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Abstract
An increase in nutrient levels due to eutrophication has considerable effects on lake 
ecosystems. Cladocerans are intermediate consumers in lake ecosystems; thus, they 
are influenced by both the bottom-up and top-down effects that occur as eutrophi-
cation progresses. The long-term community succession of cladocerans and the ef-
fects cladocerans experience through the various eutrophication stages have rarely 
been investigated from the perspective of the early-stage cladoceran community as-
semblage during lake formation. In our research, long-term cladoceran community 
succession was examined via paleolimnological analysis in the currently eutrophic 
Lake Fukami-ike, Japan. We measured the concentration of total phosphorus and 
phytoplankton pigments and counted cladoceran and other invertebrate subfossils 
in all layers of collected sediment cores, and then assessed changes in the factors 
controlling the cladoceran community over a 354-year period from lake formation to 
the present. The cladoceran community consisted only of benthic taxa at the time of 
lake formation. When rapid eutrophication occurred and phytoplankton increased, 
the benthic community was replaced by a pelagic community. After further eutrophi-
cation, large Daphnia and high-order consumers became established. The statistical 
analysis suggested that bottom-up effects mainly controlled the cladoceran commu-
nity in the lake's early stages, and the importance of top-down effects increased after 
eutrophication occurred. Total phosphorus and phytoplankton pigments had positive 
effects on pelagic Bosmina, leading to the replacement of the benthic cladoceran 
community by the pelagic one. In contrast, the taxa established posteutrophication 
were affected more by predators than by nutrient levels. A decrease in planktivo-
rous fish possibly allowed large Daphnia to establish, and the subsequent increase in 
planktivorous fish reduced the body size of the cladoceran community.
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1  | INTRODUC TION

Community assembly and long-term dynamics are central topics 
in ecology. Most lakes are formed under oligotrophic conditions, 
and eutrophication gradually occurs even without human activity 
(Sakamoto, 1973; USEPA, 2009). Increasing nutrient levels have 
important effects on the succession of lakes and their ecosystems. 
In a lake ecosystem, long-term succession with increasing nutrient 
levels has been researched through long-term observations com-
paring multiple lakes (Vadeboncoeur et al., 2001, 2003) and pa-
leolimnological analysis that reconstruct long-term changes using 
lake sediments and subfossils (Moss, 1979; reviewed in Davidson 
& Jeppesen, 2013). These previous studies mainly focused on the 
changes in lake ecosystems from recent industrial eutrophication, 
which has been rapidly occurred on a global scale from the 1950s 
to 1960s (Schindler, 2006) and has become a major environmental 
problem affecting water systems (Smith & Schindler, 2009; USEPA, 
2009). Eutrophication can cause the dominant primary producers 
to change from submerged plants to pelagic algae, leading to shifts 
in the principal location of primary production from the benthic 
to the pelagic zone (Moss, 1979; Sayer et al., 2010; Vadeboncoeur 
et al., 2001, 2003). In addition, excess nutrients cause changes in 
fish communities, and an increase in total phosphorus (TP) leads to 
an increased relative abundance of planktivorous fish to piscivorous 
fish, resulting in the intensification of predation risk to zooplankton 
(Jeppesen et al., 1997).

Since cladocerans are intermediate consumers in lake food 
webs, they constitute an important group that links primary pro-
ducers with high-order consumers, and the cladoceran community 
is affected by both bottom-up and top-down effects (Carpenter & 
Kitchell, 1993). Some parts of the cladoceran body (e.g., postab-
dominal claw, carapace, and head shield) are composed of chitin, 
and they are well preserved over the long term from one to sev-
eral thousand years (Korhola & Rautio, 2001; Szeroczyńska, 1991). 
Thus, cladoceran community dynamics affected by eutrophication 
were analyzed by the paleolimnological method comparing the lay-
ers of lake sediment before and after eutrophication had occurred 
(e.g., Bennion et al., 2015; Ohtsuki et al., 2015; Taylor et al., 2006 
and more). This paleolimnological analysis and other long-term ob-
servations revealed the following changes in the cladoceran com-
munity caused by eutrophication. First, the cladoceran community 
changed from a benthic to a pelagic community by sensitively re-
sponding to the benthic to pelagic shift in primary production 
(Bennion et al., 2015; Davidson et al., 2011; Jeppesen et al., 2011; 
Taylor et al., 2006). Second, the relative importance of top-down 
effects increased compared with bottom-up effects on the cladoc-
eran community (McQueen et al., 1986) through predation risk from 
planktivorous fish, which increased with eutrophication (Davidson & 
Jeppesen, 2013; Jeppesen et al., 1997). This resulted in the decrease 
in body size of cladocerans (Jeppesen et al., 2001).

Based on these previous studies, we proposed a hypothesis 
about sequence cladoceran community dynamics from the early 
stage of lake formation. In the early stage of lake formation, when 

the nutrient condition is oligotrophic, benthic cladocerans are in-
troduced and form a community. As eutrophication proceeds, this 
benthic community is replaced by a pelagic community. Further in-
creases in nutrient levels release the cladoceran community from 
bottom-up control and allow high-order consumers to become es-
tablished. As a result, the importance of top-down effects on the 
cladoceran community increases significantly.

However, continuous community succession and changes in the 
relative effect of bottom-up and top-down effects from an early 
stage of cladoceran community assembly during a lake formation 
period have rarely been studied; therefore, few previous stud-
ies have tested this hypothesis. Furthermore, only a few previous 
studies have observed the early stage of cladoceran community 
assembly in newly formed lakes (e.g., Allen et al., 2012). This scar-
city is due to difficulties in long-term observations of lake systems. 
Paleolimnology has solved such difficulties by allowing the recon-
struction of past change (Douglas, 2013; Smol, 2010). Prior paleo-
limnological studies that analyzed long-term cladoceran community 
change and related factors can broadly be divided into two types 
based on their observation periods. One major type of study com-
pared cladoceran communities between before and after a marked 
environmental change (e.g., eutrophication: Davidson et al., 2011; 
acidification: Nevalainen, Sarmaja-Korjonen, et al., 2011; industrial 
development: Nevalainen, Luoto, et al., 2011; artificial fish introduc-
tion: Strock et al., 2013; reduction of Ca and introduction of cop-
per sulfate: Korosi & Smol, 2012c). Most of these studies observed 
changes over less than a 100-year period. Second, some studies have 
examined changes over thousands of years. For example, a study ex-
amined the response of a cladoceran community to climate change 
in the Holocene until 4,500 cal BP (Nevalainen et al., 2015); another 
study examined the effects of human activity on a cladoceran com-
munity over more than 10,000 years, dating back to the prehistoric 
period (Szeroczyńska, 1991). However, lakes from which sediment 
core samples including the lake formation period can be taken are 
very rare, and most lakes that preserve high-quality sediment cores 
are ancient. Thus, even those studies investigating changes over 
10,000 years have not analyzed sediments from the lake formation 
period.

Previous studies analyzed cladoceran community formation by 
observing the cladoceran community in a water column for 3 years 
(Louette et al., 2008) and by examining sediment core samples from 
a new artificial lake, which formed only decades ago (e.g., Allen, 
VanDyke, & Cáceres, 2011). However, these studies could not inves-
tigate the long-term changes in the controlling factors of environ-
mental effects due to the short research periods. On the other hand, 
other studies have compared cladoceran communities at several 
time points over a long-term eutrophication process (e.g., Straile & 
Geller, 1998). Such studies can evaluate the cladoceran community 
response to eutrophication but cannot assess changes that occurred 
in the early stage of community formation. In addition, although 
some previous studies have examined the temporal transition from 
bottom-up to top-down effects on cladoceran communities using 
a paleolimnological method, these studies did not examine effects 
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on entire cladoceran communities. For example, Perga et al. (2010) 
examined bottom-up and top-down effects on only Daphnia and 
Bosmina, and Nevalainen et al. (2017) assessed the effects on only 
one functional group of cladoceran.

In this study, we successfully collected lake sediment cores that 
included the lake formation period and analyzed changes within a cla-
doceran community from the early stage of lake formation via paleo-
limnological analysis. Our study site was Lake Fukami-ike in Nagano 
Prefecture, Japan. Lake Fukami-ike is shallow and surrounded by 
mountains (maximum depth: 7.8 m; Yagi et al., 2009) with anoxic 
hypolimnion from April to November (Yagi et al., 1983); thus, there 
is little disturbance from winds and benthos. Varved sediment core 
samples had been collected in prior studies on this lake (Kawakami 
et al., 2004). Varved sediments comprise annual coupled layers 
forming annual lamina, and allowed us to observe high-resolution 
temporal changes (Lamoureux, 2001). Therefore, sediments from 
Lake Fukami-ike allowed us to analyze the high-resolution temporal 
changes from the lake formation period. Thus, in the present study, 
we attempted to reconstruct the continuous succession process of 
a cladoceran community from lake formation to test whether the 
assumed change in bottom-up and top-down effects had occurred.

2  | MATERIAL S AND METHODS

2.1 | Sediment core sampling

Lake Fukami-ike (35°19′N, 137°49′) is located in Anan town, Nagano 
Prefecture, Japan (Figure 1). The lake is naturally formed and cur-
rently eutrophic with a maximum depth of 7.8 m and a surface area 
of 2.2 ha (Yagi et al., 2009). The lake was formed by a landslide 
triggered by an earthquake in 1662 (Table 1, Ueno, 1952), and en-
vironmental archeologists have succeeded in collecting sediment 
core samples that included the layer indicating the 1662 earth-
quake (Yamada et al., unpublished). A total of five lake sediment 
cores were collected from around the center of the lake on 6 and 7 
October 2016 (Figure 1). Two short sediment cores (Figure 2), each 
~35–42 cm long, were collected using a gravity corer (Limnos corer; 
Kansanen et al., 1991) with an internal diameter of 93 mm. Three 
long sediment cores (Figure 2), each ~306–360 cm long, were col-
lected using a Mackereth corer (Mackereth, 1958) with an internal 
diameter of 65 mm. The two short and three long cores were sliced 
at 3-cm and 10-cm intervals, respectively. Then, these sliced sam-
ples were stored at 4°C in the dark. Each sample was mixed well, and 
then, 1 cm3 was measured for the wet weight (WW). Then, 1 cm3 
was dried at 60°C for 48 hr to measure dry weight (DW). The ratio of 
WW to DW was calculated for each sample.

Our sediment core samples were dated (Figure 2) based on their 
correlation with sediment core samples dated via 14C dating and an-
nual lamination counting in previous studies (Ishihara et al., 2003; 
Kawakami et al., 2004) and the sedimentation rate calculated in 
previous studies (Kawakami et al., 2004; Yagi et al., 2009). The 
previously analyzed sediment cores and our working cores were 

correlated using lithological tie points, and the layers that represent 
the different events that were dated in previous studies (Table 1; 
Ishihara et al., 2003; Kawakami et al., 2004). We decided the cor-
relation between long cores and short cores based on the shared 
layers (19 cm of Lim1, 21 cm of Lim2, and 25 cm of Mac2; 23 cm of 
Lim1, 25 cm of Lim2, and 28 cm of Mac2; 37 cm of Lim2 and 45 cm 
of Mac2; Figure 2). The sedimentation rate (cm/year) was calculated 
based on the dates estimated for the sediment layers and the thick-
ness of the sediments between the dated layers. We integrated the 
information from subfossils, nutrients, and fossil pigments of each 
core sample by smoothing (see below).

2.2 | Nutrient and fossil pigment determination

We measured the concentration of total phosphorus (TP) and fos-
sil pigment, chlorophyll a (Chl.a), and its derivative pheophytin-a 
(Pheo.a), in every layer to estimate the nutrient increase process 
and test the bottom-up effects on the cladoceran community. While 
testing the Chl.a, as it might possibly be degraded in the sediment, 
we also measured Pheo.a. Both Chl-a and Pheo.a are commonly 
found in all algal taxa and were preserved in the sediments; there-
fore, we used them as proxies of phytoplankton abundance (Leavitt 
& Hodgson, 2002). The concentration of TP was measured using the 
molybdenum blue method (Murphy & Riley, 1962) after oxidization. 
Briefly, we weighed 0.5 g (WW) of sediment from each layer and 
dissolved it in 10 mL distilled water, then oxidized it with persulfate 
 at 120°C for 60 min. After centrifugation (5 min)728.936 ×g, we 
separated the supernatant and measured absorbance at 880 nm 

F I G U R E  1   Map of Lake Fukami-ike (C, 35°19′N, 137°49′) 
showing the sites from which sediment core samples were taken. 
The lake is located in Nagano Prefecture (b) in central Japan (a). 
Lim1 and Lim2 indicate sites where the sediment core samples were 
taken by a Limnos corer, and Mac1 to Mac3 indicate those taken by 
a Mackereth corer
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to determine the concentration of TP with the calibration curve. 
The concentrations of Chl.a and Pheo.a were measured using the 
Lorenzen method (Lorenzen, 1967). We weighed 0.5 g (WW) of 
sediment from each layer and added 10 ml acetone; then, we mixed 
them in an ultrasonic bath. After leaving the samples for 24 hr at 
room temperature in the dark, we centrifuged them (728.936 ×g, 
10 min). Then, we separated the supernatant and measured absorb-
ance at 750 nm and 665 nm. We measured absorbance in the same 
way after the addition of two drops of 1 N hydrochloric acid. The 
concentration of Chl.a and Pheo.a was then calculated based on 
these absorbances. Concentration fluxes of TP, Chl.a, and Pheo.a 
(μg cm−2 year−1) were calculated from the concentration of TP, Chl.a, 
and Pheo.a (μg g WW−1) according to Kerfoot et al. (1999). We used 
the sum of Chl.a and Pheo.a fluxes as an indicator of phytoplankton 
abundance. As Chl.a flux was high when a peak of TP was observed 
(between period I and period II; Figure 3), the degradation of fossil 
pigments was assumed to be sufficiently negligible to reconstruct 
the long-term changes.

Sediment P concentration may not reflect the P concentration 
in water due to sedimentary P mobility, causing sediment P to mi-
grate to the sediment core surface influenced by redox chemistry 
and dissolved oxygen (Ginn et al., 2012). However, we observed the 
peak of TP not only near the surface but also in the middle of the 
sediment core (Figure 3). In addition, Chl.a + Pheo.a concentration, 
a proxy of phytoplankton abundance, showed similar peaks to TP 
(Figure 3). These peaks indicated that sedimentary TP concentration 
in this study probably exhibits a long-term trend in bioavailable TP, 
even if they do not reflect the absolute concentration of TP in the 
water column.

2.3 | Subfossils

We counted the cladoceran subfossils preserved in each sediment 
layer to examine the structure of the cladoceran community. We 

also counted chironomid subfossils as the major benthic inver-
tebrates. In addition, we counted subfossils of Chaoborus larvae, 
selectively predated by fish, as a proxy for the abundance of plank-
tivorous fish (Palm et al., 2011; Sweetman & Smol, 2006a, 2006b) 
to test top-down effects on cladocerans. The Chaoborus specimens 
found in our samples were likely C. flavicans based on their mor-
phology (Sweetman & Smol, 2006a, 2006b) and previous research 
on the studied lake (Nagano et al., 2014). Although C. flavicans can 
coexist with planktivorous fish as they exhibit diel-vertical migra-
tion as a defensive strategy against fish predation, a previous study 
reported that C. flavicans tended to be more abundant in a fish-less 
lake (Sweetman & Smol, 2006b), suggesting that the abundance of 
C. flavicans could reflect the degree of predation by planktivorous 
fish. Subfossils were counted according to the method of Korhola 
and Rautio (2001). Briefly, 1 g WW of sediment from each layer 
of all core samples was extracted and dissolved in 50 ml distilled 
water. Inorganic particles did not prevent observation, so we did not 
remove them. Then, 1 ml of the 50 ml sample was put into a 1-ml 
Sedwick–Rafter chamber, and subfossils were counted twice (i.e., 
2 ml in total) at a 200× agnification using an Olympus CX41 micro-
scope. We counted and identified first 200 subfossils per layer and 
then confirmed whether other species were present in the rest of 
the 2 ml subsamples. If there were <200, then we counted all sub-
fossils in the 2 ml subsamples. The cladoceran subfossils were identi-
fied with reference to the literature (Korosi & Smol, 2012a, 2012b; 
Sweetman & Smol, 2006a, 2006b; Tanaka & Makita, 2017), as were 
Chaoborus (Sweetman & Smol, 2006a, 2006b; Walker, 2001).

For the cladocerans identified as Daphnia, we further identified 
species based on the morphology of the postabdominal claw. We 
detected two types of postabdominal claws: one with distinct teeth 
and one without pectens. We also found two morphological types 
of ephippia that originated from Daphnia pulex and Daphnia ambigua 
in the same sediment core samples, and we confirmed that ephip-
pia of D. pulex have mitochondrial DNA of D. pulex (Otake in prep). 
Furthermore, previous studies have reported D. pulex and D. ambigua 

TA B L E  1   Events preserved in the sediment core as key layers and historical records of fish introduction to and invasion of Lake 
Fukami-ike

Year Event Fish introduction Reference

1662 Lake formation Ueno (1952), Kawakami 
et al. (2004)

1804 “Ne-no-mansui” flood Matsushima (2000), Kawakami 
et al. (2004)

1850 “Dai-mansui” flood Matsushima (2000), Kawakami 
et al. (2004)

1891 Noubi earthquake Matsushima (2000), Kawakami 
et al. (2004)

1945 Nankai earthquake Matsushima (2000), Kawakami 
et al. (2004)

1960 Hypomesus nipponensis, Carassius sp. and Cyprinus 
carpio were introduced

Tanaka (1992)

~1974 Micropterus salmoides invaded Sakurai and Watanabe (1974)

~2005 Lepomis macrochirus invaded Kawanobe and Hosoe (2008)
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in Lake Fukami-ike (Nagano & Yoshida, 2020; So et al., 2015). Thus, 
we identified the postabdominal claw with distinct teeth as the D. 
pulex and those without pectens as the D. ambigua. If multiple body 
parts of one species were observed (i.e., head shield and carapace 
of Bosmina longirostris), we counted these separately, and then, the 
body part that was observed the most was used. The number of sub-
fossils in each layer was converted to the number per g DW using 
the ratio of WW to DW of the sediment measured separately. Then, 
the flux of sedimented subfossils per year (number cm−2 year−1) was 
calculated as an index of the abundance of each species in each year 
using the sediment mass flux (g DW cm−2 year−1) following Kerfoot 
et al. (1999). For statistical analysis, we used only the species that 
accounted for >1% of the total number of cladocerans in at least 
one layer, as in Korhola (1999). In addition, we calculated the ratio of 
pelagic to benthic species subfossils in each layer to determine the 
succession from a benthic to a pelagic cladoceran community.

We attempted to assess the abundance of cyclopoid copepods 
that were not well preserved in the lake sediments owing to their 
soft carapace using a method based on the ratio of defensive head–
carapace morphology of Bosmina according to Korosi et al. (2013). 
The specimens of Bosmina found in our samples were most likely to 
be identified as B. longirostris based on their morphology and the pre-
vious research on the studied lake (Suda et al., 2016; Tanaka, 1992; 
Ueno, 1952). Bosmina longirostris can exhibit morphological defenses 
against cyclopoid copepods. When cyclopoid copepods are present, 
B. longirostris exhibits long antennules (pellucida-type), but when 
the copepods are absent, the antennules are curved (cornuta-type) 
(Sakamoto et al., 2007). Thus, we can estimate the abundance of co-
pepods from the subfossils of B. longirostris. We counted the subfos-
sils of Bosmina by identifying the antennule, defensive pellucida, or 
nondefensive cornuta types. Then, we calculated the ratio of defen-
sive pellucida-type antennules to the total B. longirostris antennules 

F I G U R E  2   Stratigraphic correlation of sediment core samples 
taken from Lake Fukami-ike

F I G U R E  3   Dynamics of the cladoceran 
community and eutrophication process 
from the lake formation to the present. 
The lines represent the loess smoothed 
change in each species flux (span = 0.2) 
with 95% confidence intervals indicated 
by gray bands. Data points are the flux 
data of each species in each layer. Arrows 
indicate the year when each species 
first appeared in the sample. The far-left 
column shows the periods of cladoceran 
community dynamics determined by 
CONISS. Arrows labeled with a–c indicate 
the timing of fish introduction: artificial 
introduction of Hypomesus nipponensis 
in 1960 (a); introduction of Micropterus 
salmonids in c. 1974 (b); and introduction 
of Lepomis macrochirus in c. 2005 (c). 
[Correction added on 13 January 2021 
after first online publication: In Figure 3, 
D. longispina has been changed to 
D. ambigua in this version.]
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for each layer of three sediment core samples (Lim1, Mac1, and 
Mac2).

Postabdominal claw length (PCL) of Daphnia species reflects 
body size (Hrbáček, 1969), and Daphnia body size decreases as the 
predation pressure from planktivorous fish increases (Jeppesen 
et al., 2002). Thus, PCL increases as predation pressure from plank-
tivorous fish decreases (Amsinck et al., 2005; Perga et al., 2010). The 
PCL of Daphnia community was measured for each layer of two sed-
iment core samples (Lim2 and Mac3) as an index of fish predation 
pressure following Korosi et al. (2011), using photographs taken by a 
digital camera (ARTCAM-130MI) at 200× magnification (n = 1,097).

2.4 | Statistical analysis

Although we used all data from all core samples for the following 
analyses of the cladoceran community and phytoplankton pigment, 
we omitted the samples Lim1 and Lim2, in which a sampling error 
occurred, for the measurement of TP concentration in the follow-
ing analysis of TP. To determine the long-term dynamics of the 
cladoceran community, TP, and phytoplankton pigment concentra-
tion, we smoothed the flux of cladoceran subfossils, TP concentra-
tion, and Chl.a + Pheo.a concentration by LOESS smoothing with 
the qplot and stat_smooth functions of the R package “ggplot2” 
(Wickham, 2016). We then examined the main changes or shifts in 
cladoceran community assemblages and trophic conditions using the 
constrained incremental sum of squares cluster analysis (CONISS, 
Grimm, 1987), with the broken stick model to assess the signifi-
cance of CONISS-delineated zones (Bennett, 1996). We conducted 
CONISS on all cladoceran subfossil data. These analyses were per-
formed with the R packages vegan (Oksanen et al., 2017) and rioja 
(Juggins, 2017).

We used multivariate autoregressive models (MARs) (Ives 
et al., 2003) to evaluate whether changes in the cladoceran com-
munity could be caused by biotic interactions and eutrophication 
associated with changes in TP and phytoplankton pigment concen-
tration. This analysis was performed using the R package MAR1 
(Scheef, 2015). We used the fluxes of seven cladoceran subfossils 
as variables in the MAR model and added the TP and Chl.a + Pheo.a 
fluxes as exogenous covariables to assess the effect of eutrophi-
cation. In addition, to evaluate the effect of shifts in predators, we 
added the Chaoborus subfossil flux as a variable as we had done with 
the cladoceran subfossil fluxes.

First, we prepared the dataset using the “prepare data” function. 
We replaced the data of 0 flux as 1 and then log-transformed all 
data. We standardized all data to have equal means and deviations 
for comparing between taxa. We fitted these data to the MAR model 
(Ives et al., 2003) by generating all possible models and then select-
ing the best-fit model as the one with the lowest Akaike's informa-
tion criteria (AIC). Then, we used bootstrapping (n = 500) on the 
best-fit model to obtain 95% confidence interval (CI) for the coeffi-
cients in the model. Finally, we calculated the conditional R2 for each 
taxon to evaluate the model's ability to predict the temporal changes 

in abundance. Model selection and estimation were performed using 
the “run.mar” function.

In addition, we examined the differences in Daphnia PCL be-
tween the periods using ANOVA and the post hoc comparison with 
the Tukey–Kramer test. All statistical analyses were performed using 
R version 3.5.2 (R Core Team, 2017), and significance was consid-
ered at p < .05.

3  | RESULTS

Constrained clustering analysis CONISS (Grimm, 1987) was carried 
out on all cladoceran data. Seven periods were significantly identi-
fied for the cladoceran community dynamics (Figure 3, Figure S1): 
1662 to early 1880 (period I), 1880 to early 1950 (period II), early 
1950 to early 1980 (period III), early 1980 to early 2000 (period IV), 
early 2000 to mid-2000 (period V), mid-2000 to around 2014 (pe-
riod VI), and around 2014 to 2016 (period VII).

Briefly, the long-term dynamics of the cladoceran community 
suggested by the subfossils were as follows. First, the cladoceran 
community consisted only of benthic species in period I when both 
TP and Chl.a + Pheo.a were low. Then, small pelagic species of 
Bosmina appeared, and the ratio of pelagic taxa to benthic taxa in-
creased in period II when the first peak of TP and Chl.a + Pheo.a. oc-
curred. Then, the large cladocerans Daphnia appeared continuously 
from period V and increased in period VI when Chaoborus, which we 
used as a proxy of planktivorous fish, increased. Most recently, small 
Bosmina increased again in period VII when Chaoborus decreased.

In period I, the flux of cladoceran subfossils was entirely low. 
Benthic cladocerans, Chydorus and Alona, appeared and were 
continuously detected up to the surface of the sediments (i.e., 
2016). In addition, before the cladoceran subfossils appeared, 
benthic chironomid larvae were observed. Until the later part 
of period I, TP flux and Chl.a + Pheo.a flux were low. From the 
end of period I to period II, small pelagic Bosmina appeared and 
increased. At this stage, the ratio of pelagic species to the total 
number of cladocerans began to increase (Figure 3, Figure S2). 
By the end of period II, D. ambigua was periodically but not con-
tinuously detected. Total phosphorus and Chl.a + Pheo.a fluxes 
were high at the beginning of period II but decreased by the end.

From period III to period IV, Bosmina further increased. Even 
though benthic Chydorus and Alona also increased, the proportion 
of pelagic species was still much higher than that of benthic species. 
Large cladocerans, such as the D. pulex and D. ambigua, occurred 
only in some layers in period III and not continuously. At the begin-
ning of period III, the flux of TP and Chl.a + Pheo.a increased again. 
From period IV to period V, the cladoceran community became di-
verse, and D. ambigua, D. pulex, and Ceriodaphnia were continuously 
detected. Large cladocerans, D. ambigua and D. pulex, increased 
whereas small Bosmina decreased during this time. The flux of TP 
and Chl.a + Pheo.a increased and peaked during this time. After that, 
the flux of TP and Chl.a + Pheo.a remained at a high level up to the 
surface of the sediments (i.e., 2016).
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In period VI, the two Daphnia peaked, although they tended to de-
crease at the end of the period. Conversely, small cladocerans, Bosmina 
and Ceriodaphnia, increased toward the end of period VI and period VII. In 
period VII, the large Daphnia continuously decreased (Figure 3, Figure S2).

Chaoborus larvae, an indicator of fish abundance, increased from 
the latter part of period IV to period V and decreased from period VI 
to period VII (Figure 3). This result indicated that planktivorous fish de-
creased from period IV to V and increased from period VI to period VII.

F I G U R E  4   Changes in Bosmina antennule type shown as the 
ratio of pellucida-type individuals to cornuta-type individuals. The 
pellucida-type antennule (dark gray) is a defense trait against cyclopoid 
copepods, whereas the other cornuta type (light gray) is a hooked 
antennule that cannot reduce predation risk from cyclopoid copepods

F I G U R E  5   Changes in Daphnia postabdominal claw 
length (n = 1,097). Each plot shows the average length of the 
postabdominal claw from all Daphnia species in each layer. The bars 
show SE. IV to VII indicate the period of cladoceran community 
dynamics determined by CONISS. “a” and “b” are the results of the 
post hoc multiple comparison with the Tukey–Kramer test among 
CONISS periods (a-b: p < .001)

F I G U R E  6   Bottom-up effects, top-down effects, and effects of interspecies interactions on the cladoceran community based on MAR 
model analysis. The coefficients were tested for significance by 500-step bootstrap analysis (significant in bold). Black arrows indicate 
positive coefficients, and gray arrows represent negative coefficients. Solid arrows indicate significant coefficients, and broken arrows 
indicate nonsignificant coefficients based on a bootstrap analysis
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The ratio of the defended type (i.e., pellucida-type) anten-
nules of B. longirostris, a proxy of copepod community change, also 
showed long-term changes (Figure 4). Cornuta type, which is the 
nondefended type, was more abundant from period II to period IV. 
Conversely, the layers in which the ratio of defended type exceeded 
0.5 began to be detected after period V, although they were also 
observed in period I when the abundance of this species was very 
low (probably due to sampling error associated with low abundance).

Daphnia PCL was significantly different between CONISS peri-
ods based on ANOVA results (p < .001, Figure 5). The post hoc mul-
tiple comparison with the Tukey–Kramer test indicated that there 
were significant differences between periods VI and VII and peri-
ods IV and V (p < .001). In periods VI and VII, the PCL of Daphnia 
was shorter than that in periods IV and V.

The results of MAR indicated the following regarding the fac-
tors affecting the cladoceran community (Figure 6, Table 2). 
Chl.a + Pheo.a flux had a significant positive effect on Bosmina, 
and TP flux had a significant positive effect on both Bosmina and 
Chydorus. Chaoborus larvae positively affected the D. ambigua and D. 
pulex, whereas the negative effect of this predator on Bosmina was 
not significant, indicating that planktivorous fish negatively affected 
large Daphnia and but not small Bosmina.

4  | DISCUSSION

In this study, we revealed the long-term dynamics of the cladoceran 
community from lake formation onward and the change in both bottom-
up and top-down effects on the cladoceran community. These results 
supported the hypothesis based on the previous studies about assem-
bly and dynamics of the cladoceran community and temporal changes 
in controlling mechanisms as nutrient levels increase, including the re-
placement of the benthic with the pelagic community due to eutrophi-
cation (Bennion et al., 2015; Davidson et al., 2011; Jeppesen et al., 2011; 
Taylor et al., 2006) and the increased importance of top-down effects 
with eutrophication (Davidson & Jeppesen, 2013; Jeppesen et al., 1997; 
McQueen et al., 1986). The cladoceran community consisted of ben-
thic species under oligotrophic conditions in the lake formation period, 
which were replaced by pelagic species due to rapid eutrophication. 
These dynamics must be mainly controlled by bottom-up effects. 
Under conditions in which nutrient levels became sufficiently high after 
rapid eutrophication, large Daphnia became established in the later part 
of period IV. In addition, high-order consumers also became established 
at that time. As a result, the cladoceran community was mainly con-
trolled by top-down effects, initially affecting the establishment of large 
Daphnia and latter reducing cladocerans' body size.

4.1 | Bottom-up effects on cladocerans during the 
early periods

In the early stage of lake formation, TP and Chl.a + Pheo.a were low 
(Figure 3—period I), indicating that the lake was oligotrophic. In this 
period, only benthic cladocerans, Chydorus and Alona, were pre-
sent, and the ratio of pelagic to benthic taxa was continuously low 
(Figure 3). In addition, benthic chironomids had already appeared 
(Figure 3). These results suggest that the benthic cladoceran com-
munity dominated under oligotrophic conditions in which the main 
primary producers were not phytoplankton (Bennion et al., 2015; 
Davidson et al., 2011; Jeppesen et al., 2011; Taylor et al., 2006). This 
finding supports the hypothesis that the benthic community first as-
sembled during the early stages of the cladoceran community.

The present study also showed the cladoceran community chang-
ing from a benthic to a pelagic community in response to the phy-
toplankton becoming the dominant primary producer with increasing 
nutrient level (Bennion et al., 2015; Davidson et al., 2011; Jeppesen 
et al., 2011; Taylor et al., 2006). In Lake Fukami-ike, rapid eutrophica-
tion has occurred twice (Figure 3). Fluxes of TP and Chl.a + Pheo.a in-
creased around 1850 and 1950–1960, indicating eutrophication of the 
lake and an increase in phytoplankton. When eutrophication occurred 
around 1850, small pelagic Bosmina appeared and increased, eventu-
ally becoming dominant in the cladoceran community (Figure 3). This 
led to the replacement of the benthic cladoceran community with the 
pelagic community in the transition from period I to period II, which 
was revealed by the CONISS analysis (Figure 3). The first rapid eutro-
phication event could have caused these changes in the cladoceran 
community. The results of the MAR model were consistent with this; 
both the TP and Chl.a + Pheo.a fluxes positively affected Bosmina 
(Figure 6). This result agrees with that of previous studies reporting 
that B. longirostris increased as eutrophication proceeded (Gąsiorowski 
& Szeroczyńska, 2004; Ohtsuki et al., 2015). Furthermore, pelagic 
Bosmina did not have a negative effect on the benthic Chydorus and 
Alona according to the results of the MAR model analysis (Figure 6). 
Therefore, the replacement of the benthic community by the pelagic 
community seen in our study was possibly not due to competitive in-
teractions with benthic species but rather to changes in primary pro-
ducers, which both the pelagic and benthic taxa use.

Previous studies suggesting that the replacement by the pe-
lagic community was due to eutrophication analyzed the change in 
the community before and after industrial eutrophication around 
1950–1970 (Bennion et al., 2015; Davidson et al., 2011; Jeppesen 
et al., 2011; Taylor et al., 2006). In contrast, our study suggested that 
such replacement by the pelagic community occurred during the first 
rapid eutrophication event around 1850 before the second rapid 

TA B L E  2   R2 of the best-fit multivariate autoregressive model for cladoceran community change in Lake Fukami-ike

Response

Bosmina Daphnia ambigua Daphnia pulex Ceriodaphnia Chydorus Alona Camptocercus Chaoborus

R2 0.64 0.91 0.91 0.85 0.90 0.49 0.58 0.58

Note: R2 calculated with the bootstrapped model indicates how well the model predicts changes in density of each species from one step to the next.
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eutrophication event, which was similar to those occurred in lakes 
worldwide (Saijo & Mitamura, 2016; Sakamoto, 1973; Schindler, 2006) 
(Figure 3). The first eutrophication was possibly caused by extensive 
agricultural activity combined with a natural disaster.

The land around Lake Fukami-ike was most likely used as mul-
berry and rice fields in 1850 as shown in the earliest map of the area, 
published in 1908 (Topographic Map 50000 Geospatial Information 
Authority of Japan, 1908). In Anan town, chemical fertilizers have 
been widely used since the 1970s (Record of Anan town Compilation 
Committee, 1987). Before the 1970s, plant ash was used as a fertilizer, 
and thus, many grass fields were maintained to grow material for fertil-
izer, and wild fields were burned to generate ash (Record of Anan town 
Compilation Committee, 1987). These fertilizers may have been used to 
treat the mulberry and rice fields surrounding the lake. In 1850, a severe 
flood, called the “Dai-mansui” flood, occurred around Lake Fukami-ike 
(Matsushima, 2000). The layers representing this event were formed 
by the inflow of sediment from the surrounding area due to heavy rain 
(Figure 2, Kawasaki et al., 2004). Thus, eutrophication could have oc-
curred through the fertilized soil flowing into the lake. Furthermore, 
nutrients accumulated in the lake sediments could be used by phy-
toplankton through biological decomposition (Keatley et al., 2011; 
Schindler, 2006); thus, a single notable influx of nutrients due to the 
flood could have supported phytoplankton growth for some years after 
the flood. Therefore, our study suggests that rapid eutrophication, even 
if not the recent industrial eutrophication event due to the inflow of 
chemical fertilizer and sewage water, can cause the same replacement 
of the benthic cladoceran community by the pelagic community.

When the second rapid eutrophication event occurred around 
1950, pre-established cladocerans: Bosmina, Chydorus, and Alona in-
creased from period III to period IV (Figure 3). Like the replacement 
process, this increase in pre-established cladocerans could have oc-
curred due to eutrophication. The MAR model analysis showed that 
TP positively affected Chydorus and Bosmina (Figure 6). The results 
agree with those of previous studies that showed more abundant 
Chydorus spaericus and B. longirostris with increasing nutrient con-
centration and biological production (Luoto et al., 2008; Nevalainen 
& Luoto, 2013). Increasing nutrient concentration can promote 
zooplankton reproduction by increasing phytoplankton biomass 
(Vanni, 1987). The MAR model supported the effect of increased phy-
toplankton: Chl.a + Pheo.a positively affected Bosmina (Figure 6). In 
contrast, Chl.a + Pheo.a did not positively affect Chydorus (Figure 6). 
Chydorus spaericus can live in pelagic habitats and in littoral or ben-
thic habitats (Fryer, 1968), as this species can associate with algal fila-
ments (Fryer, 1968) and also feed on small phytoplankton (de Eyto & 
Irvine, 2001). Thus, Chydorus may have been influenced by increased 
TP with more production in benthic and pelagic habitats but not by 
Chl.a + Pheo.a, which represented only the pelagic food resources.

4.2 | Top-down effects on cladocerans during the 
later periods

After increases in nutrient levels from two eutrophication events, 
the relative importance of the top-down effects on the cladoceran 

community increased in Lake Fukami-ike. After eutrophication oc-
curred, the cladoceran community diversified from around 2000 and 
became dominated by small species in more recent periods. Daphnia 
and Ceriodaphnia were continuously detected from later in period IV 
and became established since period V. Large Daphnia decreased, and 
small Bosmina and Ceriodaphnia increased during the most recent peri-
ods VI and VII (Figure 3). Since period V, TP, and Chl.a + Pheo.a fluxes 
did not change much (Figure 3), and the MAR model suggested that 
the cladoceran species, which became established in period V, were 
not significantly affected by either TP or Chl.a + Pheo.a (Figure 6). In 
contrast, Chaoborus larvae, a proxy of planktivorous fish abundance 
(Sweetman & Smol, 2006a; Palm et al., 2011), had a significant positive 
effect on the larger D. pulex and D. ambigua, which became established 
in period V (Figure 6). This result suggests that the planktivorous fish 
might have negatively affected Daphnia and that the change in the 
cladoceran community after period V might be relatively influenced 
by top-down effects rather than bottom-up effects.

The change in fish abundance, based on subfossils of Chaoborus 
larvae and the PCL of Daphnia, indicators of planktivorous fish abun-
dance, supported this argument. The abundance of Chaoborus larvae 
and the PCL of Daphnia changed since the 2000s. When Daphnia in-
creased from the end of period IV and period V, Chaoborus larvae also 
increased (Figure 3), and the PCL was longer than in periods VI and 
VII (Figure 5), suggesting that planktivorous fish were less abundant. 
In contrast, when small cladocerans were dominant from period VI to 
period VII, Chaoborus larvae decreased, and the PCL was shorter, sug-
gesting that planktivorous fish were more abundant. These dynamics 
and the MAR model analysis indicated that the reduction in planktivo-
rous fish had a positive effect on Daphnia (Figure 6), facilitating the sus-
tainability of Daphnia populations and causing the diversification of the 
cladoceran community in periods IV and V. In contrast, the body size of 
the cladoceran community decreased because the increase in plank-
tivorous fish reduced the Daphnia population and the small Bosmina 
increased from late in period VI to period VII. Increasing numbers of 
planktivorous fish might have reduced Chaoborus and released small 
cladocerans from predation risk, leading to the dominance of Bosmina. 
Positive effects of planktivorous fish on small Bosmina were also seen 
in the MAR model; Chaoborus larva negatively affected Bosmina, al-
though the effect was not significant (Figure 6). While Chaoborus larvae 
are important predators of juvenile Daphnia (Havel & Dodson, 1984), 
our statistical analysis showed the effect of Chaoborus on Daphnia 
was positive (Figure 6). This suggests that the relative effect of pre-
dation from planktivorous fish on Daphnia could be greater than that 
from Chaoborus. These patterns in cladoceran and fish communities 
observed in Lake Fukami-ike agree with the size-efficiency hypothe-
sis that planktivorous fish selectively prey on large cladocerans such 
as Daphnia, and invertebrate predators such as Chaoborus, and they 
less selectively prey on small cladocerans such as Bosmina (Brooks & 
Dodson, 1965; Miner et al., 2012). Invertebrate predators selectively 
prey on small cladocerans over larger ones (Brooks & Dodson, 1965; 
Leavitt et al., 1994). These results agree with those of previous stud-
ies that reported that both Chaoborus larvae and Daphnia tended to 
appear and increase simultaneously (Kerfoot, 1981; Palm et al., 2011), 
and B. longirostris tended to increase when Chaoborus larvae 
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disappeared (Arcifa et al., 2015; Luoto et al., 2008). In addition, the 
results of an enclosure experiment that introduced Chaoborus larvae 
and planktivorous fish were consistent with these changes (Hanazato 
& Yasuno, 1989).

The fish community dynamics suggested by the Chaoborus larvae 
and the PCL of Daphnia agree with the results of previous studies 
indicating that increases in TP finally lead to a decrease in the rela-
tive abundance of planktivorous fish to piscivorous fish (Jeppesen 
et al., 1997). Historical records of fish invasions and introductions 
from external sources (Table 1) have significant implications for the 
observed changes in the cladoceran community. Hypomesus nippon-
ensis, a planktivorous fish that selectively preys on large zooplankton 
(Chang et al., 2005; Makino et al., 2001), was artificially introduced in 
1960 (Tanaka, 1992). The presence of the piscivorous fish Micropterus 
salmoides was first recorded in 1974, and then, H. nipponensis disap-
peared due to predation by M. salmoides (Shimoina Board of Education, 
2009). In 2005, the omnivorous Lepomis macrochirus, which preys on 
zooplankton (Sakano & Yodo, 2004), was found in the lake (Kawanobe 
& Hosoe, 2008). After that, L. macrochirus increased greatly in abun-
dance between 2005 and 2007 (Kawanobe & Hosoe, 2008) and has 
recently dominated the fish community of the lake (Takei, 2010).

In period III, when H. nipponensis was artificially introduced, D. pulex 
was first detected but immediately disappeared, indicating that it had 
failed to establish a sustainable population (Figure 3). Similarly, D. ambi-
gua was detected in only one layer but not continuously during period 
III (Figure 3). In addition, Chaoborus larvae were found in only a few 
layers from that period (Figure 3). These results indicate high predation 
pressure from planktivorous fish on large zooplankton during period III. 
Then, after the invasion of piscivorous M. salmoides, Chaoborus larvae 
increased from the 1980s, most likely due to the release from H. nip-
ponensis predation. Daphnia were also able to establish a sustainable 
population probably due to the decrease in H. nipponensis following 
M. salmoides predation. The changes in the cladoceran community re-
corded in our study agree with those observed in previous studies that 
reported Daphnia becoming dominant after the introduction of pisciv-
orous fish (Leavitt et al., 1994) and that the dominant taxon switched 
from Daphnia to Bosmina after the increase in planktivorous fish (Perga 
et al., 2010). Overall, our research demonstrated that changes in pred-
ator composition caused by human activity could significantly affect 
cladoceran community dynamics.

In the present study, Daphnia became established under conditions 
in which sufficient nutrients already existed in the lake after the sec-
ond eutrophication (Figure 3). This result suggests that eutrophication 
relieves Daphnia from food limitations and that it could enhance the 
relative importance of top-down effects on Daphnia and the cladoc-
eran community. Increased numbers of Daphnia under high-nutrient 
conditions were observed in some prior studies, including observation 
and mesocosm experiments (e.g., Declerck et al., 2007; George, 2012). 
For example, Straile and Geller (1998) showed that Daphnia biomass 
increased under a change from oligotrophic to mesotrophic status and 
mesotrophic to eutrophic status by comparing Daphnia biomass during 
three periods in Lake Constance: oligotrophic (1920s), mesotrophic 
(1950s–1960s), and eutrophic (1980s–1990s).

In addition, we tried to examine the dynamics of cyclopoid co-
pepods, predators of small zooplankton, based on the changes in 
Bosmina antennule type (Figure 4). During periods VI and VII, when 
small species dominated the cladoceran community, the ratio of de-
fended (i.e., pellucida-type) Bosmina increased (Figure 4). This result 
suggests that cyclopoid copepod might have increased since period 
VI, supporting the argument that high nutrient levels can maintain 
the presence of high-level consumers.

5  | CONCLUSION AND FUTURE STUDIES

We observed the long-term community dynamics of cladocerans 
from the time the lake was formed. Our results suggest that, under 
the early oligotrophic conditions, the cladoceran community con-
sisted of a benthic community, which was replaced by a pelagic com-
munity due to eutrophication. Later, further eutrophication allowed 
high-order consumers to establish, and the cladoceran community 
might have become controlled by top-down effects. In the present 
study, we focused on cladocerans and evaluated phytoplankton 
change based on fossil pigments only. Thus, if we could analyze the 
subfossils of other taxa, including phytoplankton, we would be able 
to reveal the mechanisms underlying the bottom-up and top-down 
effects in more detail. Ishihara et al. (2003) analyzed planktonic dia-
toms in both light-colored laminae and dark-colored laminae to de-
termine whether each laminae couplet represented an annual varve 
in Lake Fukami-ike. However, since this previous study focused only 
on planktonic diatoms, we could not compare the eutrophication 
process indicated by diatoms and our TP and fossil pigment analy-
ses or analyze the relationship between changes in the cladoceran 
and diatom communities in detail. However, Ishihara et al. (2003) 
found that Aulacoseira spp., reported by several studies as replac-
ing and dominating benthic species under eutrophic conditions (e.g., 
Doig, Schiffer, & Liber, 2015), were abundant around 1,890 (Ishihara, 
unpublished), which agrees with our finding that the first rapid eu-
trophication was occurring at that time. Analyzing the relationship 
between cladoceran and other taxa such as phytoplankton and mi-
crobes is a topic for future study. Also, accumulating more paleolim-
nological datasets like those obtained by the present study should 
provide a more general understanding of the community succession 
process and its underlying mechanisms, which would be of much in-
terest to researchers in limnological ecology.
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