
Contents lists available at ScienceDirect

Computational and Structural Biotechnology Journal

journal homepage: www.elsevier.com/locate/csbj

Review Article

Dynamics of spindle assembly and position checkpoints: Integrating 

molecular mechanisms with computational models

Bashar Ibrahim a,b,c,∗,

a Department of Mathematics & Natural Sciences and Centre for Applied Mathematics & Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, 
Kuwait
b Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, Jena, 07743, Germany
c European Virus Bioinformatics Center, Leutragraben 1, Jena, 07743, Germany

A R T I C L E I N F O A B S T R A C T 

MSC:

37N25

92C42

92C37

34C60

Keywords:

Spindle assembly checkpoint

Spindle positioning checkpoint

Modeling techniques

Tools

Simulations

Mitotic checkpoints orchestrate cell division through intricate molecular networks that ensure genomic stability. 
While experimental research has uncovered key aspects of checkpoint function, the complexity of protein 
interactions and spatial dynamics necessitates computational modeling for a deeper, system-level understanding. 
This review explores mathematical frameworks–from ordinary differential equations to stochastic simulations, 
which reveal checkpoint dynamics across multiple scales, encompassing models ranging from simple protein 
interactions to whole-system simulations with thousands of parameters. These approaches have elucidated 
fundamental properties, including bistable switches driving spindle assembly checkpoint (SAC) activation, spatial 
organization principles underlying spindle position checkpoint (SPOC) signaling, and critical system-level features 
ensuring checkpoint robustness. This study evaluates diverse modeling approaches, from rule-based models to 
chemical organization theory, highlighting their successful application in predicting protein localization patterns 
and checkpoint response dynamics validated through live-cell imaging. Contemporary challenges persist in 
integrating spatial and temporal scales, refining parameter estimation, and enhancing spatial modeling fidelity. 
However, recent advances in single-molecule imaging, data-driven algorithms, and machine learning techniques, 
particularly deep learning for parameter optimization, present transformative opportunities for improving model 
accuracy and predictive power. By bridging molecular mechanisms with system-level behaviors through validated 
computational frameworks, this review offers a comprehensive perspective on the mathematical modeling of cell 
cycle control, with practical implications for cancer research and therapeutic development.
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1. Biology of mitotic checkpoints

Accurate chromosome segregation and spindle positioning during 
cell division are critical for genomic stability, with these processes reg-

ulated by the spindle assembly checkpoint (SAC) and spindle position-

ing checkpoint (SPOC) [1,2]. The SAC ensures that chromosomes are 
properly attached to the spindle before anaphase, preventing prema-

ture separation and aneuploidy [3,4], while the SPOC maintains spindle 
alignment to ensure accurate orientation of the cell division plane [5]. 
Dysregulation of these checkpoints is implicated in numerous diseases, 
particularly cancer, making them important targets for therapeutic in-

tervention [6,7].

Experimental research has greatly advanced our understanding of 
SAC and SPOC dynamics. However, their inherent complexity remains 
a challenge due to intricate protein interactions and spatio-temporal 
requirements within these checkpoints [8,9]. While experimental ap-

proaches have provided valuable insights into checkpoint mechanisms, 
the complexity of protein interactions and spatial dynamics underscores 
the need for mathematical modeling to fully understand system be-

havior. These models have helped to reveal emergent properties such 
as bistability in checkpoint responses and have identified key regula-

tory nodes that may serve as therapeutic targets. This review primar-

ily focuses on checkpoint mechanisms studied in yeast models, which 
have been instrumental in elucidating fundamental checkpoint princi-

ples. Many core components and mechanisms are conserved between 
yeast and mammals - for instance, the key SAC proteins Mad2, Mad1, 
and Bub1 maintain similar functions across species. However, mammals 
have evolved additional complexity in checkpoint regulation. The mam-

malian SAC involves additional proteins and regulatory mechanisms not 
found in yeast, while the SPOC pathway shows both conserved elements 
and species-specific adaptations. Understanding these evolutionary re-

lationships is particularly relevant when considering how checkpoint 
dysfunction contributes to human diseases like cancer.

The development of accurate computational models relies heavily on 
specific types of experimental data that capture both spatial and tem-

poral dynamics of checkpoint proteins. Quantitative mass spectrometry 
has enabled the precise measurement of checkpoint protein stoichiom-

etry [10,11]. Spatiotemporal dynamics are captured through fluores-

cence intensity measurements at kinetochores, particularly for studying 
Mad2 recruitment kinetics, while FRAP (Fluorescence Recovery After 
Photobleaching) provides crucial data on protein turnover rates [12,13]. 
Recent advances in lattice light-sheet microscopy have enhanced our 
ability to track proteins in 3D and 4D [14]. Protein-protein interaction 
data, including binding affinities (KD values) and association/dissoci-

ation rates (kon/koff), are typically obtained through techniques like 
Bio-Layer Interferometry, which provide real-time binding kinetics [15]. 
Modern phosphoproteomics approaches have revealed complex post-

translational modification landscapes that offer critical insights to in-

form model parameters [16].

Mathematical and computational models play a crucial role in cap-

turing this complexity by simulating checkpoint behavior at multiple 
scales [17]. For instance, models have elucidated feedback mechanisms 
within the SAC [18] and provided insights into the spatial regulation 
of the SPOC [19]. By integrating experimental findings, mathematical 
models allow for a deeper exploration of checkpoint dynamics that goes 
beyond experimental observation alone.

The spindle assembly checkpoint (SAC) is a pivotal regulatory mech-

anism during mitosis that ensures accurate chromosome segregation. It 
functions by monitoring the attachment of chromosomes to the spindle 
apparatus via the kinetochore, a protein structure that forms on each 
chromosome [20,21]. Recent three-dimensional structural studies have 

provided detailed insights into how kinetochore-fibers are organized 
during mitosis [22]. The SAC is activated when one or more kineto-

chores are not properly attached to spindle microtubules, triggering a 
signaling cascade that delays the onset of anaphase until all chromo-

somes are correctly aligned [22,23]. While the SAC and spindle position-

ing checkpoint (SPOC) represent distinct mitotic checkpoints, they share 
notable functional similarities. Both pathways monitor physical proper-

ties of the spindle and rely on the turnover of inhibitors and activators 
at specific organelles to broadcast a ‘WAIT’ signal. The SAC collects in-

formation about spindle attachment at each kinetochore, which emits a 
nucleoplasmic ‘WAIT’ signal (in budding yeast) until proper attachment 
is achieved. In a comparable manner, Mad2 and Cdc20 in the SAC have 
analogous roles to Bfa1 and Tem1 in the SPOC (Fig. 1A). Bfa1’s activ-

ity is regulated at the spindle pole bodies (SPBs), from where it signals 
throughout the cytosol to inhibit the downstream pathway activator, 
Tem1 [19]. Both SAC and SPOC must ensure the reliable transmission 
of the ‘WAIT’ signal and also allow its rapid deactivation once the check-

point is satisfied (Fig. 1B).

Central to the SAC’s function are proteins such as Mad2, Cdc20, 
Bub3, and BubR1, which inhibit the anaphase-promoting complex/cy-

closome (APC/C), a critical ubiquitin ligase responsible for targeting key 
proteins for degradation [24,25]. When the SAC is active, the mitotic 
checkpoint complex (MCC) containing Mad2, BubR1, Bub3 and Cdc20 
binds to APC/C, which already has a bound Cdc20 molecule serving as 
an APC/C coactivator. This dual-Cdc20 complex formation effectively 
inhibits APC/C’s ability to ubiquitinate its substrates securin and cyclin 
B [26,27,25].

Research has shown that the SAC is not merely a binary switch but 
rather exhibits a dynamic response to varying levels of attachment and 
tension at kinetochores [1,28,29]. The regulation of SAC proteins is in-

fluenced by feedback mechanisms that enhance its robustness against 
disturbances [30]. For instance, once all kinetochores are adequately 
attached, the dissociation of Mad2 from Cdc20 permits APC/C activa-

tion, promoting anaphase onset and demonstrating the SAC’s role in 
maintaining genomic integrity and preventing aneuploidy [3].

Equally important to SAC activation is its silencing mechanism. The 
AAA + ATPase TRIP13, working with its adapter p31(comet), actively 
disassembles the mitotic checkpoint complex (MCC) even during SAC 
signaling [31,32]. This disassembly promotes the release of Cdc20, en-

abling the activation of the anaphase-promoting complex/cyclosome 
(APC/C), which targets securin and cyclin B for degradation, initiat-

ing anaphase onset. Concurrently, dynein motors strip SAC proteins 
such as Mad2, BubR1, and Mad1 from kinetochores, while phosphatases 
like PP1 dephosphorylate key SAC components, stabilizing kinetochore-

microtubule attachments. Proper kinetochore-microtubule attachments 
also reorganize kinetochore architecture, diminishing SAC signaling. 
This concurrent operation of activation and silencing mechanisms en-

sures both checkpoint robustness and its ability to be rapidly reversed 
once proper kinetochore-microtubule attachments are achieved [33,23]. 
Together, these interconnected processes ensure accurate chromosome 
segregation, preventing aneuploidy and maintaining genomic stability.

Defects in the SAC can lead to severe consequences, including the de-

velopment of cancer. Mutations or dysregulation of SAC components are 
implicated in various tumor types, underscoring the importance of this 
checkpoint in cellular health [7]. Understanding the intricacies of the 
SAC and its regulatory networks is essential for developing therapeutic 
strategies aimed at targeting mitotic checkpoints in cancer treatment.

The spindle positioning checkpoint (SPOC) ensures the correct po-

sitioning of the mitotic spindle during cell division. Proper spindle 
alignment is crucial for successful mitotic exit and cytokinesis, as it de-

termines the plane of cell division and ensures that sister chromatids 
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Fig. 1. Visual representation of cell division checkpoints. (A) Molecular components and signaling networks of the spindle assembly checkpoint (SAC). Unattached 
kinetochores catalyze the assembly of the mitotic checkpoint complex (MCC), which consists of Mad2, Cdc20, Bub3, and BubR1. When kinetochores achieve proper 
amphitelic microtubule attachment, dynein-mediated processes regulate Mad1-Mad2 signaling, modulating MCC assembly. The MCC inhibits the anaphase-promoting 
complex/cyclosome (APC/C), creating a robust mechanism that halts anaphase onset until all chromosomes are properly attached to the spindle. (B)Molecular 
components and signaling networks of the spindle positioning checkpoint (SPOC). The SPOC monitors spindle orientation through a spatial sensing mechanism at 
the spindle pole body (SPB). When spindle misalignment occurs, it triggers Kin4 activation, which initiates a phosphorylation cascade involving Cdc5 and Bfa1. This 
spatially organized signaling network modulates Tem1 activity, creating a robust mechanism that delays mitotic exit until proper spindle alignment is achieved. The 
coordinated actions of Kin4, Bfa1, and Tem1 at the SPB ensure accurate spindle positioning before cell division proceeds.

are accurately segregated to daughter cells [34,5]. The SPOC operates 
by monitoring the spatial orientation of the spindle apparatus relative 
to the cell cortex, ensuring that the spindle is appropriately positioned 
before the cell proceeds to anaphase. Key components of the SPOC in-

clude the Bfa1-Bub2 complex, which functions to inhibit the GTPase 
Tem1. When spindle misalignment occurs, Bfa1-Bub2 is activated, lead-

ing to the inhibition of Tem1 and the prevention of mitotic exit [35–37]. 
This regulatory mechanism maintains genomic stability by preventing 
premature exit from mitosis, which could result in unequal chromosome 
distribution and aneuploidy [5].

Studies have demonstrated that the SPOC employs temporal and 
compartment specific signals to coordinate mitotic exit with spindle 
position, using feedback mechanisms that modulate pathway activity 
[2,19]. Understanding the molecular mechanisms governing the SPOC 
is important for comprehending how cells maintain genomic stability 
through proper spindle positioning and accurate chromosome segrega-

tion during cell division [38,34,39].

In examining these checkpoints, we analyze mathematical and com-

putational modeling techniques that have advanced our understand-

ing of mitotic checkpoint regulation. Prominent modeling frameworks 
include ordinary differential equations, partial differential equations, 
stochastic models, rule-based modeling, and algebraic methods, which 
can reveal both temporal dynamics (Fig. 2C) and system-level behav-

iors (Fig. 2D). Here, we discuss their applications, limitations, and key 
contributions to biological insights.

In this review, we present a comprehensive analysis of mathematical 
modeling approaches for understanding mitotic checkpoint dynamics. 
We begin by examining the fundamental biology of the SAC and SPOC 
systems, highlighting their critical roles in maintaining genomic stabil-

ity (Section 1). We then systematically explore the primary modeling 
techniques that have advanced our understanding of these checkpoints, 

from differential equations to rule-based approaches (Section 3). Each 
modeling framework is evaluated for its strengths, limitations, and spe-

cific applications in checkpoint analysis and how different modeling 
approaches have revealed key insights into checkpoint mechanisms. In 
Section 4, we address the current challenges facing checkpoint model-

ing, including issues of parameter estimation, spatial considerations, and 
computational complexity. The review concludes with an examination 
of emerging directions in the field (Section 5), particularly the integra-

tion of machine learning with mechanistic models and the application of 
advanced imaging techniques for model validation. Throughout, we em-

phasize how these computational approaches complement experimental 
findings and contribute to our understanding of checkpoint regulation 
in both normal cell division and disease states.

2. Mathematical modeling of mitotic checkpoints

Mathematical and computational modeling have become indispens-

able tools for studying mitotic checkpoints. As illustrated in Fig. 3, these 
approaches form part of an iterative cycle where computational pre-

dictions and experimental validation complement each other, allowing 
researchers to simulate and analyze the intricate dynamics of cellular 
processes, often revealing insights that experiments alone cannot pro-

vide [40,41]. By employing diverse modeling techniques, scientists can 
explore the behavior of checkpoint proteins, map regulatory networks, 
and predict cellular responses to perturbations [42–47,17,48]. This inte-

grative approach combining computational and experimental methods 
is illustrated in Fig. 2.

The spindle assembly checkpoint (SAC) plays a crucial role in ensur-

ing accurate mitotic progression. Even a single misattached kinetochore 
can halt mitosis [49]. Despite this, questions remain about the molecular 
mechanisms that enable both robust cell cycle arrest and rapid response, 
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Fig. 2. Example of dynamical modeling of the Spindle Assembly Checkpoint (SAC) system, extended from Henze et al. [52]. (A) Simplified minimal SAC Molecular Re-

action Network showing key components. Unattached kinetochores enhance the production of the mitotic checkpoint complex (MCC) from preInhibotor(Cdc20:Mad2 
and Bub3:BubR1). Eventually, MCC binds tightly to and inhibits the APC/C:Cdc20. Immediately after the last kinetochore attachment to microtubules, the inhibitors 
dissolve, eventually resulting in active APC/C. This reactivation process is known as SAC silencing, where APC/C:Cd20 plays a role in its feedback loop. APC/C:Cdc20 
substrates are Cyclin B and Securin. (B) Biochemical Reaction Equations including kinetochore attachment and protein complex formation/dissociation reactions. 
(C) Numerical simulation showing temporal evolution of key protein concentrations during SAC activation and silencing. The switch-like transition occurs around 
20 minutes. (D) Bifurcation analysis revealing bistable behavior of MCC concentration as a function of attached kinetochores, with distinct ‘SAC on’ and ‘SAC off’ 
states and hysteresis between attachment and detachment pathways (indicated by arrows). Unstable saddle points are shown by dashed lines and stable node points 
by solid lines. Both stable and unstable states meet at saddle-node bifurcation points shown by solid circles. The SAC checkpoint is released and APC/C activated 
only when almost all kinetochores are attached (approximately 91.98). As the cell enters anaphase, MCC falls back to zero. The black line indicates how the switch 
flips from the SAC-active state to the SAC-inactive state as number of attached kinetochores increases.

as illustrated by the minimal reaction network shown in Fig. 2A. The 
need to link spindle biomechanics to a biochemical signal transduction 
network 2B introduces spatial challenges that modeling can uniquely 
address, especially amid ongoing debate about the role of tension sens-

ing in SAC responses [50,51].

In comparison, modeling the spindle positioning checkpoint (SPOC) 
is particularly advantageous, despite involving relatively few com-

ponents. These components can exist in various states and localiza-

tions, each influencing the other’s interactions. Experimentally analyz-

ing these states in living cells poses challenges, but modeling provides 
accessible insights into these dynamic interactions. For instance, under-

standing the activity states of Tem1—whether GTP- or GDP-bound—and 
the phosphorylation states of Bfa1 by Kin4, Cdc5, or in its unphospho-

rylated form, is critical. Moreover, modeling raises essential questions, 
such as the potential role of cytosolic pools in the function of SPOC. 
Through simulation, researchers gain a clearer understanding of how 
these components interact and identify the necessary conditions for 
proper SPOC function.

A wide range of mathematical models has been developed to capture 
the dynamic behaviors of SAC and SPOC. Ordinary differential equations 
(ODEs) describe time-dependent biochemical interactions, providing in-

sights into protein interactions and cellular dynamics [53,54]. Stochas-

tic models account for the inherent randomness in biological processes, 
shedding light on the probabilistic nature of cellular events [55,56]. 
Partial differential equations (PDEs) extend these analyses by modeling 
spatial dynamics, enabling a closer examination of molecular concen-

trations across different cellular regions [57,18,58].

Additionally, rule-based simulations offer a structured framework 
for exploring complex interactions under various conditions through 
predefined rules [59–63]. Algebraic methods contribute to analyzing 
system equilibria and understanding stability within checkpoint reg-

ulatory networks [55,64]. Having outlined the general importance of 
mathematical modeling in checkpoint research, we now examine each 
modeling approach in detail, analyzing their specific strengths, limita-

tions, and applications in understanding checkpoint regulation.

3. Primary modeling techniques of mitotic checkpoints

This section presents widely used modeling techniques for under-

standing mitotic checkpoints, while acknowledging that alternative 
methods, such as delay differential equations and fractional differen-

tial equations, also offer valuable perspectives on cell cycle dynamics 
[46,65,44]. Table 1 provides a comprehensive comparison of the pri-

mary modeling techniques used in studying mitotic checkpoints, high-

lighting their strengths, limitations, and typical applications. Although 
these alternative methods are not detailed here, they hold potential for 
future research to further enrich our understanding of checkpoint regu-

lation [43,42].

Integrating these modeling approaches with experimental data al-

lows for a deeper exploration of mitotic checkpoint mechanisms and 
can support advances in strategies for addressing cell cycle regulation 
challenges [41,55]. The following discussions examine specific model-

ing techniques, detailing their applications, strengths, and limitations in 
studying mitotic checkpoint dynamics.
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Fig. 3. Integrative systems biology workflow for studying mitotic checkpoints. The cycle illustrates the synergy between computational and experimental approaches 
in checkpoint research. Top path (orange): mathematical modeling generates predictions through computational simulations and in-silico data. Bottom path (teal): 
experimental design validates predictions through empirical data collection. Central elements show the iterative process of data integration and hypothesis refinement, 
where current data informs new mathematical models and predictions guide experimental design. Each component represents key methodologies discussed in this 
review: mathematical modeling (differential equations), simulations (numerical solutions), in-silico predictions, experimental design (time-course studies), and data 
analysis.

Table 1
Comparison of Modeling Techniques in Cell Cycle Research.

Technique Strengths Limitations Applications 
ODEs - Time dynamics - No spatial data - Protein signaling 

- Scalable - Fixed outcomes - Checkpoint timing 
- Rich analysis tools - Parameter sensitive - Parameter screening

PDEs - Space-time dynamics - High computation cost - Protein gradients 
- Models gradients - Many parameters - Cell polarity 
- Multi-compartment - Boundary conditions - Spindle positioning

Stochastic - Captures fluctuations - Slow simulation - Switch-like events 
- Handles rare events - Needs many runs - Molecular counting 
- Models cell variation - Complex statistics - Noise analysis

Rule-Based - Handles complexity - Hard to analyze - Multi-site proteins 
- Easy to modify - Memory intensive - Signal cascades 
- Biological intuitive - Rule conflicts - Checkpoint logic

Petri Nets - Visual modeling - State explosion - Decision points 
- Flow analysis - Time modeling hard - Cycle analysis 
- State verification - Size limitations - Logic verification

Chemical 
Organization

- Structure focused - No time evolution - Network stability 

- Finds key modules - Lacks details - Core components 
- Predicts stability - Limited dynamics - Steady states 

3.1. Ordinary differential equations (ODEs)

Ordinary Differential Equations (ODEs) are essential for model-

ing time-dependent biochemical systems such as the spindle assembly 
checkpoint (SAC) and spindle positioning checkpoint (SPOC). These 
models describe the rates of change in molecular concentrations over 
time, linking them to reaction rates. For SAC and SPOC modeling, 
ODEs simulate the interactions of proteins and complexes like Mad2, 
Cdc20, and Bfa1-Bub2, illustrating key checkpoint signaling pathways 
[42,53,46,19,66,67].

ODEs have addressed key biological questions in checkpoint re-

search. For example, ODE models explain how the SAC achieves switch-

like behavior through double-negative feedback loops between Mad2 
and Cdc20 [66,67]. They also predicted and explained mutant pheno-

types from deletion and overexpression experiments. Similarly, ODE 
modeling of the SPOC clarified how Bfa1-Bub2 complex regulation 
achieves spatial sensing of spindle position through phosphorylation cy-

cles mediated by Kin4 and Cdc5 [19] ODE models is also valuable for 
understanding checkpoint silencing mechanisms [52]. The interplay be-

tween TRIP13-dependent MCC disassembly and checkpoint activation 
requires modeling of competing processes, including TRIP13 ATPase ac-

tivity, p31(comet)-mediated MCC recognition, and disassembly kinetics. 
These models must integrate experimental data on TRIP13 enzymatic 
rates, MCC assembly/disassembly, p31(comet) binding, and silencing 
factor concentrations, enabling predictions on checkpoint strength and 
its dynamic reversal once proper kinetochore-microtubule attachments 
are achieved [31,32,68,23].
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A typical ODE model comprises equations that represent temporal 
changes in system components. For example, a protein’s rate of concen-

tration change is given by:

𝑑[Species]
𝑑𝑡 

= 𝑓 ([Species],Rate Constants)

ODEs require several types of experimental data as inputs for accu-

rate simulations. The primary inputs include:

• Initial protein concentrations for all species (measured through 
quantitative mass spectrometry, Western blots, or fluorescence mi-

croscopy)

• Binding affinities (𝐾𝑑 values) between interacting proteins, which 
can vary based on post-translational modifications

• Association and dissociation rate constants (𝑘𝑜𝑛 and 𝑘𝑜𝑓𝑓 ), often 
determined through Fluorescence Recovery After Photobleaching 
(FRAP) or single-molecule tracking

• Enzymatic rate constants for phosphorylation/dephosphorylation 
events

• Protein degradation and synthesis rates

• When considering compartmentalized models, diffusion coeffi-

cients and protein localization data from Fluorescence Correlation 
Spectroscopy (FCS) or photoactivation experiments may be re-

quired

Importantly, these parameters can change dynamically during check-

point activation and silencing. For example, phosphorylation can alter 
binding affinities between checkpoint proteins - the interaction between 
Mad2 and Cdc20 is regulated by phosphorylation states, while BubR1-

Bub3 complex formation is modulated by kinetochore-dependent phos-

phorylation events. These state-dependent changes in interaction pa-

rameters must be incorporated into the ODEs for accurate modeling.

These models reveal how checkpoint protein concentrations evolve 
over time in response to inputs such as unattached kinetochores or 
spindle misalignment. By adjusting parameters, researchers can simu-

late various cellular conditions, gaining insights into checkpoint mech-

anisms.

Notably, some ODE models omit time on the left-hand side, focus-

ing on concentration changes, which could more precisely be termed 
chemical differential equations (CDEs) [17].

ODEs have addressed several key biological questions in check-

point research. For example, ODE models helped explain how the SAC 
achieves switch-like behavior through double-negative feedback loops 
between Mad2 and Cdc20 [66,67]. These models required experimental 
data on protein concentrations and binding kinetics measured through 
biochemical assays and microscopy. The insights revealed how Mad2-

Cdc20 interactions create bistability, explaining the checkpoint’s ability 
to maintain a stable metaphase arrest until all kinetochores are properly 
attached [18]. Similarly, ODE modeling of the SPOC helped understand 
how Bfa1-Bub2 complex regulation achieves spatial sensing of spindle 
position [19]. Using experimental measurements of protein localization 
and activity states, these models demonstrated how phosphorylation cy-

cles of Bfa1 by Kin4 and Cdc5 create a robust checkpoint response. This 
explained how cells detect and respond to spindle misalignment through 
spatially-regulated protein modifications.

A wide range of tools is available to solve ODEs and CDEs in check-

point modeling, each suitable for different biochemical system require-

ments, including stiff and non-stiff models. Software such as MAT-
LAB, Octave, MATHEMATICA, and MAPLE provides accessible platforms, 
while specialized solvers like CVODE from SUNDIALS [69] and LSODA
[70] handle more complex system needs.

Dynamical systems analysis tools, such as XPP-AUT [71], facilitate 
nonlinear analysis and bifurcation studies, essential for exploring check-

point behavior. SBML-compatible solvers enhance model sharing across 
platforms and integration with BioModels databases [72]. Additionally, 
graphical tools like CellDesigner [73] and COPASI [74] simplify 
complex biochemical network simulations.

Parameter sensitivity analysis identifies key parameters that signifi-

cantly influence checkpoint regulation, offering insights into the robust-

ness of SAC and SPOC responses. Bifurcation analysis complements this 
by revealing conditions that shift system behavior, such as transitions 
between steady states or oscillatory patterns, potentially highlighting 
therapeutic targets in cancer [42,75].

These analyses can be extended with spatial or stochastic elements 
to more comprehensively capture checkpoint dynamics. Hybrid mod-

els incorporate molecular diffusion or localization effects, addressing 
the spatial organization and randomness critical for checkpoint func-

tion [76–79]. Together, these approaches provide a fuller understanding 
of checkpoint regulation, extending beyond traditional time-dependent 
models.

In summary, while ODEs are invaluable for SAC and SPOC studies, 
they are limited in capturing spatial dynamics. This limitation is specif-

ically addressed by Partial Differential Equations (PDEs), which model 
spatial dynamics in biochemical systems.

Key Concepts: Ordinary Differential Equations

• Focus: Temporal evolution of molecular concentrations

• Core Principles:

– Rate equations: 𝑑[𝑋]
𝑑𝑡 =

∑
(synthesis/production terms) +

∑
(activation terms) −

∑
(degradation terms) −

∑
(inhibition terms)

– Common kinetic formulations: Mass action kinetics: 𝑣 =
𝑘[𝑆], Michaelis-Menten kinetics: 𝑣 = 𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑚+[𝑆] , or Hill ki-

netics: 𝑣 = 𝑉𝑚𝑎𝑥[𝑆]𝑛

𝐾𝑛
𝑚+[𝑆]𝑛

– System of nonlinear coupled equations

• Key Applications:

– Protein interaction dynamics

– Checkpoint activation/deactivation timing

– Parameter sensitivity analysis

• Tools: MATLAB, MATHEMATICA, COPASI, XPP-AUT

3.2. Partial differential equations (PDEs)

Partial Differential Equations (PDEs) model spatial dynamics in bio-

chemical systems, particularly relevant for SAC and SPOC. Unlike ODEs, 
which focus solely on time changes, PDEs include spatial and temporal 
dimensions, allowing investigation of molecular concentration varia-

tions across the cell [57,18]. PDEs have been instrumental in address-

ing spatial aspects of checkpoint regulation. PDE models revealed how 
protein gradients originating from kinetochores create spatial check-

point signals [18,57,58]. These models demonstrated how cells maintain 
checkpoint signaling across different cellular compartments, explaining 
how a single unattached kinetochore can generate a cell-wide check-

point response.

The diffusion-convection-reaction equation, commonly used in cell 
biology, can be expressed as:

𝜕𝐶(𝑥, 𝑡)
𝜕𝑡 

=𝐷∇2𝐶(𝑥, 𝑡) −𝑄∇𝐶(𝑥, 𝑡) +𝑅(𝐶(𝑥, 𝑡), 𝑡)

Here:

• 𝐶(𝑥, 𝑡) represents species concentration at position 𝑥 and time 𝑡.
• 𝐷 is the diffusion coefficient, indicating particle spread due to ran-

dom motion.

• 𝑄 is the convection coefficient, capturing bulk movement’s effect 
on concentration.

• 𝑅(𝐶(𝑥, 𝑡), 𝑡) represents chemical reactions affecting species concen-

tration, based on concentration and time.

Spatial protein distribution and diffusion data can be obtained 
through several experimental techniques. FRAP experiments at kine-
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tochores can reveal Mad2 dynamics in two ways: the recovery curve 
provides the diffusion coefficient 𝐷, while the spatial intensity pro-

file during recovery shows the protein distribution 𝐶(𝑥, 𝑡). Additionally, 
FCS measurements at different cellular locations can determine both 
local protein concentrations and diffusion coefficients. For membrane-

bound proteins, Single Particle Tracking (SPT) offers another approach 
to measure both diffusion and spatial localization. These complemen-

tary experimental approaches provide the essential spatial parameters 
required for PDE model parameterization.

PDEs model spatial heterogeneity, crucial in cell biology, as protein 
localization can significantly influence interactions and regulatory roles 
[18,57,80,58,81].

PDEs have been instrumental in addressing spatial aspects of check-

point regulation. For instance, PDE models revealed how protein gradi-

ents emanating from kinetochores create spatial checkpoint signals [18, 
57,58]. These models required experimental data on protein diffusion 
rates and spatial concentration profiles obtained through fluorescence 
microscopy. The insights demonstrated how cells maintain checkpoint 
signaling across different cellular compartments, explaining how a sin-

gle unattached kinetochore can generate a cell-wide checkpoint re-

sponse.

Advanced numerical methods, such as finite difference, finite ele-

ment, and finite volume methods, are essential for solving PDEs. These 
methods discretize the spatial domain, converting continuous PDEs into 
algebraic equations solvable numerically.

Tools such as MATLAB, MATHEMATICA, MAPLE, COMSOL Multi-
physics, FEniCS, and OpenFOAM support these techniques, offering 
flexibility and advanced numerical schemes [82–84]. Systems biology 
tools, like Virtual Cell, integrate ODEs and PDEs within cellular 
models [85].

Balancing accuracy and computational demand is critical, as finer 
spatial meshes increase precision but require more resources.

While PDEs excel at modeling spatial aspects, the deterministic na-

ture of these equations cannot capture the intrinsic randomness inher-

ent in biological systems, particularly when dealing with low molecule 
numbers. This limitation naturally leads us to consider stochastic ap-

proaches.

Key Concepts: Partial Differential Equations

• Focus: Spatial-temporal protein distributions

• Core Principles:

– Reaction-diffusion equations: 𝜕𝐶

𝜕𝑡 = 𝐷∇2𝐶 − 𝑄∇𝐶 +
𝑅(𝐶, 𝑡)

– Boundary conditions

– Spatial gradients

• Key Applications:

– Protein localization patterns

– Concentration gradients

– Spatial checkpoint signaling

• Tools: COMSOL, FEniCS, Virtual Cell

3.3. Stochastic models

Stochastic models address the intrinsic randomness of biological pro-

cesses, especially relevant at low molecule counts where fluctuations 
affect rates and concentrations. Stochastic approaches have revealed 
crucial insights into checkpoint noise handling. These models explained 
how cells maintain reliable checkpoint signaling despite fluctuations in 
protein numbers [52,56]. Using single-molecule tracking data and pro-

tein counting from fluorescence microscopy, stochastic models demon-

strated how checkpoint mechanisms filter noise while remaining sensi-

tive to genuine signals. For example, studies of Mad2 dynamics showed 
how cells achieve robust checkpoint activation even with variable pro-

tein levels [55].

Stochastic modeling, through Stochastic Differential Equations (SDEs) 
or simulations, provides unique insights into molecular-level biological 
dynamics. SDEs add stochastic terms to deterministic ODE or PDE mod-

els, accurately representing noise and variability in cellular processes 
such as gene expression and signaling.

Several mathematical methods are available for modeling stochastic 
systems. The Gillespie algorithm, for instance, provides an exact method 
for simulating chemical reactions in small populations by generating 
reaction events at each time step based on probabilistic rules [86]. Alter-

native approaches include the tau-leaping method, which approximates 
Gillespie’s exact method and is suitable for systems where multiple re-

actions occur simultaneously [87].

Hybrid models combine deterministic and stochastic approaches to 
optimize accuracy and computational efficiency, capturing noise in spe-

cific pathways without modeling the entire system stochastically [88]. 
For large systems, Monte Carlo methods provide flexibility, allowing 
the study of checkpoint protein interactions under various perturbations 
[89].

Stochastic models often require considerable computational re-

sources, particularly in multi-component systems where reactions and 
molecular states multiply. While these models offer valuable insights 
into noise-influenced checkpoint dynamics, their computational inten-

sity with multiple molecular states creates scaling challenges. Rule-

based modeling specifically addresses these challenges by providing 
a more efficient framework for representing and analyzing complex 
molecular interactions.

Key Concepts: Stochastic Modeling

• Focus: Random fluctuations in molecular processes

• Core Principles:

– Gillespie algorithm

– Chemical master equations

– Monte Carlo simulations

• Key Applications:

– Noise in checkpoint signaling

– Low molecule count dynamics

– Probabilistic state transitions

• Tools: StochKit, Gillespie SSA implementations

3.4. Rule-based modeling

Rule-based modeling (RBM) systems, such as BioNetGen and

Kappa, use rules rather than explicit equations to represent interac-

tions within complex molecular systems [90]. This technique handles 
combinatorial complexity by defining reaction rules applicable across 
species or states, allowing the efficient modeling of large biomolecular 
systems.

Rule-based spatial modeling tools like SRSim extend traditional RBM 
approaches by incorporating geometric and spatial constraints into 
molecular interactions [60]. SRSim enables the simulation of complex 
spatial arrangements and diffusion of molecules, making it particularly 
valuable for studying checkpoint mechanisms where spatial organiza-

tion is crucial, such as kinetochore-microtubule attachments in SAC or 
spindle orientation in SPOC. This spatial rule-based approach provides 
unique insights into how molecular geometry and spatial distribution 
affect checkpoint function.

In the context of SAC and SPOC studies, rule-based modeling has 
been applied to explore how checkpoint proteins interact and how these 
interactions change in response to different cellular states. The approach 
simplifies models of multi-state proteins, enabling more extensive simu-

lations under diverse conditions without overwhelming computational 
resources [91]. These platforms facilitate the modeling of intricate cel-

lular pathways, including feedback loops and post-translational modifi-

cations, allowing for a more comprehensive understanding of biological 
interactions and regulatory mechanisms [92].
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Rule-based modeling platforms, such as BioNetGen, Kappa, and

PySB, provide versatile interfaces for rule definition, visualization, and 
analysis. Rule-based modeling has been particularly valuable for under-

standing complex multi-protein interactions in checkpoints. These mod-

els have helped decipher how multiple phosphorylation sites and protein 
modifications coordinate checkpoint signaling [62]. Using data from 
proteomic studies and interaction mapping, rule-based models revealed 
how different protein modifications combine to create checkpoint sig-

nals. For instance, studies of kinetochore assembly showed how hier-

archical protein recruitment ensures proper checkpoint activation [59]. 
They employ algorithms that allow for dynamic rule generation and 
simulating rule-based models, enabling researchers to explore complex 
systems efficiently, including molecular geometry [60].

However, rule-based models require detailed definitions of interac-

tion rules, which can become complex when modeling large systems 
with intricate regulatory mechanisms. While powerful, RBM techniques 
face challenges such as incomplete biological knowledge and complex 
network representations. Translating rules into biological reality re-

quires careful parameterization and extensive validation to ensure that 
the model accurately reflects the biological system under study [90]. 
These ongoing challenges highlight the importance of continual devel-

opment in RBM as a vital tool in systems biology, enabling innovative 
strategies to unravel the complexities of biological systems and their 
dynamics.

Overall, while RBM provides powerful tools for modeling complex 
molecular interactions, its practical implementation faces several con-

straints: the need for extensive parameter validation, computational 
demands for large systems, and limitations in revealing broader system 
properties. Algebraic methods complement these approaches by offer-

ing abstract representations that can illuminate fundamental network 
properties while requiring fewer parameters.

Key Concepts: Rule-Based Modeling

• Focus: Complex multi-state protein interactions and spa-

tial organization

• Core Principles:

– Pattern-based rules

– Site-specific modifications

– Combinatorial complexity handling

– Spatial and geometric constraints

• Key Applications:

– Multi-site protein modifications

– Complex formation/dissociation

– Regulatory network analysis

– Spatial organization of checkpoint components

• Tools: BioNetGen, Kappa, PySB, SRSim

3.5. Algebraic methods

Computational modeling aids in understanding complex biological 
systems like mitotic checkpoints. This section focuses on two prominent 
algebraic modeling approaches–Petri nets and chemical organization 
theory. Both methods abstractly represent biochemical interactions, al-

lowing for graphical and qualitative analyses.

Petri nets effectively represent distributed systems and capture bio-

chemical network dynamics. A Petri net consists of places (system 
states), transitions (events altering states), and tokens (quantities of 
species). This structure enables graphical representation of interactions, 
allowing researchers to visualize regulatory networks and comprehend 
information flow. Petri nets support qualitative analyses that explore 
properties like reachability, liveness, and boundedness, which are vital 
for understanding checkpoint proteins during cell division [93].

Chemical organization theory aids in understanding biochemical sys-

tems at a higher abstraction level, positing that biological processes 

are hierarchically organized, where lower-level interactions lead to 
higher-level behaviors. Chemical organization theory models biochemi-

cal systems as being composed of interconnected functional modules, 
with lower-level interactions between molecular components leading 
to higher-level system behaviors and functions. By applying this the-

ory, researchers can model relationships between components, identify 
functional modules, and simplify complex networks for analysis and sim-

ulation [94–96]

Both Petri nets and chemical organization theory enhance insights 
into the dynamic behavior of mitotic checkpoints, contributing to the 
development of robust models that facilitate therapeutic strategies for 
cancer treatment. Various tools support the application of algebraic 
methods in biological modeling. For Petri nets, numerous software op-

tions assist in modeling, simulating, and analyzing structures, with sur-

veys highlighting features that guide users in selecting appropriate tools 
[97].

In chemical organization theory, advancements have produced tools 
for computing persistent subspaces of reaction-diffusion systems, en-

hancing the theory’s applicability. These tools facilitate the analysis 
of complex interactions and dynamic behaviors, providing valuable in-

sights into regulatory mechanisms [98,99].

Despite their advantages, algebraic methods present challenges. 
They require less detailed kinetic information than traditional ap-

proaches, which is beneficial when experimental data is limited. How-

ever, incorporating spatial properties increases computational demands, 
especially in larger systems. Additionally, while recommended for high-

dimensional systems, the abstraction in algebraic methods may overlook 
critical dynamic aspects of biological processes. Algebraic approaches, 
particularly Petri nets and chemical organization theory, have pro-

vided unique insights into checkpoint network structure and function. 
Petri net analysis revealed fundamental control principles in the SAC 
network, demonstrating how different protein states and transitions 
maintain checkpoint signaling [64]. These models utilized protein inter-

action network data and state transition information from biochemical 
studies, helping identify essential control points in checkpoint regula-

tion [99].

Thus, while powerful for analyzing mitotic checkpoints, researchers 
must carefully consider the trade-offs in selecting a modeling approach.

Key Concepts: Algebraic Methods

• Focus: Network structure and qualitative dynamics

• Core Principles:

– Petri nets: Places and transitions

– Chemical organization theory

– Network topology analysis

• Key Applications:

– Checkpoint network structure

– Steady state analysis

– System stability assessment

• Tools: Snoopy, COT analyzer

These diverse modeling approaches offer complementary insights 
into checkpoint regulation, with each method addressing different as-

pects of checkpoint complexity. ODEs provide the temporal framework 
for understanding reaction dynamics, while PDEs extend this to cap-

ture spatial organization crucial for checkpoint signaling. For instance, 
while ODE models revealed the bistable switching mechanism of the 
SAC [52], PDE approaches showed how this switch operates across cel-

lular space [18]. Similarly, stochastic methods complement these deter-

ministic approaches by explaining how checkpoints maintain reliability 
despite molecular noise [55], which is particularly relevant at kineto-

chores where protein numbers are low. Rule-based modeling handles 
the combinatorial complexity of multi-protein interactions [62], while 
algebraic methods like chemical organization theory reveal the hierar-

chical organization of these interactions [96]. This complementarity is 
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exemplified in SPOC studies, where ODEs model temporal dynamics of 
Bfa1-Bub2 regulation [19], PDEs capture spatial aspects of spindle po-

sitioning, and rule-based approaches describe complex phosphorylation 
patterns. Together, these approaches provide a multi-scale understand-

ing of checkpoint function, from molecular interactions to cellular-level 
organization. The integration of these modeling approaches, supported 
by experimental data, has enhanced our understanding of checkpoint 
mechanisms beyond what any single method could achieve. Future de-

velopments in checkpoint modeling will likely require increased integra-

tion of these approaches, particularly as new experimental techniques 
provide more detailed data across multiple scales.

While these diverse modeling approaches have significantly ad-

vanced our understanding of checkpoint regulation, their implementa-

tion and integration face several important challenges. The complexity 
of checkpoint mechanisms, combined with technical limitations in both 
experimental and computational methods, creates obstacles that must be 
addressed to further advance the field. Understanding these challenges 
is crucial for developing more comprehensive and accurate models of 
checkpoint function.

4. Challenges in modeling mitotic checkpoints

The integration of multiple modeling approaches in checkpoint re-

search has revealed several fundamental challenges that need to be 
addressed. These challenges span from biological complexity to techni-

cal limitations in both experimental data collection and computational 
implementation. At the biological level, the intricate nature of mitotic 
checkpoint networks, particularly the SAC and SPOC, involves numer-

ous proteins interacting through nonlinear feedback loops, many of 
which remain not fully understood [100,101]. This complexity is further 
amplified when considering the context-dependent behavior of check-

point components, such as their specific cellular locations and various 
modification states. The technical challenges in experimental data col-

lection and computational implementation directly impact model devel-

opment and validation. For instance, measuring the localized abundance 
of checkpoint proteins at specific cellular structures like kinetochores or 
spindle poles remains technically demanding. Similarly, tracking the dy-

namic changes in protein modifications and interactions in living cells 
poses significant experimental challenges. These limitations in data ac-

quisition directly affect our ability to develop and validate comprehen-

sive models that can reliably predict cellular behavior across varying 
conditions.

Parameter estimation and data availability are also limiting fac-

tors [102]. Detailed kinetic data, including reaction rates and binding 
affinities, are often scarce or incomplete, making it challenging to ac-

curately parameterize models [55,43,19]. Assumptions or inferred data 
are sometimes used to fill gaps, but this can introduce biases and affect 
the models’ predictive power.

Incorporating spatial dynamics adds another layer of difficulty. 
Molecular events within mitotic checkpoints are often spatially local-

ized, such as at spindle poles or kinetochores. Accounting for this spatial 
heterogeneity increases the complexity of models. Techniques like par-

tial differential equations (PDEs) or spatial rule-based simulations are 
employed to address this challenge, but they also raise computational 
costs, limiting the temporal and spatial scales that can be practically 
simulated [18,62].

Model validation presents its own set of challenges. Comparing 
model predictions with experimental data is essential but complicated 
by the variability and noise inherent in biological systems and experi-

mental methods. High-quality, reproducible data is crucial for refining 
and validating models, yet such data is often difficult to obtain.

Addressing parameter estimation and spatial modeling challenges re-

quires more comprehensive kinetic and localization data on checkpoint 
proteins and their interactions. Single-molecule fluorescence techniques 
could provide this data at finer spatiotemporal scales. For example:

• Förster resonance energy transfer (FRET) and FLIM-FRET (FLIM: 
Fluorescence Lifetime Imaging) can quantify interaction kinetics 
and binding affinities in vivo at the single-molecule level [103], 
constraining intricate feedback mechanisms in kinetic models.

• Photoactivated localization microscopy (PALM), stochastic optical 
reconstruction microscopy (STORM), and MINFLUX nanoscopy en-

able nanometer-scale imaging of protein interactions, with MIN-

FLUX achieving resolution down to 1 nm even in living speci-

mens [104], providing spatial distributions and flux dynamics for 
spatial models.

• Total internal reflection fluorescence (TIRF) microscopy [105] se-

lectively visualizes protein complexes at specific subcellular struc-

tures, capturing how localization influences checkpoint function.

• Microfluidics combined with live-cell imaging [106] controls the 
cellular microenvironment while collecting kinetic response data 
under varying conditions.

Generating extensive high-resolution spatiotemporal data through 
such techniques on checkpoint proteins would significantly improve 
constraints on molecular-scale kinetic parameters and localization rules, 
reducing uncertainties that impede the development of accurate predic-

tive spatial and stochastic mathematical models.

Addressing the computational challenges of simulating spatial and 
stochastic checkpoint models requires advances in simulation tech-

niques. Potential areas of focus include:

• Multiscale methods that couple discrete reaction-diffusion models 
within continuous PDE frameworks, allowing simulation of finer 
spatial scales within larger domains.

• Agent-based simulations combining discrete and continuum de-

scriptions for enhanced efficiency, where individual proteins could 
be represented as agents diffusing within coarse-grained spatial re-

gions.

• Parallel and GPU computing implementations of spatial simulations 
that distribute computations across multiple processing units, en-

abling simulations of larger and longer-timescale models.

• Rule-based modeling languages and compilers that symbolically 
represent and simulate reaction-diffusion mechanisms, increasing 
performance over traditional approaches.

• Approximation methods like coarse-graining, time-scale separation, 
and temporal multi-resolution that simplify models while preserv-

ing important dynamics.

Advancing such computational methods through multidisciplinary 
efforts in applied math, computer science, and bioengineering would 
facilitate exploring checkpoint spatiotemporal organization at scales rel-

evant to cellular functioning.

Despite the potential of mathematical and computational models to 
provide insights into mitotic checkpoints, these challenges underscore 
the need for improved data acquisition techniques, more efficient com-

putational methods, and further refinement of existing models to better 
account for the complexity and variability of cellular systems.

Key Challenges in Modeling Mitotic Checkpoints

• Biological complexity: Intricate networks with numerous 
interacting proteins and nonlinear feedback loops. These 
components can exist in various states and localizations, 
each influencing the other’s interactions.

• Stochasticity: Inherent randomness and fluctuations in cel-

lular processes due to small molecule counts

• Parameter estimation: Lack of comprehensive kinetic data 
on checkpoint protein interactions

• Spatial dynamics: Difficulty in accounting for spatially lo-

calized molecular events
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• Model validation: Variability and noise in experimental 
data complicate model-data comparison

Potential Solutions:

• Utilize advanced experimental techniques (e.g., single-

molecule imaging, microfluidics) to obtain high-resolution 
spatiotemporal data

• Develop multiscale and hybrid modeling approaches to 
better integrate spatial and temporal dynamics

• Advance computational methods (e.g., parallel computing, 
rule-based modeling) to handle increased complexity

• Foster interdisciplinary collaboration to drive innovation 
in data acquisition and modeling techniques

5. Conclusions and future perspectives

Mitotic checkpoints are essential for maintaining genomic integrity 
during cell division, underscoring the importance of accurate modeling 
for understanding biological processes, including cancer progression. 
Future research should focus on overcoming current limitations and 
leveraging emerging techniques to deepen insights into the complex 
regulatory mechanisms governing cell division. The integrative systems 
biology approach (Fig. 3) will continue to be essential for understand-

ing checkpoint regulation and developing therapeutic strategies. This 
integrative approach will benefit from emerging techniques and Using 
advanced approaches to deepen insights into the complex regulatory 
mechanisms governing cell division.

Future work should prioritize developing multiscale and hybrid mod-

eling approaches that integrate data and models across spatial and tem-

poral scales. This includes agent-based models that couple molecular 
interactions to cellular behaviors, as well as genome-scale models that 
link checkpoint dynamics to phenotypic outcomes. These models can 
better capture the complexity of mitotic checkpoints, providing a more 
holistic understanding of cell division regulation [107,108].

With the advent of high-throughput experimental platforms, exten-

sive multi-omics datasets are becoming available, offering a valuable 
opportunity to combine machine learning with mechanistic models. 
Machine learning can assist in parameter estimation, identification of 
novel regulatory interactions, and prediction of checkpoint responses, 
thereby addressing current gaps in experimental data and enhancing 
model fidelity. Additionally, computational methods must scale to meet 
the demands of such data complexity, with high-performance computing 
platforms supporting increasingly sophisticated simulations, especially 
those that explore spatial dynamics within cellular compartments.

Addressing cellular compartmentalization and spatial organization 
remains a significant challenge. Advances in spatial rule-based model-

ing and partial differential equation (PDE) frameworks are promising 
for simulating checkpoint activity at specific cellular locales, such as 
kinetochores and spindle poles. Further exploration of these spatial dy-

namics will provide insights into how compartmentalization contributes 
to checkpoint regulation, which is critical for understanding checkpoint 
robustness and fidelity.

Interdisciplinary collaboration among biologists, computer scien-

tists, mathematicians, and physicists will foster innovative computa-

tional frameworks and algorithms. Leveraging algebraic methods like 
chemical organization theory and Petri nets can aid in analyzing com-

plex systems with fewer parameters, facilitating model analysis of large, 
intricate networks [94,97].

Sophisticated experimental techniques, such as single-molecule 
imaging and high-resolution live-cell microscopy, will provide richer 
datasets for validating models. Continued integration of experimen-

tal and computational advances through interdisciplinary collaboration 
will enhance our understanding of checkpoint regulation and accel-

erate therapeutic discovery, particularly through in-silico testing of 

targeted interventions. Recent experimental advances have provided 
unprecedented insights into SAC dynamics and molecular mechanisms 
that await incorporation into computational models. For example, new 
structural studies of kinetochore-checkpoint protein interactions [13], 
quantitative measurements of checkpoint protein stoichiometry [10], 
and detailed characterization of MCC assembly dynamics ([109,23] of-

fer rich datasets for model validation and refinement. Integrating these 
experimental findings into existing models presents a key opportunity 
to enhance our understanding of checkpoint regulation.

In summary, the future of mitotic checkpoint research lies in com-

bining advanced computational techniques with high-resolution exper-

imental data and machine learning. These strategies promise to over-

come existing challenges, offering a pathway to novel applications in 
therapeutic development, particularly for diseases linked to cell cycle 
dysregulation. Ultimately, these efforts will contribute to a more com-

prehensive understanding of cell division control, guiding innovations 
in both basic science and medical applications.
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