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ABSTRACT Some genetic phenomena originate as mutations that are initially advantageous but decline in fitness until they become
distinctly deleterious. Here I give the condition for a mutation–selection balance to form and describe some of the properties of the
resulting equilibrium population. A characterization is also given of the fixation probabilities for such mutations.

MUTATIONS that change the normal genetic system of
an organism may well have an initial selective advan-

tage, but an advantage that deteriorates with time and later
transforms into a disadvantage. Polyploids lose chromosomes
and become unbalanced, asexuals miss out on the advantage
of recombination, mutants that spend less energy on repair
find themselves loaded with bad mutations, and so on. How
can such mutations be studied and their evolutionary effects
understood?

Haldane (1927) showed that an organism that suffers
regular mutations with fixed deleterious effects evolves to-
ward a stable mutation–selection balance. Wright and Dobz-
hansky (1946) introduced the study of nonfixed fitnesses
and considered the effects of frequency-dependent fitness
values, while Kimura and Ohta (1970) studied advanta-
geous mutations (inversions) that gradually lose their fitness
advantage. Here I present results for the population ge-
netics of positive mutations that with time become truly
deleterious.

The inheritance system for the considered organism is
haploid, but the model is relevant also for the formation of
reproductively separated clones of asexuals and polyploids
at any ploidy level. Assumptions are kept at a minimum to
find general conclusions for the considered class of mutations.

Some additional derivations, examples, tables, and figures are
given as supporting information.

It is my hope that these results will inspire further study
of this type of contradictory but relevant mutations, their ex-
pected evolutionary behavior, and how they can be empirically
recognized in nature.

General model

Consider an infinitely large population of haploids. In each
generation the standard type, A0, changes to the mutant
type, A1, with probability m (0 , m , 1

2). The relative fitness
of A0 is 1 and of A1 1 + s, where s is strictly greater than 0. In
general, the mutant type t generations after production is
denoted At and its fitness is (1 + s)ft. To make this a model
of deteriorating mutants, it is assumed that ft $ ft+1 for t $
1. All f-values are positive and we define f1 as 1.

In a particular generation, let the standard type (A0) have
a frequency of x0, and let mutants of age-class t (At) have
a frequency of xt. The recursion equations describing the re-
lationship between these frequencies can then be written

x09 ¼ ð12mÞx0= W;
x19 ¼ m  x0= W;

xtþ19 ¼ ð1þ sÞft   xt= W for all t$ 1;
(1)

where

W ¼ x0 þ ð1þ sÞ
XN
t¼1

ft   xt (2)

equals the mean relative fitness of the population.
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If this dynamic system goes to an equilibrium state (i.e.,
a state where xt9 = xt for t $ 0), then the first of the equa-
tions tells us immediately that

W ¼ 12m (3)

and then, in combination with the other two equations, that
the equilibrium frequencies must be

x0 ¼ ð12mÞ=½1þ m  A� 
xt ¼ mð1þ sÞt-1f1 f2 . . . ft-1=ð12mÞt-1½1þ m  A� for all t$ 1;

(4)

where

A  ¼  

�
1þ s
12m

�
f1 þ

�
1þ s
12m

�2
f1 f2 þ

�
1þ s
12m

�3
f1 f2 f3 þ :::

¼
XN
t¼1

�
1þ s
12m

�t Yt
k¼1

fk (5)

(from now on all x-values denote equilibrium frequencies).
The equilibrium frequencies are valid if and only if A

takes a positive, limited value, and the necessary and suf-
ficient condition for this is that there is a positive number
T such that

fT , ð12mÞ=ð1þ sÞ: (6)

(If there is no such value, then the sum A will not converge
to a limited value and there will be no stable equilibrium
state; when condition 6 is fulfilled, on the other hand, the
equilibrium frequencies given by 4 are always valid.) The
fitness of mutants in age-class t is (1 + s)ft, so another way
to express this equilibrium condition is to say that the fitness
of the mutant should be smaller than 1 – m within a limited
number of generations after it has been produced. Note that
this condition is independent of how strong the initial fitness
advantage is and for how long the favorable phase lasts.

The mutational load is, as seen from (3) above, equal to m,
just as in the standard mutation–selection balance for hap-
loids. The average degree of selection against the mutant in
the equilibrium population (denoted s) can be shown to be
(see supporting information, section S1, File S1)

s ¼ ð1þ mAÞ=ð1þ AÞ: (7)

It follows also that

XN
t¼1

xt ¼ 12 x0 ¼ m=s: (8)

We have thereby reached the following important result:
The population will go to a state where the frequency of the
mutant type equals the ratio between the frequency with
which mutants recurrently are formed and the average
degree of selection against mutants in the population. The
difference relative to the standard Haldane-type mutation–

selection balance is that in this case mutants of different
ages are favored or disfavored differently by selection. Thus,
the strength of selection against the mutants is not given by
a constant but by an average over the different mutant age-
classes in the equilibrium population.

The equilibrium distribution of mutant age-classes can be
characterized as follows: In “the young mutant phase,” lasting
for as long as ft . (1 – m)/(1 + s), subsequent age-classes
increase in relative frequency. Then, when ft = (1 – m)/(1 + s),
the frequencies of the age-classes remain unchanged between
generations. Finally, in “the old mutant phase,” for which ft ,
(1 – m)/(1 + s), the age-classes decline in frequency toward
zero. The first two of these phases may be long or short or even
missing, but they must be finite in length and they do not
intercalate.

Since fitness is 1 – m during the second mutant phase (if
it exists), it follows that for all reasonably smooth distribu-
tions of f-values the most common mutant age-class(es) will
have a fitness that is close to—in many situations indistin-
guishable from—the fitness of the standard, nonmutant
type.

One-step fitness drop model

So far, the assumptions of the model have been very general.
Let us now consider a specific example, built on the idea that
newly formed mutations have a high fitness but that this
drops drastically after a specified time (a second example
based on the idea of a continuous deterioration of fitness is
found in section S4, File S1). Or in more formal terms: Let
the mutant type retain fitness 1 + s until and including
generation T – 1, when fitness falls to 1 – z for all consecutive
generations (z . m). In addition, assume that the mutation
rate is very small and that (1 + s)T21 can be approximated by
1 + (T – 1)s. Then the average strength of selection against
the mutant type becomes

s ¼ z=½ðT2 1Þðsþ zÞ þ 1�: (9)

This expression is relatively unaffected by the size of s, as
long as s is small relative to z. Indeed, if the positive effect of
the new mutation is not very great and stays fixed for many
generations before fitness plunges to a strongly deleterious
state, then the mean selection coefficient (9) becomes close
to T21. In this situation, the time structure of the model
rather than the relationship between s and z determines
the properties of the equilibrium population. A numerical
example of this effect is given as supporting information
(see section S2, File S1; and Table S1).

A key assumption in the general model, and also in this
investigated special case, is that all changes in mutant
fitness occur deterministically in time. The importance of
this assumption is shown by the following model extension:
Let the time to fitness drop, T, be a random variable with a
geometric distribution. Denote the mean of the distribution
E(T); this value then equals the inverse of the probability for
fitness to drop per generation.
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Now the condition for the population to move to a mutation–
selection balance becomes

EðTÞ, 1þ s
sþ m

(10)

(see section S3, File S1 for derivation). There is an interest-
ing structural difference between this result, where the
mean time to fitness drop must be smaller than a certain
value given by m and s, and the earlier derived condition for
stability that is independent of the quantitative relationship
between these parameters and requires only that the drop
occurs in finite time. The reason for this discrepancy is that
the rate with which mutants drop to their deleterious state
in the stochastic case must be large enough to keep pace
with their constantly growing number, while no such condition
is necessary in the deterministic situation, where all positive
mutations—irrespective of their number—become deleterious
at a specific moment in time. For m ,, s ,, 1 condition (10)
becomes E(T) , s21, which supports this interpretation.

On probabilities of fixation and fitness estimates

So far the analysis has been made under the assumption of an
infinite population size. The important new factor that a finite
population size brings to our investigation is the possibility that
a mutation of the considered kind may go to fixation. Using
simulations I have studied the probability of this occurring. The
results can be summarized as follows (see also Table S2 and
Table S3): Barring very rare events, a mutation of the consid-
ered kind will go to fixation only if it manages to do so before
its fitness falls below the normal fitness value. The fixation
probability of a new positive mutation is approximately
2s (Haldane 1927, based on Fisher 1922), with the mean time
to fixation being strongly related to the inverse strength of
selection, s21. Thus, mutations of the kind studied here are most
likely to become fixed if their initial advantage is strong and this
advantage lasts for a sufficiently long time. As expected, in the
one-step fitness drop example this implies that the size of s
becomes much more important for the probability of fixation
than the size of z (see section S5, File S1; and Figure S1).

In general, positive but deteriorating mutations will be
difficult to recognize as such in nature. Above is shown that
the most common class of mutants will have fitness close to
normal. In addition, the fixation simulations demonstrated
that the mean fitness of mutants that ultimately become lost
due to genetic drift is not only close to normal but often
greater than normal (see section S5, File S1).

However, from expression (8) above is seen that the mean
coefficient of selection against mutants can be estimated from
the relative frequency of new mutations among mutant
newborn (among N newborn, mN are new mutants among
a total number of (m/s)N mutant newborn; from this fol-
lows that their proportion is s). Thus, given that parental
relationships can be established, this method may function
as a way to comprehend more complex fitness relationships
for recurrent mutations.
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File S1 

Supporting Material 

 

Here I describe some more technical details relating to the analysis of positive but 

deteriorating mutations. Whenever possible, a direct reference is in the main text given to the 

relevant section below.  

 The first section provides a derivation of results (7) and (8) in the main text. The 

next section introduces Table S1 summarizing numerical examples of equilibrium 

populations. In section S3, a formal model is described, similar to the general model in the 

main text, but where the abrupt drop in fitness occurs stochastically and not at a fixed moment 

in time. It leads to result (10) in the main text. Another model for the decline in fitness is 

described next (section S4); here the decline in fitness occurs gradually over time at a constant 

rate. Finally, in section S5, details of the numerical simulations analyzing the fixation 

properties of positive but deteriorating mutations are given. Some of the fixation results 

discussed are summarized and illustrated in Tables S2 and S3, as well as in Figure S1.      

 

S1: Additional derivation 

Since at equilibrium for the general model the fitness of the standard type is 1 and the 

population mean fitness is 1 – µ, the arithmetic mean fitness of the mutant type of all age-

classes, which we denote 1 – σ, can be found from the simple equation 

 

 1· x0 + (1 – σ) · (1 – x0) = 1 – µ. 

 

This implies that the mean fitness of the mutant type is 

 

 1 – σ = 1 – µ/(1 – x0 ) = (1 – µ) A / (1 + A)    

 

and that the average degree of selection against the mutant in the equilibrium population is  

  

 σ = (1 + µA)/(1 + A),    

 

which – as expected – always falls between 0 and 1. From this expression follows (7) and (8) 

in the main text. 
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S2: Equilibrium population 

In Table S1 is described a numerical example of an equilibrium distribution for the one-step 

fitness drop model; the parameters have been chosen so that they strengthen some of the 

interesting effects. The importance of even a brief positive spell for mutations before they 

become disadvantageous is clearly illustrated. Only five generations with a positive effect 

makes, for example, the frequency of the normal type 0.658, compared to 0.929 which this 

frequency would take if the mutation were immediately deleterious (calculated as 1 – 

0.05/0.7).  In accordance with the result given in the section discussing the general model in 

the main text, it can also be noted that the most common mutant age-class is the one 

immediately after the mutational fitness has fallen to its low value. Indeed, 69% of the 

mutants have fitness above 1 and only 31% below. In this case, the parameters are far from 

the values assumed in the approximations used in the main text, but the average strength of 

selection against the mutation in the equilibrium population, 15%, is nevertheless very close 

to the inverse of the time to fitness drop, 1/6 ≈ 17%.  

 

 

S3: Stochastic fitness drop 

The situation with a stochastic drop in fitness is best studied as a separate model, where two 

kinds of mutations occur: from normal to positive, and from positive to negative. 

Consider an infinitely large population where the standard type, A0, has fitness 

1. In every generation there is a probability µ (0 < µ < ½) that it mutates to type Ap. The 

fitness of type Ap is 1 + s, where s is strictly greater than zero. So far the assumptions are as 

before. Now, however, assume that the drop in fitness follows itself a mutational process, i.e. 

that in every generation there is a second probability, ν , that type Ap mutates to type An. The 

An type has fitness 1 – z , where z is positive and strictly greater than µ. This model 

corresponds to the model of a drastic fitness drop at generation T introduced above, except 

that the time for how long the mutant remains positive is now determined by a geometric 

distribution with parameter ν. The mean time to the drop in fitness is thus 1/ν.  

Let the frequencies of the three genetic types be x0, xp and xn and use standard 

notations. The recursion system for the model is then given by 

 

x0 ′ = (1 – µ) x0 / W , 
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 xp ′ = µ x0 / W + (1 – ν)(1 + s)xp/W     

 

 xn ′ = (1 – z)xn/W + ν(1 + s)xp/W, 

 

where W = 1 + sxp – zxn. 

It is easy to show that if there is an internal equilibrium to the system then the 

equilibrium frequencies for the mutant types are given by 

 

)1)(1()1(
0

s
x

xp +−−−
=

νµ
µ

 

      

[ ] )()1)(1()1(
)1( 0

µνµ
µν

−+−−−

+
=

zs
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Thus, two conditions must be fulfilled for there to be an internal equilibrium to the system. 

The first is trivial and part of the assumptions: z must be strictly greater than µ. The second is 

much more interesting. It is that 

 

 
)1)(1(1 s+−>− νµ , 

     

which also can be written 

 

 µ
ν

+

+
<
s
s1/1

 .   

  

This result is presented as expression (10) in the main text. 

 

S4: A second example: Model of gradual fitness decay 

The one-step fitness drop example discussed in the main text reduces the richness allowed in 

the general case with infinitely many f-values to a system where only two parameters are 



B. O. Bengtsson 5 SI 

needed: T and z (in addition to the defining parameters µ and s). The following model is 

formally even simpler, since here only one parameter is used to describe the decay in fitness.  

In this model the decrease in fitness between generations for the mutated type is 

assumed to occur as a constant decay, i.e. that 

 

 ft = (1 – αs)t-1  for t ≥ 1, 

 

where α is a strictly positive value not greater than s-1 .  

This model always leads to an equilibrium, since whatever parameter values 

used there is always a T such that fT < (1 – µ)/(1 + s) . This occurs for 

 

 Tcrit > 1 + [ln(1 – µ) – ln(1 + s)] / ln(1 – αs).  

 

For small values on µ and αs it is easy to show that this value is approximated by 1 + α-1. This 

generation is, in addition, the one where the equilibrium frequency of mutant age-classes 

reaches its maximum.  

Also this model is numerically illustrated with an example in Table S1. The 

initial positive fitness is the same in the two models, as is the time when fitness falls below 1 

– µ. But here the drop in fitness is more gradual and slow, which is reflected in the much 

higher chance to find older age-classes of the mutation. The effect on the normal type is 

drastic: its frequency is reduced to about a half. The mutant distribution has its maximum at 

generation 6, as expected, and 26% of the mutants have fitness above 1. (The approximation 

for Tcrit given in the main text is not valid due to the large value of µ.) 

 

 

S5: Probability of fixation 

A constantly recurring non-lethal mutation that does not back-mutate will always go to 

fixation in a population of finite size – by drift, selection, or a combination thereof. The 

process will go quickly if the mutation is positive and slowly if it is deleterious. So, what 

happens to a mutation that starts positive but turns deleterious with time? This has been 

investigated by studying the fixation properties of single individual mutations with numerical 

simulations. A summary of the results is given in the main text, and a simple illustration of 

the major results is provided by Figure S1. It should be remembered that in all simulation runs 
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no recurrent mutation occurs; it is the fate of a single, initial mutation in an otherwise normal 

population that is studied.   

For the runs on which Figure S1 is based, the mean fitness of mutants in runs 

that did not end in mutant fixation was calculated. The value ranged between 0.999 and 1.100 

in the 16 cases; the highest value was reached when the mutant started as very positive, since 

almost all ended runs were then due to the loss of mutants that had not experienced any fitness 

drop. This result gives the basis for the claim in the main text that measuring the fitness of a 

segregating mutation of the present kind may not tell about its variability in fitness over time; 

in many cases it will be thought of as being advantageous through and through.     

The following more detailed description and discussion of the simulation runs is 

based on the assumption that the population consists of 1,000 haploid individuals and that 

there is exactly one new mutant in the first generation; all other members of the population 

are of the standard genetic type and no more mutants are formed during the studied process. 

Unless otherwise noted 10,000 independent runs were made for each parameter set. The 

fitness scheme follows either the one-step fitness model presented in the main text or the 

gradual fitness decay model presented above. 

 Results for the fixation probabilities of positive mutations with an abrupt fall in 

fitness are given in Table S2. When the drop in fitness comes early, then the probability of 

fixation is negligible. When the drop comes late, then the probability of fixation is close to 2s 

(in this case 2%), the expected value for a mutant with fitness advantage s (Haldane 1927). 

The mean time to fixation in the model setup, but with a mutation that never 

drops in fitness, is 707 generations (with standard deviation 203; data based on 1,927 runs 

leading to fixation out of 100,000). This result makes the values in Table S2 easily 

understandable: the reported fixations are almost exclusively due to mutations that in the 

interplay between selection and drift happened to reach fixation or at least a very high 

frequency before they dropped in fitness. Thus, in the table is seen that the mean time to 

fixation is on average smaller for smaller values on T, the time for the drop in fitness. In 

addition, the mean time to loss – and in particular the standard deviation of this time – is on 

average larger for smaller values on T, reflecting that many of these mutations would first 

have increased in frequency before they experienced the fitness drop and were selectively 

removed. 

 The effect of the size of s and z can be summarized as follow. A sharper drop in 

fitness (z = 0.1; other parameters unchanged, including s = 0.01) decreased the probability of 

fixation of the new mutation, but only slightly. For example with T equals 700, out of 10,000 
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runs 104 ended with fixation rather than 131 as recorded for z = 0.01 in Table S2. The results 

given above on time to fixation and loss held even more clearly in this case. The effect of a 

sharper drop in fitness is thus to make the dominant logic more distinct: mutations with an 

insufficiently high frequency at the time of the fitness drop will almost always be lost.  

A stronger advantage during the positive phase (s = 0.02, z = 0.01) had a much 

stronger effect. If there were no drop in fitness, then the probability of fixation is 0.04 and the 

mean time to fixation is 427 generations with a standard deviation of 99 (calculated from 

3,964 fixations out of 100,000 runs). In accordance with this result, a drop in generation 700 

caused no weakening of the effect on the probability of fixation (419 fixations out of 10,000 

runs). Even with a drop as early as generation 300, there was a reasonable probability of 

fixation (80 out of 10,000; compare to only 3 for s = 0.01 as given in Table S2). The interplay 

between s and z is illustrated with an example in Figure S1. 

Results for the fixation probabilities of positive mutations with a gradual loss in 

fitness are given in Table S3. In the table is included Tcrit, the value for which mutant fitness 

becomes equal to 1; it is seen that this value, as found above, is very close the inverse of α. It 

is also seen that the probability of fixation was small when s equaled 0.01, unless the rate of 

decline in fitness was very small. The result is not primarily due to the deleterious effect of 

the mutation after generation Tcrit, but to the relatively short time the mutation was distinctly 

selectively favored.  

The importance of a strong initial positive effect of the mutation was seen when 

s was taken to be 0.02. For α equals 0.001, the number of positive generation was still close to 

1000 (991 to be exact), but the number of fixations among 10,000 runs became 348 compared 

to only 104 for s = 0.01 (see Table S3). 
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Table S1   The frequency of the normal type and the different age-classes of mutants 

under two sets of assumptions. In Model 1 an initially high fitness (1 + s = 1.1) is abruptly 

changed into a low fitness ([1 + s]ft  = 0.3 for t ≥ 6), while in Model 2 the decline in fitness 

towards 0 occurs continuously with a constant rate (α = 3%). The mutation frequency (µ) 

equals 0.05 in the two models. In both cases mutant fitness goes below the critical value (1 – 

µ = 0.95) by generation 6. 

 

 Model 1   Model 2 

t fitness xt  fitness xt  

 (1 + s)ft    (1 + s)ft 

___________________________________________________________________ 

0 1 0.658  1 0.505 

1 1.1 0.035  1.1 0.027 

2 1.1 0.040  1.067 0.031 

3 1.1 0.046  1.035 0.035 

4 1.1 0.054  1.004 0.038 

5 1.1 0.062  0.974 0.040 

6 0.3 0.072  0.945 0.041a 

7 0.3 0.023  0.916 0.041b 

8 0.3 0.007  0.889 0.039 

9 0.3 0.002  0.862 0.037 

10  0.3 0.001  0.836 0.033 

11–20  0.3 0.000  – 0.132 

21–  0.3 0.000  – 0.004 

_____________________________________________________________________ 
a With four rounded digits: 0.0408 
b With four rounded digits: 0.0405 
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Table S2   Fixation properties of initially positive mutations that suddenly drops in 

fitness at time T, based on 10,000 independent runs. Every run starts with one mutation 

with fitness 1+s in a haploid population of size 1000 and continues to fixation. The fitness of 

the mutant is changed to 1 – z after T generations. In all reported runs, s = z = 0.01. 

 

 

 Runs ending in  Time to 

T  substitution  loss  substitution 

   (mean, SD) (mean, SD) 

___________________________________________________________________ 

200 0  16.2, 67.5 

300 2  22.8, 102.3 541.5, 635.7 

400 27  23.4, 115.3 475.5, 158.9 

500 56  20.3, 114.7 506.5, 122.4 

600 91  19.5, 118.0 546.2, 112.8 

700 131  16.4, 102.7 608.7, 149.5 

800 156  12.8, 86.4 645.1, 157.6 

900 183    9.6, 51.7 670.1, 156.7 

1000 192  10.1, 64.9 666.2, 168.4 

1100 217    8.7, 41.9 683.2, 190.9 

1200 183    8.8, 38.6 689.7, 198.8 

___________________________________________________________________ 
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Table S3   Fixation properties of initially positive mutations that gradually decline in 

fitness, based on 10,000 independent runs. Every run starts with one mutation with fitness 

1+s in a haploid population of size 1000 and continues to fixation. The fitness of the mutant in 

generation T is (1 + s) (1 - αs)T-1. Tcrit is the value for which mutant fitness is close to 1. In all 

reported runs, s = 0.01. 

 

 

 

  Runs ending in  Time to 

α Tcrit substitution  loss  substitution   

    (mean, SD) (mean, SD) 

___________________________________________________________________ 

0 –  184  8.2, 23.9 687.5, 198.6 

0.0005 1991 204  10.1, 74.8 863.2, 370.3  

0.001 996 104  20.9, 144.7 798.4, 293.4 

0.002 499 13  23.1, 122.7 653.0, 212.5 

0.003 333 2  19.7, 91.5 521.0, 521.8  

___________________________________________________________________ 
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Figure S1   The number of fixations (vertical axis) out of 10.000 simulated runs with the one-

step fitness drop model. Every run is started with only one recently formed mutation. The 

population size is 1000 and the drop in fitness occurs in generation 200. The strong effect of s 

is seen, as is the relatively weak effect of z.  




