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Propensity score methods are increasingly being used to estimate the effects

of treatments and exposures when using observational data. The propensity

score was initially developed for use with binary exposures. The generalized

propensity score (GPS) is an extension of the propensity score for use with

quantitative or continuous exposures (eg, dose or quantity of medication,

income, or years of education). We used Monte Carlo simulations to examine

the performance of different methods of using the GPS to estimate the effect

of continuous exposures on binary outcomes. We examined covariate

adjustment using the GPS and weighting using weights based on the inverse

of the GPS. We examined both the use of ordinary least squares to estimate

the propensity function and the use of the covariate balancing propensity score

algorithm. The use of methods based on the GPS was compared with the use of

G‐computation. All methods resulted in essentially unbiased estimation of the

population dose‐response function. However, GPS‐based weighting tended to

result in estimates that displayed greater variability and had higher mean

squared error when the magnitude of confounding was strong. Of the methods

based on the GPS, covariate adjustment using the GPS tended to result in

estimates with lower variability and mean squared error when the magnitude

of confounding was strong. We illustrate the application of these methods by

estimating the effect of average neighborhood income on the probability of

death within 1 year of hospitalization for an acute myocardial infarction.
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1 | INTRODUCTION

In many observational studies, the treatment or exposure variable may not be binary, but categorical or continuous.
When the exposure is continuous, the objective is the estimation of a dose‐response function, relating the value of the
exposure variable to the mean or expected outcome. In conducting such studies, analysts must account for the confound-
ing that occurs when the distribution of baseline covariates differs between treated and control subjects. Appropriate
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statistical methods must be used to account for this confounding so that valid inferences on treatment effects can be
drawn from observational studies. Statistical methods based on the propensity score are increasingly being used to
reduce or minimize the confounding that occurs in observational studies.1,2

The propensity score was developed by Rosenbaum and Rubin for use with binary or dichotomous treatments or
exposures (eg, active treatment vs control). However, propensity score methods have subsequently been extended to allow
analysts to estimate the effect of continuous or quantitative exposures.3-5 Examples of such quantitative exposures include
dose or quantity of medication used, pack‐years of cigarettes smoked, income, or years of education. The extension of
propensity score methods to quantitative exposures has been referred to as the generalized propensity score (GPS).5,6

The original methods papers that introduced the GPS considered continuous outcomes such as labor earnings,5,6

medical expenditures,4 and birth weight.7 In biomedical research, binary or dichotomous outcomes occur frequently
(eg, death vs survival and presence vs absence of complications after surgery).8 Despite the frequency of binary outcomes
and the increased use of the GPS, there is a paucity of studies examining the performance of the GPS for estimating the
effect of continuous or quantitative exposures on binary outcomes.

The objective of the current study was to examine the performance of different methods when using the GPS to
estimate the effect of continuous or quantitative exposures on binary outcomes. The paper is structured as follows: In
Section 2, we provide notation, a brief background on the GPS, and describe methods for using the GPS to estimate
the effect of continuous exposures on binary outcomes. In Section 3, we use Monte Carlo simulations to evaluate the
performance of these methods. In Section 4, we provide a case study to illustrate estimation of the effect of average neigh-
borhood income on the probability of death within 1 year of hospital admission using a sample of patients hospitalized
with acute myocardial infarction (AMI). Finally, in Section 5, we summarize our findings and place them in the context
of the existing literature.
2 | USING THE GPS WITH BINARY OUTCOMES

In this section, we introduce the GPS. We then describe 2 ways, in which it can be used to estimate the dose‐response
function for a quantitative exposure and binary outcomes.
2.1 | Notation and assumptions

We use the following notation throughout the paper. Let T denote a continuous or quantitative variable denoting the
level of exposure (eg, dose or quantity of a medication), and let X denote a vector of measured baseline covariates.
We work within Rubin's potential outcomes framework for causal inference.9 This assumes the existence of a set of
potential outcomes, Yi(t), for t ∈ Ψ. Yi(t) denotes the outcome of the ith subject if they received exposure T = t, while
Ψ denotes the set of all possible values of the exposure. In the conventional setting with a dichotomous exposure, Ψ =
{0, 1}. When using the GPS with quantitative exposures, Ψ is a subset of the real line (Ψ ⊂ ℜ).

We make the stable unit treatment value assumption, which posits that Yi(t), the response by the ith subject under
exposure T = t, is not affected by how treatment was assigned or by what exposures are received by other subjects.10,11

Finally, we require the weak unconfoundedness assumption: Y(t) ⊥ T ∣ X for all t ∈ Ψ.5
2.2 | The GPS

Using the terminology of Hirano and Imbens, let r(t, x) denote the conditional density of the continuous exposure
variable given the covariates:

r t; xð Þ ¼ f T∣X tjxð Þ: (1)

Then the GPS is R = r (T,X).5 Imai and van Dyk refer to the conditional density function fT|X as the propensity func-
tion.4 The propensity function can be estimated by regressing the quantitative outcome on the set of observed baseline
covariates. In practice, this might be done using ordinary least squares (OLS) regression. When using OLS regression,
one can determine the density function of the conditional distribution of the continuous exposure by using the estimated
regression coefficients and the estimated residual variance. For a given subject, the density function can be evaluated at
the observed value of that subject's exposure. This is the value of the GPS for that subject.
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The GPS is a balancing function: X ⊥ 1{T = t} ∣ r (t,X).5 Thus, the probability that T = t is independent of X. This is
similar to the balancing property of the conventional propensity score for use with binary treatments, which states that
the distribution of observed covariates is the same between treated and control subjects who share the same value of the
propensity score.1

While OLS regression may be the most common method of estimating the propensity function, other methods have
been suggested. Imai and Ratkovic described the covariate balancing propensity score (CBPS) methodology, which
models treatment assignment while optimizing covariate balance.12 Fong et al subsequently extended the CBPS
methodology to quantitative exposures.13 Both Flores et al and Bia et al suggested using that generalized linear models
could be used to estimate the propensity score function.14,15

2.3 | Estimation of the dose‐response function using the GPS

The dose‐response function is defined as μ (t) = E[Yi(t)]. This dose‐response function denotes the average response in the
population (or sample) if all subjects were to receive T = t. By comparing μ(t1) with μ(t2), one can estimate the mean
change in the outcome if all subjects were exposed with T = t2 instead of T = t1. A variety of methods have been proposed
for using the GPS to estimate the dose‐response function.3,5-7,16 We will focus on 2 approaches: covariate adjustment
using the GPS and weighting using the inverse of the GPS. When outcomes are binary, the dose‐response function relates
the value of the continuous or quantitative exposure to the probability of the occurrence of the outcome.

When using covariate adjustment using the GPS, one regresses the occurrence of the binary outcome on the contin-
uous treatment and the estimated GPS using logistic regression.5,6 Based on the fitted regression model, one can then
estimate the probability of the occurrence of the outcome for a given subject if their exposure was set equal to T = t.
By taking the mean of this quantity over the study sample, one can estimate the dose‐response function: μ(t) = E[Yi(t)].

Both Imbens and Robins et al suggested that weights could be derived from the GPS. These weights can then be used

to estimate the dose‐response function.3,7 Weights can be defined as
W Tið Þ
r TijXið Þ, where the numerator is a function of T

that is included to stabilize the weights. It has been suggested that a reasonable choice for W is an estimate of the
marginal density function of T.7 Note that the denominator of a given weight is the value of the density function for
a conditional normal distribution evaluated at the observed exposure level. Subjects with exposure levels closer to the
conditional mean (and thus more “typical”) will have a greater value for the density function and will have a correspond-
ingly lower weight. Conversely, subjects with exposure levels further from the conditional mean (and thus less “typical”)
will have a smaller value for the density function and will have a correspondingly greater weight. Once the GPS‐based
weights have been estimated, a univariate logistic regression can be conducted, in which the occurrence of the outcome
is regressed on the continuous exposure using a weighted regression model that incorporates the GPS‐based weights.
From the fitted outcomes model, the dose‐response function can be estimated by calculating the mean probability of
the occurrence of the outcome across all levels of exposure.

Alternative methods to estimating the dose‐response function have been described recently. Both Flores et al and Bia
et al suggest that kernel methods and penalized spline methods can be used to estimate the dose‐response function.14,15
3 | MONTE CARLO SIMULATIONS OF THE PERFORMANCE OF THE GPS
FOR ESTIMATING THE EFFECT OF CONTINUOUS EXPOSURES ON BINARY
OUTCOMES

We conducted a series of Monte Carlo simulations to examine the performance of different methods of using the GPS to
estimate the effect of continuous exposures on binary outcomes.

3.1 | Methods

3.1.1 | Simulating a large superpopulation

We simulated baseline covariates and a continuous exposure for a large population consisting of 1 000 000 subjects. Ten
baseline covariates (X1 − X10) were simulated for each subject from independent standard normal distributions. For each
subject, a continuous exposure variable was generated from the following linear model:

Ti ¼ 1x1i þ 1:5x2i þ 2x3i þ 3x4i−2x5i−2x6i þ 1x7i þ 1:5x8i þ 2x9i þ 3x10i þ εi; (1)
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where εi~N(0,σ
2). Thus, increasing values of 8 of the baseline variables were associated with an increase in the mean

exposure, while increasing values of 2 of the variables were associated with a decrease in the mean exposure. The value
of σ2 was chosen so that variation in the 10 baseline covariates would explain a desired proportion of the variation in
the continuous exposure (see below). Note that the intercept in the above model is equal to zero. Without loss of gener-
ality, we simulated data so that for a subject whose covariates are all equal to zero, the mean exposure is equal to zero.

We then determined the probability of the occurrence of the binary outcome for each subject using the following
logistic model:

logit pið Þ ¼ log 2ð Þx1i þ log 3ð Þx2i þ log 0:25ð Þx3i þ log 0:33ð Þx4i þ log 0:5ð Þx5i þ log 1:5ð Þx6iþ
log 2ð Þx7i þ log 0:5ð Þx8i þ log 0:5ð Þx9i þ log 2ð Þx10i þ log 1:5ð Þti;

(2)

where pi denotes the probability of the occurrence of the binary outcome. We simulated a binary outcome for each
subject from a Bernoulli distribution with subject‐specific parameter pi: Yi~Be(pij). Thus, increasing values of 5 of the
covariates were associated with an increase in the odds of the occurrence of the outcome, while increasing values of 5
of the covariates were associated with a decrease in the odds of the occurrence of the outcome. Increasing values of
the continuous exposure were associated with an increase in the odds of the occurrence of the outcome. The intercept
in the above model is equal to zero, so that the probability of the occurrence of the outcome is equal to 0.5 for a subject
whose covariates are equal to zero and for whom the exposure is also equal to zero.

We then determined the population dose‐response function at a predetermined number of values of the continuous
exposure variable. We computed the 9 deciles of the population distribution of the continuous exposure. We refer to
these 9 deciles as the 9 exposure thresholds and denote these exposure thresholds by T k, k = 1, …, 9. We then simulated
an outcome for each subject in the large superpopulation if everyone in the superpopulation had their exposure set equal
to the first of the 9 exposure threshold values:

Yk
i eBe pki

� �
;where

logit pki
� � ¼ log 2ð Þx1i þ log 3ð Þx2i þ log 0:25ð Þx3i þ log 0:33ð Þx4i þ log 0:5ð Þx5i þ log 1:5ð Þx6iþ

log 2ð Þx7i þ log 0:5ð Þx8i þ log 0:5ð Þx9i þ log 2ð Þx10i þ log 1:5ð ÞTk

for k ¼ 1;…; 9:

(3)

The difference between Formulas 2 and 3 is that in the latter formula, rather than using the simulated exposure level,
we fix the exposure level at a given exposure threshold. We then determined the probability of the occurrence of the
outcome across the superpopulation. This was computed as the mean of simulated outcome variable when all subjects
had their value of the continuous exposure set equal to the first of the 9 exposure thresholds. This process was repeated
for the other 8 exposure thresholds values. These 9 values will serve as the values of the population dose‐response
function. Thus, we have that

μ Tk
� � ¼ 1

N
∑
N

i¼1
Yk

i ; for k ¼ 1;…; 9: (4)

In our simulations, the population dose‐response function consisted of 9 pairs of numbers. The first member of each
pair consisted of 1 of the 9 deciles of the distribution of the continuous exposure, while the second member of
each pair consisted of the marginal probability of the outcome if all members of the population were to receive that level
of exposure. We note that the true dose‐response function is a function that can be evaluated at all values of a subset of
the real line. However, to evaluate the performance of different methods of using the GPS to estimate the dose‐response
function with binary outcomes, we are required to evaluate the dose‐response function at a finite number of points. This
will permit summarizing performance using bias, variance, and mean squared error (MSE). We elected to evaluate the
dose‐response function at the 9 deciles of the exposure variable, as this permits assessment of performance across a wide
range of plausible values of the exposure.
3.1.2 | Monte Carlo simulations

From the large superpopulation, we drew a random sample of 1000 subjects. In this random sample, we estimated the
propensity function using 2 different methods. First, we used OLS regression to regress the observed continuous
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exposure variable on all 10 measured baseline covariates:

Ti ¼ a0 þ a1x1i þ a2x2i þ a3x3i þ a4x4i þ a5x5i þ a6x6i þ a7x7i þ a8x8i þ a9x9i þ a10x10i þ εi;where εieN 0; σ2
� �

:

The GPS was estimated under the assumption that the conditional distribution of the exposure was normal with
mean equal to the linear predictor and with variance equal to the residual variance of the fitted OLS regression model.
For a given subject, let bαtX denote the mean exposure level on the basis of the above regression model. Similarly, let bσ
denote the estimated standard deviation of the residuals. Then fT ∣ X(t| x) can be estimated by the normal density function

1ffiffiffiffiffiffiffiffiffiffi
2πbσ2p e

−
t−β̂tXð Þ2
2bσ2 .

Second, we used the CBPS method to estimate the propensity function by regressing the observed continuous
exposure variable on all 10 measured baseline covariates. We refer to the 2 different estimates of the GPS as GPS‐OLS
and GPS‐CBPS to indicate the method used to estimate the propensity function.

We then used the 2 methods described above for using the GPS to estimate the dose‐response function for binary
outcomes. When using GPS‐based weights, we used the stabilized weights recommended by Robins et al, in which
the numerator was based on the marginal density of the continuous exposure variable. This density function can be
determined by calculating the mean and the standard deviation of the quantitative exposure variable in the overall

sample (μsample and σsample, respectively). ThenW Tið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

sample

q e
−

Ti−μsampleð Þ2
2σ2

sample .17 Robins et al note that for quantitative

exposures, unstabilized weights (ie, those with W(Ti) = 1) will have infinite variance and should not be used.17 We esti-
mated the dose‐response function at the 9 exposure threshold described above (the 9 deciles of the population distribu-
tion of the continuous exposure).

For comparative purposes, we also examined the performance of G‐computation.18 G‐computation requires that an
outcomes model be fit to the data, in which the outcome is regressed on baseline covariates and the exposure variable.
The fitted regression model is then used to impute or estimate potential outcomes under different treatment conditions.
As such, it assumes that the outcomes regression model has been correctly specified. In each of the random samples, we
did the following:

1. We used logistic regression to regress the occurrence of the binary outcome on the continuous exposure variable and
the 10 baseline covariates:

logit(pi) = b0 + b1x1i + b2x2i + b3x3i + b4x4i + b5x5i + b6x6i + b7x7i + b8x8i + b9x9i + b10x10i + b11ti.

2. We then created 9 pseudosamples that were replicas of the random sample in terms of the 10 baseline covariates.
However, the pseudosamples differed in terms of the continuous exposure. In the first pseudosample, the value of
the continuous exposure for all subjects was set equal to the first threshold value of the continuous exposure that
was computed above. In the second pseudosample, the value of the continuous exposure for all subjects was set
equal to the second threshold value of the continuous exposure that was computed above. Similar modifications
were made in the other 7 pseudosamples.

3. The fitted logistic regression model was then applied to each of these 9 pseudosamples to estimate the predicted
probability of the outcome under a given treatment threshold:
logit pki

� � ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i þ b5x5i þ b6x6i þ b7x7i þ b8x8i þ b9x9i þ b10x10i þ b11Tk:

4. Within each of the 9 pseudosamples, the mean predicted probability of the outcome was then determined:

μ Tk
� � ¼ 1

N
∑
N

i¼1
pki . These were used as estimates of the value of the dose‐response function at the 9 thresholds of

the continuous exposure.

The process of drawing random samples of size 1000 from the superpopulation was conducted 10 000 times. For each
estimation method, we determined the mean dose‐response function across the 10 000 iterations of the simulations. For
each of the 9 exposure thresholds, we determined the standard deviation of the value of the dose‐response function
across the 10 000 iterations of the simulations. Finally, using the true known value of the population dose‐response
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function (determined above), for each of the 9 exposure thresholds, we determined the MSE of the estimated
dose‐response function across the 10 000 iterations of the simulations.

One factor was allowed to vary in the Monte Carlo simulations: the proportion of the variation in the continuous
exposure that was explained by variation in the 10 baseline covariates. We considered 8 values for this R2: 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. We thus constructed 8 different superpopulations. From each superpopulation, we drew
10 000 random samples and conducted the statistical analyses described above. The magnitude of the R2 statistic can
be thought of as a measure of the magnitude of confounding. Higher values of R2 are indicative of a greater correlation
between the continuous exposure variable and a linear combination of the baseline covariates. Thus, we considered
scenarios in which the magnitude of confounding ranges from weak to very strong.

We explored the effect of these different R2 values on the degree of overlap of the distribution of the continuous
exposure between subjects with different covariate patterns. Within each of the superpopulations, we computed the
linear predictor for the continuous exposure for each subject (ie, the linear combination of the 10 baseline covariates).
Subjects were then divided into 5 strata according to the quintiles of the linear predictor. Side‐by‐side boxplots were
used to compare the distribution of the continuous exposure across these 5 strata (Figure 1). In examining Figure 1,
one observes that as the R2 value increases, there is increasingly less overlap between the distribution of the
continuous exposure and the different strata on the basis of the linear predictor. This highlights that by varying R2,
we can examine scenarios with different degrees of overlap in the distribution of the continuous exposure between
different subsets of subjects.

We considered 2 additional sets of scenarios in addition to the primary set of simulations described above. First, we
repeated the above simulations with the size of each simulated dataset being 500 (instead of 1000). Second, we modified
the magnitude of the strength of the covariates on exposure level and on the odds of the binary outcome. In Equation 1,
we doubled each of the regression coefficients, so that each covariate had a stronger effect on the exposure level. We also
doubled each of the odds ratios in Equation 2, so that each covariate had a stronger effect on the odds of the occurrence
of the binary outcome.
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FIGURE 1 Distribution of the continuous exposure across quintiles of the linear predictor (LP)
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4 | RESULTS

4.1.1. | Primary simulations (N = 1000)

The results of the Monte Carlo simulations for the primary set of simulations (N = 1000 and regression coefficients as in
Formulas 1 and 2) are reported in Figures 2–4. Each figure consists of 8 panels. There is one panel for each of the 8
scenarios defined by the proportion of the variation in continuous exposure variable that was explained by variation
in the baseline covariates.

The mean estimated dose‐response function for each method is reported in Figure 2. In each panel, we plotted the
values of the estimated dose‐response function against the values of the population dose‐response function at the 9 expo-
sure thresholds. We have superimposed on each panel a diagonal line with slope 45°. Methods that resulted in unbiased
estimation of the dose‐response function will result in estimates that lie along this diagonal line. In examining Figure 2,
one observes that all methods resulted in essentially unbiased estimation of the population dose‐response function. The
magnitude of confounding (as measured by the R2 statistic) had no discernible effect on the bias of the different methods.
All methods performed well regardless of the magnitude of confounding.

The standard deviations of the estimated values of the dose‐response function are described in Figure 3. Each panel
consists of a dot chart. Each dot chart is composed of 9 horizontal lines, 1 for each of the 9 exposure threshold values. On
each of these horizontal lines are 5 symbols, denoting the standard deviation of the estimated value of the dose‐response
function for the 5 estimation methods: (1) covariate adjustment using the GPS‐OLS, (2) covariate adjustment using the
GPS‐CBPS, (3) weighting using GPS‐OLS‐based weights, (4) weighting using GPS‐CBPS–based weights, and (5) G‐com-
putation. In general, G‐computation resulted in estimates that displayed the least variability. When using covariate
adjustment using the GPS, there was little difference in variability of the estimated effects when OLS regression was used
FIGURE 2 Comparison of estimated dose‐response function with population dose‐response function at the deciles of treatment (N = 1000).

CBPS, covariate balancing propensity score; OLS, ordinary least squares [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


FIGURE 3 Standard deviation of estimated dose‐response function at the deciles of treatment (N = 1000). CBPS, covariate balancing

propensity score; OLS, ordinary least squares [Colour figure can be viewed at wileyonlinelibrary.com]
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compared with when CBPS was used to estimate the propensity function. When the baseline covariates explained a
modest proportion of the variation in the continuous exposure (R2 ≤ 0.3), then there was little difference in the variabil-
ity of the estimated effects between the 2 different weighted estimators (GPS‐OLS weights and GPS‐CBPS weights).
Finally, when the magnitude of confounding was strong (R2 ≥ 0.4), covariate adjustment using the GPS tended to display
less variability than did GPS‐based weighting. Furthermore, when the magnitude of confounding was very strong (R2 ≥
0.6), the method of estimating the propensity function (OLS vs CBPS) had a strong impact on the variation of the esti-
mated effect when weighting was used.

The MSE of the estimated values of the dose‐response function is described in Figure 4. Figure 4 has a similar struc-
ture to Figure 3. In general, G‐computation resulted in estimates with the lowest MSE. Among the GPS‐based methods,
covariate adjustment using the GPS tended to result in estimates with modestly lower MSE than did GPS‐based
weighting. Differences between these 2 approaches were amplified as the magnitude of confounding (as measured using
the R2) increased. In general, covariate adjustment using GPS‐OLS and GPS‐CBPS resulted in estimates with similar
MSE. However, when using GPS‐based weighting, the method of estimating the propensity function had a noticeable
impact on the MSE of the estimated effect. However, results were inconsistent as to which of the 2 estimation methods
resulted in estimates with the lowest MSE.
4.1.2. | Secondary simulations

The results for the secondary simulations are reported in Figures 5–7 for the setting with N = 500. In smaller sample
sizes, the observed results were qualitatively similar to those observed in the primary simulations whose results
were described in detail above. When the magnitude of the effect of the covariates on the level of exposure and on the
odds of the occurrence of the outcome were increased, the results of the simulations were qualitatively similar to those
observed for the primary simulations (data not shown).

http://wileyonlinelibrary.com


FIGURE 4 MSE of estimated dose‐response function at the deciles of treatment (N = 1000). CBPS, covariate balancing propensity score;

MSE, mean squared error; OLS, ordinary least squares [Colour figure can be viewed at wileyonlinelibrary.com]
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5 | CASE STUDY

We provide an empirical example to illustrate the application of the proposed methods to estimate the effect of average
neighborhood income on the probability of death within 1 year of hospitalization for an AMI. In social epidemiology and
health services research, there is often an interest in examining the effect of neighborhood characteristics on patient
outcomes. An example in cardiovascular research is a study examining the effects of neighborhood income on access
to invasive cardiac procedures and mortality after an AMI.19 An example from the endocrinology literature is a study
examining the effect of neighborhood income on mortality in patients with diabetes.20
5.1 | Data and analyses

We used data consisting of 10 007 patients hospitalized with an AMI in Ontario, Canada, between April 1999 and
March 2001. Data on patient characteristics were obtained by retrospective chart review by trained cardiovascular
research nurses. These data were collected as part of the Enhanced Feedback for Effective Cardiac Treatment Study.21

These data were linked to census data from Statistics Canada to determine the average neighborhood income for each
subject (neighborhood was defined using the patient's forward sortation area, which is defined by the first 3 characters
of the patient's postal code) and to the Registered Persons Database to determine the vital status of each subject. Average
neighborhood income was used as the continuous exposure variable in this case study. For the purposes of regression
modeling, average neighborhood income was standardized to have mean zero and unit variance. For the current case
study, we considered the binary outcome denoting whether the subject died within 1 year of hospital admission.

The propensity function was estimated using 2 different methods: first, by regressing standardized average neighbor-
hood income on a set of 34 baseline covariates using a linear regression model estimated using OLS and, second, by using
the CPBS methodology to regress standardized average neighborhood income on a set of 34 baseline covariates. The 34

http://wileyonlinelibrary.com


FIGURE 5 Comparison of estimated dose‐response function with population dose‐response function at the deciles of treatment (N = 500).

CBPS, covariate balancing propensity score; OLS, ordinary least squares [Colour figure can be viewed at wileyonlinelibrary.com]
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baseline covariates included demographic characteristics (age and sex), vital signs on admission (systolic and diastolic
blood pressure, respiratory rate, and heart rate), initial laboratory values (white blood count, hemoglobin, sodium,
glucose, potassium, and creatinine), signs and symptoms on presentation (acute congestive heart failure and cardiogenic
shock), classic cardiac risk factors (family history of heart disease, current smoker, history of hyperlipidemia, and
hypertension), and comorbid conditions (chronic congestive heart failure, diabetes, stroke or transient ischemic attack,
angina, cancer, dementia, previous AMI, asthma, depression, hyperthyroidism, peptic ulcer disease, peripheral vascular
disease, previous coronary revascularization, history of bleeding, renal disease, and aortic stenosis). For both OLS
estimation and CBPS estimation, the effect of each continuous covariate on average neighborhood income was modeled
using restricted cubic splines with 4 knots.22

We computed the 9 deciles of the continuous exposure (average neighborhood income). We then used the methods
described in Section 2, whose performance we evaluated in Section 3, to estimate the dose‐response function at these 9
deciles of average neighborhood income. When using covariate adjustment using the GPS, the occurrence of death
within 1 year of hospital admission was regressed on the GPS and standardized average neighborhood income (this
was done separately for both the GPS with OLS estimation and the GPS with CBPS estimation). Restricted cubic splines
with 4 knots were used to model the relationship of each of these 2 covariates with the log‐odds of death. When using
weighting using GPS‐based weights, truncation was used for the stabilized GPS‐OLS–based weights because of the small
number of subjects with very large weights.23 Truncation was implemented by setting all weights that exceeded the 99th
percentile of the distribution of weights to be equal to the 99th percentile of the distribution of weights. When fitting the
weighted logistic regression in which the occurrence of death within 1 year was regressed on standardized average neigh-
borhood income, restricted cubic splines with 4 knots were used to model the relationship between the log‐odds of death
and standardized average neighborhood income. When using G‐computation, logistic regression was used to regress the
occurrence of death within 1 year on standardized average neighborhood income and the 34 baseline covariates
described above. In this model, the effect of each continuous covariate (including standardized average neighborhood
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FIGURE 6 Standard deviation of estimated dose‐response function at the deciles of treatment (N = 500). CBPS, covariate balancing

propensity score; OLS, ordinary least squares [Colour figure can be viewed at wileyonlinelibrary.com]
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income) was modeled using restricted cubic splines with 4 knots. Code in the R statistical programming language for
conducting these analyses is described in Appendix A.
5.2 | Results

The estimated dose‐response function is described in Figure 8. The figure depicts the estimated dose‐response function
that describes the relationship between average neighborhood income and the probability of death within 1 year of
hospitalization with an AMI. The shape of the dose‐response function was qualitatively similar across the 5 different
estimation methods. The effect of average neighborhood income was more muted when using G‐computation than it
was for the other 4 methods. For each of the dose‐response functions, the probability of death increased initially within
increasing average neighborhood income. It reached a maximum and then began to decrease with increasing average
neighborhood income. When using weighting, there was relatively little difference between the dose‐response functions
obtained using weights obtained using OLS regression and weights obtained using the CBPS. Similarly, there was little
difference between the approaches when using covariate adjustment using the GPS.

When using covariate adjustment using the GPS‐OLS, the difference in the probability of 1‐year mortality between
the lowest and highest values of the dose‐response function was 0.036. When using CBPS to estimate the GPS, the
difference in the probability of 1‐year mortality between the lowest and highest values of the dose‐response function
was 0.038. For weighting using GPS‐OLS–based weights, the corresponding difference was 0.034. When using the
GPS‐CBPS–based weights, the difference was 0.036. For G‐computation, the corresponding difference was 0.022.

The shape of the dose‐response function at lower values of neighborhood income is unexpected, with the probability
of death within 1 year initially increasing with increasing income and then reaching a maximum and subsequently
decreasing with increasing income (although note that the initial increase in the probability of mortality ranged from
0.006 to 0.008). It is possible that the analysis was affected by unmeasured confounding, in that there were unmeasured
characteristics, either at the individual level or at the level of the neighborhood, such that neighborhoods with very low
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FIGURE 7 MSE of estimated dose‐response function at the deciles of treatment (N = 500). CBPS, covariate balancing propensity score;

MSE, mean squared error; OLS, ordinary least squares [Colour figure can be viewed at wileyonlinelibrary.com]
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incomes also had characteristics that were protective for 1‐year mortality. Neighborhood characteristics that would
warrant further exploration would be the location of the neighborhood (rural or urban). Subject characteristics that
would warrant further exploration, but to which we do not have access would be lifestyle characteristics (exercise
and diet) and ethnicity.
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6 | DISCUSSION

In the current study, we evaluated the performance of different methods of using the GPS to estimate the effect of
continuous exposures on binary outcomes. We found that all methods resulted in essentially unbiased estimation
of the underlying dose‐response function. However, the use of a weighted logistic regression using GPS‐based weights
(estimated either using OLS or CBPS) tended to result in estimates that displayed greater variability and that had higher
MSE than did estimates obtained using covariate adjustment using the GPS. This difference was particularly evident
when the baseline covariates explained a high proportion of the variation in the continuous exposure.

As noted in Section 1, the original papers that introduced the GPS considered continuous outcomes such as labor
earnings,5,6 medical expenditures,4 and birth weight.7 In biomedical research, binary or dichotomous outcomes occur
frequently.8 Despite the frequency of binary outcomes in biomedical and epidemiological research and the increased
use of the GPS, there is a paucity of studies examining the performance of the GPS for estimating the effect of continuous
or quantitative exposures on binary outcomes. The current study fills this gap in the existing literature.

In our simulations, we observed that GPS‐based weighting tended to result in estimates that displayed the greatest
variability when the strength of confounding was strong (R2 ≥ 0.4). The reason for this high variability is likely provided
by examining Figure 1. In Figure 1, it was observed that as R2 increased, the degree of overlap in the distribution of
the continuous exposure between subjects with different covariate patterns decreased. We hypothesize that this
may have resulted in some subjects having large weights, resulting in estimates with high variability.

In the current study, we observed that all methods resulted in estimates of the dose‐response function with minimal
bias. G‐computation tended to result in estimates that displayed the lowest variability, particularly when the
magnitude of confounding was strong. This suggests that G‐computation would be an attractive analytic option.
However, G‐computation requires that an outcome model be specified. In practice, it is difficult to ascertain whether
a multivariable outcomes model has been correctly specified. In contrast to this, a variety of balance diagnostics have
been proposed for use with the GPS.5,6,24 These allow one to assess whether incorporating the GPS has allowed one to
balance the distribution of measured baseline covariates between subjects with different values of the continuous
exposure. Thus, from an implementation perspective, the use of GPS‐based methods is appealing.

There are certain limitations to the current study. The primary limitation is that the evaluation of the performance of
different methods of using the GPS to estimate the effect of continuous exposures on binary outcomes was conducted
using Monte Carlo simulations. For pragmatic reasons, we were constrained to examining a limited number of scenarios
in our simulations. It is possible that results would differ under different data‐generating processes. However, the
magnitude of the strength of confounding varied strongly across the 8 scenarios. Thus, we examined scenarios that
were representative of a wide range of plausible scenarios. Furthermore, our use of simulations reflects what is
frequently done to evaluate the performance of propensity score methods when used with dichotomous outcomes.25-37

In summary, the current study represents the first study to examine the performance of different methods of using the
GPS to estimate the effect of continuous or quantitative exposures on binary outcomes. We found that both covariate
adjustment using the GPS and weighting using GPS‐based weights resulted in unbiased estimation of the dose‐response
function. However, weighting with GPS‐based weights tended to result in estimates of the values of the dose‐response
function that displayed greater variability, particularly when the magnitude of confounding was strong.
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APPENDIX A

R CODE FOR THE ANALYSES IN THE CASE STUDY

# This code is provided for illustrative purposes only and
# comes with ABSOLUTELY NO WARRANTY.
# NOTE: This code used CBPS Version 0.9.
# More recent versions of CBPS are available.
# In more recent versions of CBPS the names of different components of the
# fitted CBPS object may have changed. Make sure that the linear predictor (and not the GPS) is used
# where necessary in the code below.

library(rms)
library(CBPS)

postscript("figure.ps",horizontal=T,paper="letter")

dose.response.gps.cov.ols <‐ NULL
dose.response.gps.cov.cbps <‐ NULL
dose.respose.gps.wt.ols <‐ NULL
dose.response.gps.wt.cbps <‐ NULL
dose.response.gcomp <‐ NULL

################################################################################
# Read in data from text file.
################################################################################

ami.df <‐ read.table(“ami.txt”,sep=“\t”,header=T)

attach(ami.df)
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income.threshold <‐ quantile(average.income,probs=(1:9)/10)
# The nine deciles of average income at which we will evaluate the
# dose-response function.

income.scaled <‐ (average.income ‐ mean(average.income))/sd(average.income)
# Transform income to have mean zero and standard deviation one.
income.scaled.threshold <‐ quantile(income.scaled,probs=(1:9)/10)

detach(ami.df)

ami.df$income.scaled <‐ income.scaled

remove(income.scaled)

################################################################################
# GPS-OLS
# Estimate the propensity function using restricted cubic splines.
################################################################################

gps.model.ols <‐ lm(income.scaled ~ rcs(age,4) + rcs(systbp,4) +
rcs(diastbp,4) + rcs(hrtrate,4) + rcs(resp,4) + rcs(glucose,4) +
rcs(wbc,4) + rcs(hgb,4) + rcs(sodium,4) + rcs(potasium,4) +
rcs(creatin,4) + female + acutechf + shock +
diabetes + smoker + cvatia + hyperlip + highbp + famhx + angina + cancer +
dement + prevmi + asthma + depres + hyperthy + ulcer + pvd + prevrevasc +
bleed + chf + renal + stenosis,data=ami.df)

gps.ols <‐ dnorm(ami.df$income.scaled,mean=gps.model.ols$fitted,
sd=summary(gps.model.ols)$sigma)

ps.num <‐ dnorm((ami.df$income.scaled ‐ mean(ami.df$income.scaled))/
sd(ami.df$income.scaled),0,1)

# Numerator for stabilized weights.

gps.wt.ols <‐ ps.num/gps.ols
# Stabilized weight

gps.wt.ols.truncate <‐ ifelse(gps.wt.ols >quantile(gps.wt.ols,probs=0.99),
quantile(gps.wt.ols,probs=0.99),gps.wt.ols)

ami.df$gps.ols <‐ gps.ols
ami.df$gps.wt.ols <‐ gps.wt.ols
ami.df$gps.wt.ols.truncate <‐ gps.wt.ols.truncate

remove(ps.num,gps.ols,gps.wt.ols,gps.wt.ols.truncate)

################################################################################
# Use CBPS to estimate the PS and the weights
################################################################################

gps.model.cbps <‐ CBPS(income.scaled ~ rcs(age,4) + rcs(systbp,4) +
rcs(diastbp,4) + rcs(hrtrate,4) + rcs(resp,4) + rcs(glucose,4) +



1890 AUSTIN
rcs(wbc,4) + rcs(hgb,4) + rcs(sodium,4) + rcs(potasium,4) +
rcs(creatin,4) + female + acutechf + shock + diabetes + smoker +
cvatia + hyperlip + highbp + famhx + angina + cancer +
dement + prevmi + asthma + depres + hyperthy + ulcer + pvd + prevrevasc +
bleed + chf + renal + stenosis,data=ami.df)

ami.df$gps.cbps <‐ dnorm(ami.df$income.scaled,
mean=gps.model.cbps$fitted.values,sd=sqrt(gps.model.cbps$sigmasq))

ami.df$gps.wt.cbps <‐ gps.model.cbps$weights

################################################################################
# Model the outcome relationship with the GPS and the continuous treatment.
# GPS - OLS
# We use restricted cubic splines to model the relationship between both
# the continuous exposure and the GPS with the odds of the outcome.
################################################################################

glm1 <‐ lrm(death.1yr ~ rcs(income.scaled,4) + rcs(gps.ols,4),data=ami.df)

################################################################################
# Estimate the GPS at the 9 thresholds of the continuous treatment.
################################################################################

mean.pf <‐ gps.model.ols$fitted
# Linear predictor from the propensity function

s.pf <‐ summary(gps.model.ols)$sigma
# Standard deviation of the error distribution for the propensity function.

gps.Z1 <‐ dnorm(income.scaled.threshold[1],mean=mean.pf,sd=s.pf)
gps.Z2 <‐ dnorm(income.scaled.threshold[2],mean=mean.pf,sd=s.pf)
gps.Z3 <‐ dnorm(income.scaled.threshold[3],mean=mean.pf,sd=s.pf)
gps.Z4 <‐ dnorm(income.scaled.threshold[4],mean=mean.pf,sd=s.pf)
gps.Z5 <‐ dnorm(income.scaled.threshold[5],mean=mean.pf,sd=s.pf)
gps.Z6 <‐ dnorm(income.scaled.threshold[6],mean=mean.pf,sd=s.pf)
gps.Z7 <‐ dnorm(income.scaled.threshold[7],mean=mean.pf,sd=s.pf)
gps.Z8 <‐ dnorm(income.scaled.threshold[8],mean=mean.pf,sd=s.pf)
gps.Z9 <‐ dnorm(income.scaled.threshold[9],mean=mean.pf,sd=s.pf)

################################################################################
# Create data frames for the above values.
################################################################################

T1.dat <‐ data.frame(cbind(income.scaled.threshold[1],gps.Z1))
T2.dat <‐ data.frame(cbind(income.scaled.threshold[2],gps.Z2))
T3.dat <‐ data.frame(cbind(income.scaled.threshold[3],gps.Z3))
T4.dat <‐ data.frame(cbind(income.scaled.threshold[4],gps.Z4))
T5.dat <‐ data.frame(cbind(income.scaled.threshold[5],gps.Z5))
T6.dat <‐ data.frame(cbind(income.scaled.threshold[6],gps.Z6))
T7.dat <‐ data.frame(cbind(income.scaled.threshold[7],gps.Z7))
T8.dat <‐ data.frame(cbind(income.scaled.threshold[8],gps.Z8))
T9.dat <‐ data.frame(cbind(income.scaled.threshold[9],gps.Z9))
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colnames(T1.dat) <‐ c(“income.scaled“,”gps.ols”)
colnames(T2.dat) <‐ c(“income.scaled“,”gps.ols”)
colnames(T3.dat) <‐ c(“income.scaled“,”gps.ols”)
colnames(T4.dat) <‐ c(“income.scaled“,”gps.ols”)
colnames(T5.dat) <‐ c(“income.scaled“,”gps.ols”)
colnames(T6.dat) <‐ c(“income.scaled“,”gps.ols”)
colnames(T7.dat) <‐ c(“income.scaled“,”gps.ols”)
colnames(T8.dat) <‐ c(“income.scaled“,”gps.ols”)
colnames(T9.dat) <‐ c(“income.scaled“,”gps.ols”)

################################################################################
# Estimate the mean outcome at each of the Z values determined above.
# The Dose-Response Function.
################################################################################

LP1 <‐ predict(glm1,newdata=T1.dat,type=“lp”)
LP2 <‐ predict(glm1,newdata=T2.dat,type=“lp”)
LP3 <‐ predict(glm1,newdata=T3.dat,type=“lp”)
LP4 <‐ predict(glm1,newdata=T4.dat,type=“lp”)
LP5 <‐ predict(glm1,newdata=T5.dat,type=“lp”)
LP6 <‐ predict(glm1,newdata=T6.dat,type=“lp”)
LP7 <‐ predict(glm1,newdata=T7.dat,type=“lp”)
LP8 <‐ predict(glm1,newdata=T8.dat,type=“lp”)
LP9 <‐ predict(glm1,newdata=T9.dat,type=“lp”)

Y1 <‐ mean(exp(LP1)/(1+exp(LP1)))
Y2 <‐ mean(exp(LP2)/(1+exp(LP2)))
Y3 <‐ mean(exp(LP3)/(1+exp(LP3)))
Y4 <‐ mean(exp(LP4)/(1+exp(LP4)))
Y5 <‐ mean(exp(LP5)/(1+exp(LP5)))
Y6 <‐ mean(exp(LP6)/(1+exp(LP6)))
Y7 <‐ mean(exp(LP7)/(1+exp(LP7)))
Y8 <‐ mean(exp(LP8)/(1+exp(LP8)))
Y9 <‐ mean(exp(LP9)/(1+exp(LP9)))

dose.response.gps.cov.ols <‐ c(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9)

################################################################################
# Model the outcome relationship with the GPS and the continuous treatment.
# GPS - CBPS
################################################################################

glm1 <‐ lrm(death.1yr ~ rcs(income.scaled,4) + rcs(gps.cbps,4),data=ami.df)

################################################################################
# Estimate the GPS at the 9 thresholds of the continuous treatment.
################################################################################

mean.cbps <‐ gps.model.cbps$fitted.values
# Linear predictor from propensity function estimated using CBPS
sd.cbps <‐ sqrt(gps.model.cbps$sigmasq)
# Standard deviation of the error distribution
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gps.Z1 <‐ dnorm(income.scaled.threshold[1],mean=mean.cbps,sd=sd.cbps)
gps.Z2 <‐ dnorm(income.scaled.threshold[2],mean=mean.cbps,sd=sd.cbps)
gps.Z3 <‐ dnorm(income.scaled.threshold[3],mean=mean.cbps,sd=sd.cbps)
gps.Z4 <‐ dnorm(income.scaled.threshold[4],mean=mean.cbps,sd=sd.cbps)
gps.Z5 <‐ dnorm(income.scaled.threshold[5],mean=mean.cbps,sd=sd.cbps)
gps.Z6 <‐ dnorm(income.scaled.threshold[6],mean=mean.cbps,sd=sd.cbps)
gps.Z7 <‐ dnorm(income.scaled.threshold[7],mean=mean.cbps,sd=sd.cbps)
gps.Z8 <‐ dnorm(income.scaled.threshold[8],mean=mean.cbps,sd=sd.cbps)
gps.Z9 <‐ dnorm(income.scaled.threshold[9],mean=mean.cbps,sd=sd.cbps)

################################################################################
# Create data frames for the above values.
################################################################################

T1.dat <‐ data.frame(cbind(income.scaled.threshold[1],gps.Z1))
T2.dat <‐ data.frame(cbind(income.scaled.threshold[2],gps.Z2))
T3.dat <‐ data.frame(cbind(income.scaled.threshold[3],gps.Z3))
T4.dat <‐ data.frame(cbind(income.scaled.threshold[4],gps.Z4))
T5.dat <‐ data.frame(cbind(income.scaled.threshold[5],gps.Z5))
T6.dat <‐ data.frame(cbind(income.scaled.threshold[6],gps.Z6))
T7.dat <‐ data.frame(cbind(income.scaled.threshold[7],gps.Z7))
T8.dat <‐ data.frame(cbind(income.scaled.threshold[8],gps.Z8))
T9.dat <‐ data.frame(cbind(income.scaled.threshold[9],gps.Z9))

colnames(T1.dat) <‐ c(“income.scaled”,“gps.cbps”)
colnames(T2.dat) <‐ c(“income.scaled”,“gps.cbps”)
colnames(T3.dat) <‐ c(“income.scaled”,“gps.cbps”)
colnames(T4.dat) <‐ c(“income.scaled”,“gps.cbps”)
colnames(T5.dat) <‐ c(“income.scaled”,“gps.cbps”)
colnames(T6.dat) <‐ c(“income.scaled”,“gps.cbps”)
colnames(T7.dat) <‐ c(“income.scaled”,“gps.cbps”)
colnames(T8.dat) <‐ c(“income.scaled”,“gps.cbps”)
colnames(T9.dat) <‐ c(“income.scaled”,“gps.cbps”)

################################################################################
# Estimate the mean outcome at each of the Z values determined above.
# The Dose-Response Function.
################################################################################

LP1 <‐ predict(glm1,newdata=T1.dat,type=“lp”)
LP2 <‐ predict(glm1,newdata=T2.dat,type=“lp”)
LP3 <‐ predict(glm1,newdata=T3.dat,type=“lp”)
LP4 <‐ predict(glm1,newdata=T4.dat,type=“lp”)
LP5 <‐ predict(glm1,newdata=T5.dat,type=“lp”)
LP6 <‐ predict(glm1,newdata=T6.dat,type=“lp”)
LP7 <‐ predict(glm1,newdata=T7.dat,type=“lp”)
LP8 <‐ predict(glm1,newdata=T8.dat,type=“lp”)
LP9 <‐ predict(glm1,newdata=T9.dat,type=“lp”)

Y1 <‐ mean(exp(LP1)/(1+exp(LP1)))
Y2 <‐ mean(exp(LP2)/(1+exp(LP2)))
Y3 <‐ mean(exp(LP3)/(1+exp(LP3)))
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Y4 <‐ mean(exp(LP4)/(1+exp(LP4)))
Y5 <‐ mean(exp(LP5)/(1+exp(LP5)))
Y6 <‐ mean(exp(LP6)/(1+exp(LP6)))
Y7 <‐ mean(exp(LP7)/(1+exp(LP7)))
Y8 <‐ mean(exp(LP8)/(1+exp(LP8)))
Y9 <‐ mean(exp(LP9)/(1+exp(LP9)))

dose.response.gps.cov.cbps <‐ c(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9)

################################################################################
# Weighting using the GPS
################################################################################

################################################################################
# Fit a marginal model that regresses the outcome on the continuous treatment.
# Incorporate the GPS weights.
################################################################################

dose.df <‐ data.frame(income.scaled.threshold)
names(dose.df) <‐ “income.scaled”

# GPS-OLS weights.
glm.wt <‐ lrm(death.1yr ~ rcs(income.scaled,4),weights=gps.wt.ols.truncate,
data=ami.df)

LP <‐ predict(glm.wt,dose.df,type=“lp”)
dose.response.gps.wt.ols <‐ exp(LP)/(1 + exp(LP))

# GPS-CBPS weights
glm.wt.cbps <‐ lrm(death.1yr ~ rcs(income.scaled,4),
weights=gps.wt.cbps,data=ami.df)

LP <‐ predict(glm.wt.cbps,dose.df,type=“lp”)
dose.response.gps.wt.cbps <‐ exp(LP)/(1 + exp(LP))

################################################################################
# Use direct covariate adjustment to estimate the dose-response function.
# This uses G-computation to estimate the dose-response function.
################################################################################

glm.full
rcs(diastbp,4) + rcs(hrtrate,4) + rcs(resp,4) + rcs(glucose,4) + rcs(wbc,4) +
rcs(hgb,4) + rcs(sodium,4) + rcs(potasium,4) + rcs(creatin,4) + female +
acutechf + shock + diabetes + smoker + cvatia + hyperlip + highbp + famhx +
angina + cancer + dement + prevmi + asthma + depres + hyperthy + ulcer +
pvd + prevrevasc + bleed + chf + renal + stenosis,data=ami.df)

# Create pseudo samples in which the value of the exposure variable is
# set to one of the pre-defined threshold values.
for (i in 1:9){
pseudo.sample <‐ subset(ami.df,select=c(income.scaled,age,systbp,
diastbp, hrtrate,resp,glucose,wbc,hgb,sodium,potasium,creatin,
female,acutechf,shock,diabetes,smoker,cvatia,hyperlip,highbp,famhx,
angina,cancer,dement,prevmi,asthma,depres,hyperthy,ulcer,pvd,
prevrevasc,bleed,chf,renal,stenosis))
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pseudo.sample$income.scaled <‐ rep(income.scaled.threshold[i],
length=nrow(pseudo.sample))

LP <‐ predict(glm.full,pseudo.sample,type=“lp”)
dose.response.gcomp[i] <‐ mean(exp(LP)/(1+exp(LP)))

}

################################################################################
# Plot dose-response functions.
################################################################################

miny <‐ min(c(dose.response.gps.cov.ols,dose.response.gps.cov.cbps,
dose.response.gps.wt.ols,dose.response.gps.wt.cbps,dose.response.gcomp))

maxy <‐ max(c(dose.response.gps.cov.ols,dose.response.gps.cov.cbps,
dose.response.gps.wt.ols,dose.response.gps.wt.cbps,dose.response.gcomp))

plot(income.threshold,dose.response.gps.cov.ols,
type=“b”,pch=19,lty=1,col=“black”,
xlab="Average neighbourhood income (CDN $)",
ylab="Probability of death within one year",
ylim=c(miny,maxy))

lines(income.threshold,dose.response.gps.cov.cbps,
type="b",pch=12,lty=2,col="brown")

lines(income.threshold,dose.response.gps.wt.ols,
type="b",pch=15,lty=3,col="red")

lines(income.threshold,dose.response.gps.wt.cbps,
type="b",pch=17,lty=4,col="blue")

lines(income.threshold,dose.response.gcomp,
type="b",pch=18,lty=5,col="darkgreen")

title("Dsose-response functions for effect of income on probability of death within one year of AMI hospitalization")

legend("topright",
legend = c("Covariate adjustment (GPS-OLS)",
"Covariate adjustment (GPS-CBPS)",
"Weighting (GPS-OLS)","Weighting (GPS-CBPS)","G-computation"),

lty = 1:5,
pch = c(19,12,15,17,18),
col = c("black","brown","red","blue","darkgreen"),
bty = "n"

)


