Then, additional two intraperitoneal injections 
with 40 gg of G protein were given. Three days before fusion for hybridoma production, 
the final 40 gg of G protein was injected intravenously. 

Generation of monoclonal antibody-producing hybridomas 

The spleen cells of the immunized mice and SP 2/O-Ag 14, BALB/c mouse non-secretory 
plasmacytoma cells, were fused with polyethylene glycol according to Oi and Herzenberg 
[28] or by the novel VSV-mediated cell fusion method described previously [25, 26]. Media 
preparation and HAT selection of hybridomas were described previously [25]. In 2 weeks, 
the hybridomas were screened for production of anti-G protein antibody by enzyme-linked 
immunosorbent assay (ELISA) with purified G protein as the antigen (see below). The 
positive cultures were cloned several times by the limiting dilution method. The isotypes 
of the specific antibodies were determined with a mouse monoclonal antibody isotyping 
kit (Amersham International, Buckinghamshire, England). 

Preparation and purification of monoclonal antibodies 

Thirteen hybridomas were established and each was over-grown in about 11 of a serum- 
free medium (Iscove's modified Dulbecco's medium, Sigma) containing 1 mg/ml of BSA, 
1 mM sodium pyruvate (Gibco, Grand Island, NY, U.S.A.), 8 ~tg/ml of bovine insulin 
(Sigma), 5 gg/ml of iron-saturated human transferrin (Miles Scientific, Naperville, IL, 
U.S.A.), 50 ~tM 2-mercaptoethanol, 20 gM ethanolamine, 2.5 ~tg/mt of linoleic acid, 2.5 ~tg/ 
ml of oleic acid, 2.5 gg/ml of palmitic acid, and 10 gg/ml of gentamicin. MAb in the culture 
supernatant was precipitated with ammonium sulfate at 40% saturation and the precipitate 
was further purified by high performance liquid chromatography on hydroxyapatite beads 
[42] or by affinity chromatography on protein G-Sepharose (Pharmacia, Uppsala, Sweden). 
The eluate was concentrated to 4 ml by membrane ultrafiltration (30,000 tool. wt. cut-off 
Centriprep; Amicon, Danvers, MA, U.S.A.), and dialyzed against phosphate-buffered saline 
(PBS). The antibody concentration was determined from absorbance at 280 nm with an 
extinction coefficient of 1.4 per mg of protein. For use as negative controls in various 
assays, two MAbs prepared at National Institute of Health were purified by the same 
procedure. One of them was Ig G1 specific for the core antigen of feline immunodeficiency 
virus (unpubl.) and the other was Ig G2a specific for sheep red blood cells (not cross- 
reactive with goose erythrocytes) [25]. 

ELISA 

Production of anti-G protein antibody in hybridoma culture supernatants was examined 
by ELISA. Wells of microtiter plates (Costar 3690; Costar, Cambridge, MA, U.S.A.) were 
coated with the purified G protein (1 gg/ml) in 50mM sodium carbonate buffer (pH9.6) 
for 2h at room temperature. The wells were washed with PBS containing 0.05% (v/v) 
Tween 20 (PBS-Tween) and blocked overnight at 4°C with 0.5% (w/v) gelatin in PBS. 
After washing, each culture supernatant was added to the wells and the plates were incubated 
for t h at room temperature. The antibody bound was detected by incubation for 1 h at 
room temperature with alkaline phosphatase-conjugated goat anti-mouse IgG + M (Tago 
6553; Tago Inc., Burlingame, CA, U.S.A.) diluted 5,000-fold in PBS-Tween. The enzyme 
reaction was started by adding 1 mg/ml of p-nitrophenylphosphate (Wako Pure Cemical 
Ind., Osaka, Japan) in 1% (v/v) diethanolamine (pH 9.8) containing 0.5 mM MgC12. The 
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absorbance at 410 nm was measured with an EIA autoreader (Sanko Junyaku Co., Tokyo, 
Japan). As a positive control, a 2,000-fold dilution of mouse immune serum was used. This 
control usually showed an absorbance of approximately 1.0 after incubation for 20 rain at 
room temperature. The well with absorbance higher than 0.2 was regarded as positive. 

Purified MAbs were titrated by the same ELISA to compare the relative reactivities, 
in which the wells of the plates were coated with VSV virions (2 gg/ml) instead of G protein. 
The relative reactivity was defined as the concentration of MAb needed to attain 50% of 
the absorbance value of the positive control. 

Western blotting 

Purified VSV was separated by SDS-PAGE in 10% polyacrylamide gel under reduced 
conditions. The proteins separated were then blotted onto immobilone membrane (Millipore 
Corp., Bedford, MA, U.S.A.) according to Towbin et al. [34]. The blots were allowed to 
react with culture supernatants of established hybridomas, and specific bands were visualized 
with alkaline phosphatase-conjugated goat anti-mouse IgG + M (Tago 6553) and the BCIP/ 
NBT phosphatase substrate system (Kirkegaard & Perry Lab. Inc., Gaithersburg, MD, 
U.S.A.). 

Biotiny&tion of  MAbs and competitive binding assay 

A 500-gg portion of each purified MAb was mixed with 100gg of biotinyt N-hydroxy- 
succinimide ester (NHS-LC-Biotin, Pierce) in 0.5 ml of 0.1 M sodium bicarbonate (pH 8.4). 
After incubation for 4 h at room temperature, the mixtures were dialyzed extensively against 
PBS at 4 °C; BSA was then added to a final concentration of 5 mg/ml. 

For competitive binding assay, the wells of plates were coated with purified VSV (2 ~tg/ 
ml) and blocked with 5% (w/v) unfatted bovine milk in PBS. Serial 10-fold dilutions of 
unlabeled competitor MAb (2 x 10-1 to 2 x 10 -5 mg/ml) were added to the wells (40 ~tl/ 
well) and the plates were incubated for 3 h at room temperature. Subsequently, 40 gl of 
biotinylated MAb was mixed with competitor MAb. The concentrations of biotinylated 
MAbs were 1 gg/ml for 2B9 and 3B1, 0.5 gg/ml for V20 B12, and 0.25 gg/ml for the other 
MAbs. These concentrations were about half-maximal in their titration curve and were 
within the range where the binding was linear. After incubation overnight at 4 °C, bioti- 
nylated MAb bound was detected with a 5,000-fold dilution of alkaline phosphatase- 
conjugated streptavidin (Bethesda Research Lab., Gaithersburg, MD, U.S.A.). Dilution 
was made in PBS-Tween containing 5% (w/v) unfatted bovine milk. The enzyme reaction 
and absorbance determination were carried out as described above. All assays were per- 
formed in duplicate and the results were expressed as the percentage of binding calculated 
with the formula: 

average ofabsorbance in the presence of competitor 
Binding(%) = x 100 

average ofabsorbance in the absence of competitor 

Neutralization assay 

For the neutralization assay, the stock of VSV was diluted to a final concentration of 
approximately 1,000 PFU/ml with bicarbonate-free Eagle's minimum essential medium 
(MEM, Nissui Pharmachemical Co., Tokyo, Japan) containing 0.2 mg/ml of BSA and 
20 mM HEPES (pH 7.2). The virus was mixed with an equal volume of each of serial 
twofold dilutions of each purified MAb (from 250 gg/ml) in the same medium. The mixtures 
were incubated for 1 h at 37 °C and then plated in duplicate on monolayers of BHK-21 
cells in 6-well culture plates for plaque assay (100 gl/well). The neutralization antibody titer 



Functional epitopes on glycoprotein of VSV 157 

was defined as the reciprocal of the highest dilution reducing more than 50% of the plaques 
of the control without MAb. 

Hemagglutination inhibition assay 

Hemagglutination inhibition (HI) was assayed with 4 or 8 hemagglutinating units of VSV 
in V-bottom microtiter plates as described by Halonen et al. [9], except that goose eryth- 
rocytes were used after the treatment with trypsin (Sigma) at 100 l~g/ml for 30 rain at 37 °C. 
This pretreatment of the erythrocytes enhanced HA, thus increasing the sensitivity of HI 
[19; unpubt, data]. The reciprocal of the highest dilution of purified MAb causing complete 
inhibition of hemagglutination was taken as the HI titer. 

Virus adsorption assay 

For adsorption assays, 35S-labeled VSV was prepared by the addition of 20 ~ Ci/ml of L- 
[35Slmethionine (Amersham) to the infection medium as described by Bailey et al. [1]. The 
radiolabeled virions were concentrated and purified as described for the unlabeled virus. 
The final preparation was free of contaminating labeled materials as judged by SDS-PAGE 
and autoradiography. The final preparation contained 3.4 x 10 l° PFU/ml (1.8 mg/ml viral 
protein) with a specific activity of 1.5 x 104 cpm/~tg. 

The radiolabeled virus absorbed to cells was quantified essentially as described by 
Matlin etal. [21]. BHK-21 cells grown to confluency in 12-well culture plates (about 10 6 

cells/well) were washed twice with the binding medium, bicarbonate-free MEM buffered 
with 20 mM HEPES (pH 7.2) containing 2 mg/ml of BSA, and cooled for 5 rain on ice. The 
radiolabeled purified virus (33,500cpm) was mixed with each purified MAb at various 
concentrations in the binding medium. The mixtures were incubated for 1 h at 37 °C, chilled, 
and then plated in duplicate on the BHK-21 cell (100 gl/well). After incubation for 1 h on 
ice, unbound virus was removed. The cells were washed four times with the binding medium. 
The cells bound with the virus were solubilized in 0.4 ml of Solubable (NEN Research 
Product, Boston, MA, U.S.A.), and its radioactivity was measured with a liquid scintillation 
counter. The average radioactivities bound to the cells in the presence of MAb were expressed 
as the percentage of the radioactivity bound in the absence of MAb. Nonspecific interaction 
of the virus with the ceils and the surface of the plates was minimized by adding BSA to 
the binding medium. The addition of BSA reduced the nonspecific binding of labeled VSV 
to the surface of the plates from 9.3% to less than 1.1% of the input radioactivity. The 
amount of virus used was within the range where the radioactivity bound to cells increased 
proportionally with the amount of the input virus. 

Inhibition of VSV-mediated cell fusion 

The effect of MAbs on VSV-mediated cell fusion was assayed by inhibition of polykaryon 
formation of BHK-21 cells [24, 38]. The cells in 24-well culture plates (about 1.5 x 105 
celts/well) for 18-24 h were washed twice with the ice-cold binding medium (bicarbonate- 
free MEM buffered with 20 mM HEPES, pH 7.2, containing 2 mg/ml of BSA). The purified 
virus (25 gg) in 200 gl of the cold binding medium was applied onto the cells. After incubation 
for 1 h on ice to allow viral adsorption, free virus was removed, and the cells were treated 
on ice for 45 min with 25 ~g/ml of each MAb in 200 ~.1 of the binding medium. After 
removing the MAb solutions, 0.5 ml of prewarmed (37 °C) acidic medium, bicarbonate-free 
MEM buffered with 10 mM MES (pH 5.5), was added for triggering fusion and the plates 
were incubated for 2 min at 37 °C. The medium was replaced with 0.5 ml of the prewarmed 
binding medium and the cells were incubated for an additional hour at 37 °C. After fixation 
with 20% formalin in PBS and staining with hematoxylin, inhibition of polykaryon for- 
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marion was examined under a phase-contrast microscopy. The amount of the virus used 
in this assay was enough to induce fusion in about 80% of the cells. 

Results 

Production and characterization of anti-G protein MAbs 

Two fusion experiments  yielded 13 stable hybr idomas  secreting M A b s  specif- 
ically react ing with G prote in  of  VSV. Their  characterist ics are listed in Table 1. 
Their  relative reactivities varied over a 40-fold range, but  were still within a 
relatively high range compared  with those o f  o ther  M A b s  to different  antigens 
de termined  by us. All the M A b s  except for P2F3 reacted with G protein  in 
Western  blott ing analysis. 

Epitope assignments of MAbs by competitive binding assay 

Compet i t ive  binding E L I S A  was carr ied out  among  these M A b s  to classify the 
epitopes o f  G prote in  recognized by them. Typical  results o f  the competi t ive 
binding assay are shown in Fig. 1, in which the binding o f  biot inylated 1A7 M A b  
to G prote in  was chal lenged by several unlabeled MAbs.  We observed four  
types o f  competi t ion.  In  addi t ion to homologous  M A b  (1A7), P2F9 complete ly  
inhibited the binding. 5C6 partial ly inhibited the binding. 3F4, P2 E11 or P2F3 

Table 1. Characteristics of anti-G protein monoctonal antibodies 

Designation Isotype a Relative reactivity b Western c 
in ELISA (ng/ml) blotting 

Epitope d 

1A7 Ig G1 128 + 1 
P2F9 Ig G1 14 + 1 
V11A2 Ig G1 32 + 2 
V17E8 Ig G1 64 + 2 
2B9 Ig G 2b 391 + 3 a 
3B1 IgG2b 391 + 3 a 
V20B 12 Ig G1 592 + 3 b 
3F4 Ig G1 98 + 4 
5El 1 Ig G1 43 + 4 
5C6 Ig G1 28 + 5 
P2Ell IgG1 195 + 6 
V12B3 Ig G1 43 + 6 
P2F3 Ig G 2a 49 - 7 

a All MAbs had ~: light chain 
b Relative reactivity was defined in ELISA as the MAb concentration needed to attain 

an absorbance of 0.6 when a positive control (immunized mouse serum diluted 2,000-fold) 
had an absorbance value of 1.2 

c Reactivity to G protein in Western blotting analysis 
d Epitopes (antigenic determinants) were identified by competitive binding assay among 

MAbs as described in Table 2 
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Fig .  1. Typical results of the competitive binding assay with biotinylated 1A7 MAb. Each 
competitor antibody at various concentrations was added to VSV-coated wells of ELISA 
microtiter plates followed by the addition of biotinylated 1A7 MAb. The binding percentages 
were estimated from the absorbance at 410nm in the presence of competitor compared 
with that in the absence of competitor. Competitors: • 1A7 (homologous); [] P2Fg; 

• Vll A2; A 2B9; • 3F4; © 5C6; • P2Ell; © P2F3 

did not show any marked effect on the binding. On the other hand, V11 A2 
and 2B9 obviously enhanced the binding. Similar four types of competition 
were observed with other combinations of biotinylated and unlabeled MAbs 
(Table 2). The 13 MAbs were assigned to seven distinct epitopes on G protein 
based on the complete inhibition. When an unlabeled MAb inhibited the binding 
of a biotinylated MAb at 100gg/ml (at least 100-fold excess of biotinylated 
MAbs) to less than 10% and when this inhibition was observed in pair-wise 
assays, both MAbs were considered to share the same (or a closely adjacent) 
epitope. These seven epitopes were designated as Ep 1 to Ep 7. The MAbs to 
the same epitope showed similar patterns of partial inhibition or enhancement 
of binding against MAbs to different epitopes (Table 2). Only MAbs to Ep 3 
were subgrouped into two based on the pattern; MAbs to Ep 3a had no effect 
on the binding of MAbs to Ep 2, whereas MAb to Ep 3b enhanced the binding 
of MAbs to Ep 2. 

Effects of MAbs on the infectivity and hemagglutinating activity of VSV 

The 13 MAbs were assayed for the neutralizing activity by the plaque reduction 
test (Table 3). The MAbs assigned to four (Ep 2, Ep 4, Ep 5 and Ep 7) of the 
seven epitopes had neutralizing activities. The neutralization titers of the MAbs 
to Ep 5 and Ep 7 were about 10-times higher than the others. 

Inhibition of hemagglutination by the MAbs was also examined (Table 3). 
The MAbs assigned to two epitopes (Ep 1 and Ep 2) had higher HI activity 
than the others. Goose erythrocytes used in this experiment were pretreated 
with trypsin to enhance the sensitivity of HI. Untreated erythrocytes gave similar 
results, although higher MAb concentrations were required (data not shown). 
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Table 3. Neutralization and hemagglutination inhibition activities of anti-G protein MAbs 

Epitope MAb Neutralization a H I  b 

4HAU 8HAU 

1 1A7 < 1 128 32 
P2F9 < 1 256 64 

2 V11A2 128 128 16 
V17E8 64 32 8 

3 a 2B9 < 1 8 < 1 
3B1 < 1 8 < 1 

3 b V20B12 < 1 8 2 
4 3F4 64 2 1 

5Ell 128 1 < 1 
5 5C6 2048 4 4 
6 P2EI1 < 1 4 < 1 

V12B3 < 1 8 2 
7 P2F3 1024 16 4 

Titers for neutralization represent the reciprocal of the highest twofold dilution of 
purified MAb (125 gg/ml initial) causing more than 50% reduction in the plaque number 

b Titers for HI represent the reciprocal of the highest twofold dilution of purified MAb 
(250 gg/ml initial) inhibiting HA caused by 4 or 8 HAU of VSV. Control Ig G1 and Ig G2a 
MAbs and the serum-free medium for growing hybridomas showed no HI activity (< 1) 

Effects of MAbs on virus adsorption to cells 

We examined MAbs for the influence on the adsorption of radiolabeled VSV 
to BHK-21 cells. MAbs to Ep 1 and Ep 3 had very little, if any, effects on the 
virus adsorption (Fig. 2 a and c) similar to the control MAbs (Fig. 2 h). MAbs 
to Ep 4, Ep 5, Ep 6 and Ep 7 slightly reduced the virus binding (Fig. 2 d, e, f 
and g). Even at the highest concentration (125 gg/ml), they exerted partial 
inhibition (65-75% of the binding of control). On the other hand, MAbs to 
Ep2 slightly enhanced the VSV adsorption only at certain concentrations 
(Fig. 2 b). In another experiment with a different preparation of radiolabeled 
VSV with a higher specific activity, similar results were obtained: no MAb 
completely inhibited the virus binding and MAbs to Ep 2 enhanced the virus 
binding (data not shown). 

Effects of MAbs on VSV-mediated cell-cell fusion 

We examined MAbs for the effects on VSV-mediated polykaryon formation 
of BHK-21 cells to test whether the MAbs inhibit the fusion induced by VSV. 
Extensive cell fusion was induced by acid treatment of the virus-bound cells 
(Fig. 3 o) but not by the same treatment of  unbound cells (Fig. 3 p). MAbs 
reacting with Ep 4 (Fig. 3 g and h), Ep 5 (Fig. 3 i), and Ep 7 (Fig. 31) completely 
inhibited polykaryocyte formation. The other MAbs (Fig. 3 a-f, j, and k), as 
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Fig.2. Effects of anti-G protein MAbs on adsorption of VSV to BHK-21 cells. Purified 
radiolabeled virions (33,500cpm of VSV corresponding to 2.2 ~tg) were incubated with 
various concentrations of the purified MAbs for 1 h at 37 °C, chilled, and then plated on 
BHK-21 cells in 12-well plates. After exposure of the cells to the virus-MAb mixture for 
1 h on ice, the cells were washed, and the cell-bound radioactivity was measured. The 
average counts of the duplicate wells are expressed in percentage of those in the absence 
of MAb. Approximately 22% of the input radioactivity remained cell-bound in the MAb- 
free control wells. Results with a Ep 1, b Ep 2, e Ep 3, d Ep 4, e Ep 5, f Ep 6, and g Ep 7 

are shown, h Results with monoclonal mouse Ig G1 and Ig G2a used as controls 

well as control  Ig G1 and  Ig G2 a (Fig. 3 m and  n), did not  inhibit  the polykaryo-  
cyte fo rmat ion  at all. 

Discussion 

In this paper,  we prepared  thir teen M A b s  specifically recognizing seven distinct 
epitopes on G protein  of  VSV-Indiana  and  identified the epitopes involved in 
neutral izat ion,  HA,  viral adsorpt ion,  and media t ion  o f  cell fusion by measur ing  
the effects o f  each M A b  on these biological functions.  The results are sum- 
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Fig. 3. Inhibition of VSV-mediated BHK-21 cell fusion with anti-G protein MAbs. Sub- 
confluent monolayers of BHK-21 cells were absorbed with purified VSV at 4 °C, and the 
inoculum was replaced by medium containing each MAb. After incubation on ice for 
45rain, the fusion was triggered by a brief exposure of prewarmed pH 5.5 medium and 
postincubated in pH 7.2 medium at 37 °C for 90 rain before fixation and staining. Photo- 
graphs were then taken with a camera connected to a phase-contrast microscope (original 
magnification: x 100). a 1A7 (Ep 1); b P2F9 (Epl); e Vl lA2 (Ep2); d V17E8 (Ep2); e 
2B9 (Ep 3 a); f V20B12 (Ep 3 b); g 3F4 (Ep 4); h 5El 1 (Ep 4); i 5C6 (Ep 5); j P2E11 (Ep 6); 
k V12B3 (Ep 6); l P2F3 (Ep 7); m Ig G1 (control); n Ig G2a (control); o MAb free; p mock. 

Inhibition of fusion was observed in g, h, i, and 1 

mar ized  in Table  4. O f  the seven epi topes  def ined by M A b s ,  only  Ep  3 and  Ep  6 
were no t  re lated to  any funct ion.  Ep  1 was related to H A ,  bu t  no t  to  any  o ther  
biological  funct ion.  The  o ther  epi topes  (Ep 2, Ep 4, Ep  5, and  Ep 7) were involved  
in neutra l iza t ion.  Ep  2 was related to H A  and  viral a d s o r p t i o n  efficiency, 
whereas  the  o ther  neut ra l iza t ion  epi topes  (Ep 4, Ep  5, and  Ep  7) were related 
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Table 4. Association of each epitope on G protein with different biological activities 

Epitope MAb Neutrali- Hemagglu- Inhibition Inhibition 
zation a tination of virus of cell 

inhibition b adsorption e fusion d 

1 1 A 7  - + - - 

P 2 F 9  - + - - 
2 Vl lA2 + + e - 

V17E8 + + e - 
3 a 2B9 . . . .  

3 B 1 - - - NT e 
3 b V20B 12 . . . .  
4 3F4 + - - + 

5El 1 + - - + 
5 5C6 + + - - + 
6 P2E 11 . . . .  

VI2B3 . . . .  
7 P2F3 + + - - + 

a + +,  +,  and - Neutralization titers of 1> 1,000, >f 50 and > 1, respectively for 
50% reduction of plaques, shown in the third column of Table 3 

b + and - HI titers against 4HAU of >t 32 and ~< 16, respectively, given in the 4th 
column of Table 3 

c _ No inhibition or slight inhibition of adsorption (65-125%); e enhancement of 
adsorption (~> 135%) in the virus binding assay shown in Fig. 2 

d + Inhibition of fusion; - no inhibition 
e Not tested 

to the cell fusion activity. W e  repor ted  here for  the first t ime identif icat ion of  
the G prote in  epi topes associa ted with H A  and fusion activities. 

In the compet i t ive  binding assay, the mu tua l  comple te  compet i t ion  o f  paired 

M A b s  revealed the presence of  at  least seven distinct epi topes on G prote in  of  
VSV-Indiana .  In addit ion,  some topographica l  relat ionships a m o n g  some o f  
these epi topes were suggested by  part ial  inhibit ion or  enhancement  o f  the bind- 
ing o f  M A b s  (Table 2). In part icular ,  associat ion a m o n g  Ep 1, Ep  2, and  Ep  3 
wou ld  be quite possible since the mutua l  binding enhancement  o f  the respective 
M A b s  was observed.  Such enhancement  is p r o b a b l y  due  to an advan tageous  
allosteric al terat ion of  G prote in  after binding with the first M A b ,  thereby 
resulting in increased binding o f  the second M A b .  Similar compet i t ive  binding 
assays with an t i -G prote in  M A b s  were repor ted  by  Volk  etal .  [36] and Le- 
Francois  and  Lyles [14, 15], who  demons t ra t ed  11 and  10 epi topes  on  G prote in  
of  VSV-Indiana ,  respectively. The enhancement  of  binding was found  also by  

LeFranco i s  and  Lyles [14, 15]. 
O f  the seven epi topes identified on G protein,  all bu t  one (Ep 1-6) reacted 

with respective M A b s  even in Wes te rn  b lot  analysis. These are p resumab ly  
linear epi topes not  dependent  on the secondary  structure.  The M A b s  assigned 
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to four epitopes (Ep 2, Ep 4, Ep 5, and Ep 7) had VSV-neutralizing activity, 
although of varying efficiency. Previous reports also demonstrated the same 
number of neutralizing epitopes on G protein of VSV-Indiana [14, 36]. 

MAbs to Ep 1 and Ep 2 showed HI activity. The proximity between these 
HI epitopes were suggested by the competitive binding assay and it is likely 
that these epitopes concurrently form the functional domain for the HA activity. 
These HI epitopes were not always neutralization epitopes and were different 
from the fusion-inhibition epitopes. This indicates that the sites involved in HA 
activity are different from those involved on the other functions. In general, 
viral HA is equivalent to the viral attachment to cells. However, the HI MAbs 
did not inhibit the VSV binding to BHK-21 cells. The little correlation between 
these two activities is likely ascribed to the difference of the target cells and/or 
conditions in these assays. "l;he result of another experiment showed that the 
HI MAbs markedly inhibit the binding of radiolabeled VSV to goose eryth- 
rocytes, in which the binding is measured under the same condition as the HI 
assay (data not shown). 

Attempts to identify the cell-binding domain of G protein were unsuccessful 
in this study. In the binding assay, no MAb completely inhibited the VSV 
adsorption (Fig. 2). MAbs to Ep 4, Ep 5, Ep 6, and Ep 7 at high concentrations 
slightly inhibited VSV adsorption, but such low inhibitory effects were not 
related to the efficient neutralization or HI. The lack of the complete inhibition 
suggests that all neutralizing MAbs prepared in this study block the virus 
infection at a step subsequent to adsorption. On the other hand, a certain 
concentration of MAbs to Ep2, one of the neutralization epitopes, rather 
enhanced VSV adsorption. Although it is difficult to explain the biological 
significance of this enhancing effect, a similar enhancement of the VSV ad- 
sorption by immune serum was reported by Schlegel and Wade [32]. They 
suggested that the VSV-antibody complex binds to a different or an additional 
cell binding site, thus altering the adsorption efficiency. The same explanation 
may be given to the enhancing effect of MAbs to Ep 2. 

In the fusion inhibition assay, MAbs reacting with three epitopes (Ep 4, 
Ep 5, and Ep 7) inhibited the VSV-mediated cell fusion. These epitopes are 
probably located on or close to the fusogenic domain of G protein. Although 
hydrophobic domains involved in fusion have been identified in several viral 
fusion proteins [10, 27], such a domain has not been identified in G protein 
of VSV [27]. A most recent finding that introduction of a glycosylation site 
into residue 117 of G protein resulted in fusion-defective mutant suggests that 
the residues 118 to 136 are involved in the fusion activity [39]. Some of our 
fusion-inhibiting MAbs may recognize these residues and the location of the 
fusion-inhibition epitopes will be required. We found the presence of multiple 
epitopes related to the fusion activity. This suggests that these different regions 
of G protein contribute to the fusion activity in partnership and might explain 
the lack of highly hydrophobic fusion sequence in the G protein of VSV. All 
fusion-inhibiting MAbs had the neutralizing activity. In the VSV infection 
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process, after endocytosis of  the bound  virion, the fusion of  viral envelope with 
the endosomal  membrane  is necessary for the entry of  the nucleocapsids into 
the cytoplasm [20, 21]. Fusion-inhibit ing MAbs  neutralize VSV probably by 
blocking the fusion stage of  the infection process. 

To analyze further the structure-function relationship of  G protein, our 
studies are currently aimed at locating these epitopes on the G protein by testing 
the reactivity of  the MAbs  to G protein fragments expressed in Escherichia coli. 
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