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Abstract

Bittersweet (Solanum dulcamara) is a native Old World member of the nightshade family.

This European diploid species can be found from marshlands to high mountainous regions

and it is a common weed that serves as an alternative host and source of resistance genes

against plant pathogens such as late blight (Phytophthora infestans). We sequenced the

complete chloroplast genome of bittersweet, which is 155,580 bp in length and it is charac-

terized by a typical quadripartite structure composed of a large (85,901 bp) and small

(18,449 bp) single-copy region interspersed by two identical inverted repeats (25,615 bp). It

consists of 112 unique genes from which 81 are protein-coding, 27 tRNA and four rRNA

genes. All bittersweet plastid genes including non-functional ones and even intergenic

spacer regions are transcribed in primary plastid transcripts covering 95.22% of the

genome. These are later substantially edited in a post-transcriptional phase to activate gene

functions. By comparing the bittersweet plastid genome with all available Solanaceae

sequences we found that gene content and synteny are highly conserved across the family.

During genome comparison we have identified several annotation errors, which we have

corrected in a manual curation process then we have identified the major plastid genome

structural changes in Solanaceae. Interpreted in a phylogenetic context they seem to pro-

vide additional support for larger clades. The plastid genome sequence of bittersweet could

help to benchmark Solanaceae plastid genome annotations and could be used as a refer-

ence for further studies. Such reliable annotations are important for gene diversity calcula-

tions, synteny map constructions and assigning partitions for phylogenetic analysis with de

novo sequenced plastomes of Solanaceae.

Introduction

The genus Solanum L., with approximately 1,400 species, is one of the largest genera of angio-

sperms, and includes many major and minor food crops such as tomato, potato, eggplant, and

pepino. Bittersweet (Solanum dulcamara L.) is a European native diploid (2n = 2× = 24)
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species, which is found throughout the northern hemisphere across a wide range of habitats. It

was also introduced to North America possibly for its medicinal properties [1]. It is still used

as a source of various alkaloids with diuretic, diaphoretic properties to treat rheumatism and

skin diseases in Asia and India [2, 3].

This semi-woody perennial vine is easy to recognize (Fig 1). However, it is a highly poly-

morphic and phenotypically plastic species showing extreme forms, which has led to confused

taxonomy. Previous treatments placed Solanum dulcamara to sect. Dulcamara (Moench)

Dumort. in subg. Potatoe (G.Don) D’Arcy related to potatoes (sect. Petota Dumort.) and toma-

toes (sect. Lycopersicum (Tourn.) Wettst.) [4–7]. This was based on scandent habit, pinnate

leaves and on the articulation of pedicels above the base [1, 4]. However, recent phylogenetic

studies have shown that it belongs to the Dulcamaroid clade [8–11], which is closely related to

the Morelloid clade including species of black nightshades of sect. Solanum (e.g. S. nigrum L.

and S. scabrum Mill.).

Solanum dulcamara serves as a host for important plant pathogens such as those causing bac-

terial wilt (Ralstonia solanacearum (Smith 1896) Yabuuchi et al. 1996), late blight (Phytophthora
infestans (Mont.) de Bary.) and also for some viruses [12, 13]. Late blight, is one of the most seri-

ous potato diseases worldwide [14]. However, it was shown that bittersweet has a minimal role

in late blight infections since most plants are resistant and the inocula of the pathogen do not

Fig 1. The berries and flowers of Solanum dulcamara L.

https://doi.org/10.1371/journal.pone.0196069.g001
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overwinter [15]. Populations of this species seem to have experienced a genetic bottleneck [16],

but some allelic variation was found to be distributed among populations resulting in more

structured populations at larger regional levels [17]. The differentiation of the populations could

have arisen by genetic drift or even by inbreeding over a very long period. Bittersweet is mostly

an outcrossing species, but its population structure might have been affected by its perennial

self-compatibility [18], reducing genetic diversity within regional populations and enhancing

inbreeding. This leads to high interpopulation or spatial differentiation [17]. Genetic drift, on

the other hand, may not have shaped the population structure of the species recently based on

the observed moderate level of diversity among populations [16, 17]. However, over a longer

time scale population expansion from postglacial refugia is known to leave such traces [19].

High throughput sequencing is revolutionizing phylogenetics as it allows to obtain hun-

dreds to thousands of markers in a cost effective way. Complete plastid genome (plastome)

sequences now could be easily acquired for phylogenomic analyses with relatively low cost.

Angiosperm plastid genomes exist in circular and linear forms [20] and the percentage of each

form varies within plant cells [21]. They are small, typically ~ 120–150 kb in size and have a

highly conserved quadripartate structure containing two inverted repeats (IRA and IRB),

which separate the large and small single copy regions (LSC and SSC). The plastid genome

includes 110–130 genes primarily participating in photosynthesis, transcription and transla-

tion [22]. Their conserved gene content, order and organization makes them relatively well

suited for evolutionary studies since gene losses, structural rearrangements, pseudogenes or

additional mutation events could be characteristic for some lineages. The information from

length mutational events could be used in addition to the information from DNA substitutions

occurring in the plastid genome. Such changes have been shown to be informative for example

in Araliaceae [23], Geraniaceae [24], Poaceae [25] and in early embryopythe lineages [26]. It

has been shown that independent gene and intron losses are limited to the more derived

monocot and eudicot clades with lineage-specific correlation between rates of nucleotide sub-

stitutions, indels, and genomic rearrangements [27].

Here we present the complete chloroplast genome sequence of bittersweet using high-

throughput sequencing, as well as the assembly, annotation, gene expression and unique struc-

ture characterization of its plastome. We also compare the gene order, inverted repeat (IR)

length and examine the variation of structural changes across the family. In order to achieve

this we revise the annotations of Solanaceae plastid genome records and correct possible

errors. Using this edited plastid genome dataset we present a phylogenetic hypothesis of Sola-

naceae and examine the distribution of structural changes in the plastid genomes.

Materials and methods

Chloroplast isolation

Bittersweet leaves were collected in the Kaisaniemi Botanical Garden of the University of Hel-

sinki, Finland during the summer of 2015. DNA isolation was carried out according to the

modified high-salt protocol of Shi et al [28]. DNA concentration was measured with a Qubit

fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and checked on 0.8% agarose gel.

We carried out a multiply-primed rolling circle amplification (RCA) according to the protocol

of Atherton et al. [29] using a REPLI-g Mini Kit (Qiagen, Hilden, Germany) to produce abun-

dant DNA template.

Plastid genome sequencing

Paired-end libraries of 300 bp were prepared with Illumina TruSeq DNA Sample prep kit (Illu-

mina, San Diego, CA, USA). Fragment analysis was conducted with an Agilent Technologies

Bittersweet plastome
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2100 Bioanalyzer using a DNA 1000 chip. Sequencing was carried out on an Illumina MiSeq

platform from both ends with 150 bp read length.

Genome assembly and annotation

Raw reads were first filtered to obtain high-quality clean data by removing low quality reads

with a sliding window quality cutoff of Q20 using Trimmomatic [30]. Plastid reads were fil-

tered by reference mapping to Solanaceae plastid genome sequences using Geneious 9.1.7. [31]

with medium-low sensitivity and 1,000 iterations. From the collected reads a de novo assembly

was carried out with the built-in Geneious assembler platform with zero mismatches and gaps

allowed among the reads. The similar procedure was conducted with Velvet v1.2.10 [32] with

k-mer length 37, minimum contig length 74 and default settings by applying a 400× upper cov-

erage limit. The resulting contigs were then circularized by matching end points. The results of

the reference mapping and two de novo methods were compared and inspected. Sanger-based

gap closure and IR junction verification was carried out following Moore et al. [33]. Gene

annotation was made with a two-step procedure. First we used gene prediction tools DOGMA

[34], tRNAscan-SE [35], cpGAVAS [36], Verdant [37] and GeSeq [38] to obtain annotations

based on different approaches. In a second step we inspected and curated all annotation manu-

ally with comparisons to all published (as of 18.10.2016) plastid genomes of Solanaceae using

Geneious. Local BLAST searches were further carried out to confirm the position of CDS

regions and genes. We confirmed start and stop codons manually and by comparison to RNA-

seq data. For each gene we inspected gene length based on amino acid translations and recon-

firmed any internal stop codons. The resulting genome map was drawn with OGDraw v.1.2

[39]. The annotated bittersweet plastid genome was further used as a reference to revise all

Solanaceae plastid genomes (deposited by 16.8.2016). Reannotation followed the two-step pro-

tocol described above. Plastid genome sequences were transformed into fasta file format then

annotated with the software tools [34–38]. All annotations were transferred to Geneious as a

new track under the corresponding genome. Sequences were aligned, compared and manually

curated compared to bittersweet.

Genome analyses

Codon frequency and relative synonymous codon usage (RSCU) was calculated on the basis of

protein-coding genes using an in-house script. We also computed the overall mean of pairwise

distances of 80 protein-coding genes of the 32 Solanaceae species based on the Kimura

2-parameter model using MEGA 7.0.21 [40]. Standard error estimate(s) were obtained using

bootstrap (1,000 replicates). Complete plastid genome sequences were compared and aligned

using mVISTA online tools [41], while the expansion and contraction of the inverted repeat

(IR) regions at junction sites was examined and plotted using IRscope [42]. We identified and

located repeat sequences (n�30 bp and a sequence identity� 90%) found in the bittersweet

plastome using REPuter [43]. Repeats larger than 10 bp were classified into the following

groups: (i) forward or direct repeats (F), (ii) repeats found in reverse orientation (R), (iii) pal-

indromic repeats forming hairpin loops in their structure (P) and (iv) repeats found in reverse

complement orientation (C). Because REPuter overestimates the number of repeats we manu-

ally inspected the output file and located the repeats in Geneious. Redundant repeats found

entirely within other repeats as well as duplicated parts of tRNAs were pruned. Perfect and

compound simple sequence repeats (SSRs) interrupted by 100-bp were located with MISA

[44]. A threshold level of seven was applied to mononucleotide repeats, four to dinucleotide

repeats and three to tri-, tetra, penta-, and hexanucleotide repeats. Output files were manually

edited and exported to Geneious for further inspection.

Bittersweet plastome
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Transcriptome analysis and RNA editing site prediction

RNA-seq library files were downloaded from NCBI Short Read Archive for Solanum dulca-
mara (SRR2056039). Reads were mapped to the complete plastid genome and filtered reads

were collected with Bowtie 2.0 [45] (mismatch� 2). RNA-seq reads were re-mapped with

Geneious using the genome annotation to calculate reads per kilobase per million (RPKM),

fragments per kilobase of exon per million fragments mapped (FPKM) and transcripts per mil-

lion (TPM) for transcript variants. Ambiguously mapped reads were counted as partial

matches for each CDS. Putative RNA Editing sites were predicted with an in silico approach

using the PREP database [46]. Verification of the predicted editing sites was carried out by

FreeBayes [47] variant calling.

Phylogenomic analyses

Our aim was to compare the 32 chloroplast genomes of Solanaceae (data present in NCBI on

16.8.2016) with each other and try to hypothesize when changes have taken place between/

among the species and major clades. As outgroup terminals we used Coffea arabica L. of

Rubiaceae, Ipomoea batatas (L.) Lam. and I. purpurea (L.) Roth. We aligned the 35 complete

chloroplast genomes (S1 Table) with MAFFT [48] (S1 Data) since they were lacking inversions

or other major changes. We conducted maximum likelihood (ML) analyses using RAxML-NG

[49] under three different strategies. 1) One of the IR regions was removed from all plastid

genomes to reduce overrepresentation of duplicated sequences then we run RAxML-NG on

the unpartitioned alignment under GTR+I+G substitution model as a single partition; 2) The

same data matrix was partitioned by gene, exon, intron and intergenic spacer regions

(n = 258) and allowed separate base frequencies, α-shape parameters, and evolutionary rates to

be estimated for each; 3) we inferred the best-fitting partitioning strategy with PartitionFin-

der2 [50] for the alignment (n = 24). The best fitting nucleotide substitution models were

inferred with jModelTest2 [51]. Branch support values were obtained from 10,000 non-

parametric bootstrapping. For each alignment we conducted ten separate runs with

RAxML-NG v0.5.0b since log-likelihoods could show variation among individual runs [52].

The complete plastid genome alignment was analyzed also with parsimony as an optimality

criterion using the program TNT [53]. The matrix included 19,956 parsimony informative

characters and due to its small size we were able to perform analyses using “traditional” search

starting from Wagner trees improved using tree bisection reconnection (TBR) algorithm. This

search was performed twice with 3,000 replications. We also examined the phylogenetic distri-

bution of structural changes using the tree constructed with parsimony and ML methods

implemented in the ancestral state reconstruction tools of Mesquite 3.2 [54]. Major genomic

changes were binary coded (S2 Data) and mapped on phylogenetic trees. Phylogenetic trees

were visualized and edited with TreeGraph2 [55].

Results and discussion

Chloroplast genome assembly and validation

Enriched chloroplast DNA was used to generate 1,645,956 paired-end reads, with an average

fragment length of 277 bp, which generated average 1,340 × genome coverage. Low quality

reads (Q20) were filtered out, and the remaining high quality reads were utilized in further

assembly. For genome assembly we used one reference mapping and two de novo methods. As

a first step quality filtered reads were mapped to Solanaceae reference genomes, which resulted

in an entire contig showing good agreement with published genome sequences. Based on these

collected reads we used Geneious and Velvet to produce a single contiguous fragment

Bittersweet plastome
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representing the plastid genome. The three assemblies were compared and discrepancies were

manually resolved. With Velvet we obtained a linear contig 43 bp longer (155,623 bp) than

with Geneious (155,580 bp) which was caused by a repeated sequence at the start and end

point and these were removed. Most de novo methods do not account for the circularity of the

plastid genome, while Geneious overcomes this by allowing contig circularization during the

assembly. The assembly was validated by PCR amplification and Sanger sequencing targeting

the four junctions between the IRs and LSC/SSC regions. Sanger results showed identical

sequences when compared to the plastid genome demonstrating the accuracy of the assembly.

The final chloroplast genome sequence was then submitted to GenBank (KY863443).

Genome organization, repeats and sequence diversity

The chloroplast genome of Solanum dulcamara is 155,580 bp long showing a quadripartite

structure of long and small single-copy regions of length 85,901 and 18,449 bp, separated

with two inverted repeat regions of 25,615 bp (Fig 2). The genome contains 81 protein-cod-

ing, 27 tRNA and four rRNA genes comprising the total of 114 unique genes (S2 Table).

Seventeen genes contained introns, with ycf3 and clpP containing two. All of these belong to

group II introns except trnL-UAA with group I intron (S3 Table). The distribution of the

genes on different regions of the genome exhibit similarity with other Solanaceae with 13

genes in the SSC and 19 genes in the IR while the rest were on the LSC. The overall GC con-

tent of the chloroplast genome is 37.8% resembling other species of Solanaceae (S4 Table).

Eighty percent of the total length of the genome is related to genetic regions. The Arg amino

acid coded with AGA codon was the most frequent codon showing RSCU rate of 1,187 (S5

Table).

The majority of the genes show relatively slow evolutionary divergence since all genes had

an average sequence distance of less than 0.10 (S6 Table). Low levels of sequence distances

indicate the conserved nature of protein-coding genes in Solanaceae. The only gene showing

slightly larger distance with a unique function was sprA (d = 0.114; S.E = 0.016). Chloroplast

genes are mostly subjected to purifying selection and low sequence diversity is due to conser-

vation of the functions of the photosynthetic system. In this context the plastid genome diver-

sity of Solanaceae do not resemble other economically important plant families such as

Poaceae where plastid genomes harbor many divergent genes and unique plastid rearrange-

ments [25].

Using MISA we identified 374 SSRs in the bittersweet plastid genome, of which 253 were

mono-, 40 di-, 70 tri-, 10 tetra- and one was a pentanucleotide (S7 Table and S3 Data). SSRs

were more abundant in the LSC and SSC regions compared to the IRs and 107 occurred in

compound formation that were composed of several combinations of SSRs interrupted by

maximum distances of 100 bp. The most abundant motifs of the SSRs were poly-A/T stretches

characteristic of angiosperm plastid genomes. We also identified 25 larger repeats (> 10 bp) in

the bittersweet plastid genome composed of 12 forward, five reverse, five palindromic and

three mixed (forward/palindromic) repeats (Table 1) using REPuter. The largest repeat with a

size of 83 bp was a forward repeat found in the IGS region of ycf3 and trnS-GGA. Forward

repeats were commonly distributed in the intergenic spacer regions of the genome located

mostly in the LSC. Two repeats were found among the introns of ndhA, ycf3 and petD while

one repeat appeared in the infA pseudogene. Three repeats were found among the CDS of

atpI, ndhC and ycf2, while another motif was repeated in the psaA and psbB gene. The repeats

in atpI and ycf2 seem to be conserved since they have also been reported from grasses [25].

The most variable region was the trnE-UUC—trnT-GGU IGS, which had two palindromic

and one forward repeat.

Bittersweet plastome
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Reannotation of Solanaceae plastid genomes

We noticed a litany of errors in currently deposited annotations, which were corrected for our

analyses in a two-step curation process using gene prediction tools followed by manual adjust-

ments. The reannotated genome files could be accessed as an online supplement (S4 and S5

Data). We provide here the first annotation for the sequences of S. pennellii Correll and

Fig 2. Map of the chloroplast genome of the Solanum dulcamara. Genes lying inside of the outer circle are transcribed counterclockwise while those

outside that circle are transcribed clockwise. Genes belonging to different functional groups are color coded differently and the GC, AT content of the

genome are plotted on the inner circle as dark and light gray, respectively. The inverted repeats, large single copy, and small single copy regions are

denoted by IR, LSC, and SSC, respectively.

https://doi.org/10.1371/journal.pone.0196069.g002
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Iochroma loxense (Kunth) Miers, which entirely lacked genome features. A complete list of

annotation errors is found in S8 Table, and illustrates the difficulties encountered when

attempting to compare across genomes. These differences could cause considerable conse-

quences inferring gene functionality or synteny. In general annotations of the LSC and SSC

corresponding to the basic quadripartite structure of angiosperm plastid genomes were

entirely missing or sparsely indicated. Inverted repeats (IRs) were either unannotated or their

orientation, size and correct naming was erroneous. Compared to the tobacco reference order

LSC-IRB-SSC-IRA [56], the erroneous annotation LSC-IRA-SSC-IRB is often applied. It is

important to note that the IR sequences of the Atropa belladonna L. and Saracha punctate
Ruiz. c Pav. were dissimilar. Inverted repeat sequences are under concerted evolution [22] and

divergent sequences could be possible sequencing/assembly errors in these two genomes or

they could represent a relatively rare case of chloroplast evolution. Several protein-coding

genes had errors with assigned start/stop codons. For example, the start codon of the rpoC2

gene is shifted with 12 bps in most deposited plastid genomes except in Nicotiana L. species

and in Datura stramonium L. Annotations were found to be insufficient for genes containing

introns since they were lacking exon and/or intron designations. The exon-intron boundaries

had variable annotation for many genes with high level of synteny, e.g., atpF or rpoC1. Gene

Table 1. Repeat sequences of the Solanum dulcamara chloroplast genome.

No Type Location Region Repeat unit Period size

(bp)

Copy

Nr.

1 F ycf3—trnS-GGA IGS LSC AACAATTTTAAAGAAAAATTGTATCTTTATCCCGGAGTC
TTGAAGGAAAGAAAAATGGTTCTTTGTTTTGACTTTGATGAAA

83 2

2 F psaA and psbB CDS LSC TGCAATAGCTAAATGGTGATGGGCAATATCAGTCAGCC 38 2

3 F ndhA and ycf3 intron LSC/

SSC

CAGAACCGTACGTGAGATTTTCACCTCATACGGCTCCT 38 2

4 F infA pseudogene LSC AGGTATCAACTAATCTAATCCAATTTGGATATTATAAA 38 2

5 F atpB—rbcL IGS LSC TTAGCACTCGATGAGACTGAGTTAATTTGCAAGCT 34 2

6 F psbA—ycf3—trnS-GGA IGS LSC TTAATATAATAAAAAGAAGTCTATTTTGT 29 2

7 F sprA—trnL-UAG IGS SSC CCTTTTTAACTCTATTCCTTAATTGAGT 28 2

8 P rps12—trnV-GAC IGS IR TGAGATTTTCACCTCATACGGCTCCT 26 2

9 P petD intron LSC TATAAGTGAACTAGATAAAACGGAAT 26 2

10 F trnG-GCC—trnR-UCU IGS LSC TTAGTACATCATTGAATATACAA 23 2

11 F psaJ—rpl33 IGS LSC GTGGACGGGCTGAGGAATGGGG 22 2

12 F/P rps12—trnV-GAC IGS IR ATTAGATTAGTATTAGTTAGT 21 4

13 F ndhC—trnV-UAC IGS LSC TCCTTTTATTATTATTTAAT 20 2

14 P psbT—psbN IGS LSC AGTTGAAGTACGGAGCCTCC 20 2

15 F trnE-UUC—trnT-GGU and rps4—

trnT-UGU

IGS LSC TTATTTAGTATTTCGAATT 19 2

16 F/P ycf2 CDS IR CGATATTGATGATAGTGAC 19 4

17 F rps16—trnQ-UUG IGS LSC ATTATAATATTAATTA 16 3

18 P trnE-UUC—trnT-GGU IGS LSC TTTTATTTAGAAA 13 2

19 P trnE-UUC—trnT-GGU IGS LSC CATCATACTATGA 13 2

20 R trnF-GAA—ndhJ IGS LSC TCTCCTCTTTT 11 2

21 R ndhC CDS LSC CATCAAAAACA 11 2

22 R atpH—atpI IGS LSC TTTATTATTTA 11 2

23 R atpI CDS LSC ACAAAAATAA 11 2

24 R petL—petG IGS LSC CCTCTTTTTT 10 2

25 F/P rps12—trnV-GAC IGS IR AACTAATACT 10 6

https://doi.org/10.1371/journal.pone.0196069.t001
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annotations were missing for some species in case of psbK and psbZ, while the later was often

annotated as ihbA now regarded as a synonym of psbZ.

Besides previously described genes we located and annotated hypothetical gene ycf68 the

218 bp long small plastid RNA (sprA) gene in all studied genomes. Homologs of sprA are pres-

ent in eudicots but absent from monocots and they are rarely annotated in plastid genomes.

This gene was reported to play a role in the 16S rRNA maturation in Nicotiana tabacum L.

[57], but its function is non-essential under normal growth conditions [58]. It is not part of the

catalytic core nor does it guide the rRNA machinery rather it acts independently. In this

respect its function is similar to other non-essential plastid spRNAs.

According to our experiences during the reannotation none of the currently existing tools

provided submission ready annotations. They required minor or even extensive manual cura-

tion especially with the most commonly used DOGMA producing results which require expert

interpretation and laborious adjustments. For example annotating intron-containing genes or

genes with short exons such as petB, and dealing with trans-splicing reading frames like rps12

is challenging with DOGMA. Moreover DOGMA [34] generates a special output file com-

pared to CpGAVAS [36] or GeSeq [38], which generate standard general feature format (.gff)

or GenBank (.gb) files that can be integrated with other software without further processing.

From the currently available tools GeSeq [38] generated the highest quality results by annotat-

ing >95% of the genes and coding regions correctly compared to our curated reference set. In

most cases annotation errors were propagated from erroneous references to newly assembled

genomes creating a systematic problem in Solanaceae. For future reference we advise the jetti-

son of outdated annotation tools such as DOGMA and advise the use of up-to-date novel soft-

ware such as GeSeq to avoid complications. For de novo sequenced Solanaceae plastid

genomes bittersweet can also serve as a novel reference for comparison and annotation.

Expansion and contraction of IR regions

By using the curated genome annotations we compared the junction sites of ten selected Sola-

naceae plastid genomes. In general IRs are systematically un-annotated in deposited plastid

genomes with several genes, for example rpl2, missing. Pseudogenes like the truncated ψrps19

are mislabeled or entirely missing, which made the comparison of the IR regions cumbersome

and time consuming. Therefore, we utilized an in house script, IRscope [42] to overcome these

problems, and located the IRs and plotted the genes in vicinity of the junctions (Fig 3). The

length of the IR regions were similar ranging from 25,343 bp to 25,906 bp showing some

expansion. The endpoint of the Solanaceae JLA is characteristically located upstream of the

rps19 and downstream of the trnH-GUG. In Solanoideae, the IR expanded to partially include

rps19 creating a truncated ψrps19 copy at JLA, thus this pseudogene is missing from Nicotiana.

The extent of the IR expansion to rps19 varies from 24 to 91 bp and the end point seems to be

conserved not exceeding to the following intergenic spacer region. Furthermore, infA, ycf15,

and a copy of ycf1 located on the JSB were detected as pseudogenes. In contrast to Solanum
tuberosum and S. lycopersicum where JSB is tangent to the end of the pseudo ycf1 gene, the

copy of this gene in S. dulcamara is showing an extra part extended further to the SSC (Fig 3).

Phylogenetic relationships in Solanaceae

Our phylogenetic analyses of the whole plastid genome alignment resulted in highly resolved

trees (Fig 4), with almost all clades recovered having maximum branch support values (S1

Fig). We conducted phylogenetic analysis with three different partitioning strategies under

maximum likelihood and analyzed the matrix also using parsimony. All our analyses resolved

similar topologies which confirm results of previous phylogenetic analyses based on fewer
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genes [10, 59] but in several cases groups with low support values of earlier studies are resolved

in our tree with high support values.

Trees of parsimony and ML analyses are congruent except for the clade composed of

iochromas (S1 Fig). Iochrominae is a diverse clade of Physaleae with ca. 34 species and six

Fig 3. Junction sites of the inverted repeats. For each species, genes transcribed in positive strand are depicted on the top of their corresponding track with

right to left direction, while the genes on the negative strand are depicted below from left to right. The arrows are showing the distance of the start or end

coordinate of a given gene from the corresponding junction site. For the genes extending from a region to another, the T bar above or below them show the

extent of their parts with their corresponding values in base pair while nothing is plotted for the genes tangent to the sites. The plotted genes and distances in the

vicinity of the junction sites are the scaled projection of the genome. JLB (IRb /LSC), JSB (IRb/SSC), JSA (SSC/IRa) and JLA (IRa/LSC) denote the junction sites

between each corresponding two regions on the genome.

https://doi.org/10.1371/journal.pone.0196069.g003
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traditionally recognized genera, including Acnistus Schott, Dunalia Kunth, Eriolarynx (Hunz.)

Hunz, Iochroma Benth., Saracha Ruiz & Pav. and Vassobia Rusby. Members of this group are

shrubs of high elevation in the Andes displaying great diversity in floral characteristics and pol-

lination system. Recent molecular phylogenetic studies resolved Iochrominae with high support

value but relationships within the clade have remained poorly resolved [10, 59]. In this group

nodal resolution does not scale proportionately to the length of sequence analyzed, and struc-

tural variations in the plastid genome seem to be accumulated as compared to other clades.

Iochrominae represented here by Iochroma, Dunalia and Saracha appear to be monophy-

letic based on the analyses of the complete chloroplast genome sequences. However, our

results also suggest that two of these morphologically delimited genera (Iochroma and Duna-
lia) are not monophyletic. Smith and Baum [60] utilizing nuclear markers (ITS, waxy and

LEAFY) also found that generic boundaries are not congruent with the current taxonomy.

Iochromas might have highly reticulated history that is impossible to be represented by a

dichotomic tree. The unequivocal resolution of iochromas will likely require the inclusion of

nuclear genomic regions.

Fig 4. Cladogram illustrating the phylogenetic relationships of Solanaceae based on complete chloroplast genome sequences. Plastid genome rearrangement

events are mapped on the branches of the best scoring maximum likelihood tree generated with RAxML-NG. Each node has 100% bootstrap support value. A node

with lower support value indicated and those with support values below 50% collapsed. Currently recognized suprageneric groups are listed on the right.

https://doi.org/10.1371/journal.pone.0196069.g004
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We resolved Solanum dulcamara in a separate clade with S. nigrum appearing as a sister

group. This reinforces the close relationship of the Dulcamaroid and Morelloid clades as pro-

posed by other molecular phylogenetic analyses based on fewer markers [8–10]. The infor-

mally named x = 12 clade is found in our analysis as sister to Nicotianoideae. In this group the

chromosome numbers are based on 12 pairs [61], and members are estimated to have gone

through two separate whole-genome duplication (WGD) events ca. 117 Ma [62] and 49 Ma BP

[63], respectively. Increased sampling outside this group is needed since this could shed light

on ancient WGDs in the family. Plastid genomes of Solanaceae hold much promise for resolv-

ing relationships among clades of the family that have previously been problematic. Although

the phylogenomic tree presented in this study is largely robust it should be kept on mind that

our sampling is still sparse in terms of the number of terminals. It is also important to note

that organellar phylogenomics may fail in rapidly radiating groups with interspecific hybrid-

ization as exemplified here by iochromas. Other biological processes such as incomplete line-

age sorting might also make phylogenetic analyses very difficult, however, organellar

phylogenomics can be used to detect such processes.

Plastid genome structure of Solanaceae

Intending to identify and map the major structural changes of Solanaceae plastid genomes on

the phylogenetic tree, we selected ten Solanaceae plastid genomes for detailed comparison rep-

resenting diverse groups of the family and included two outgroup taxa in the analysis. Gene

comparisons were extended to the entire Solanaceae dataset using local alignments with

MAFFT and the curated genome annotations. The size of the plastid genomes varied between

155,312 bp (Solanum tuberosum) to 162,046 bp (Ipomoea purpurea) (S4 Table). Our compari-

son shows that gene content and synteny are highly conserved across Solanaceae plastid

genomes (S2 Fig). All species analyzed display complete gene synteny when accounting for

expansion and contraction of the IRs (Fig 3). The organization and evolution of Solanaceae

plastid DNA have been analyzed by previous studies using restriction site methods [64], PCR

surveys [65–68] and complete genome sequences [69–74]. These comparisons highlighted

some features of Solanaceae but the phylogenetic distribution of these rearrangements have

not been examined. Our comprehensive comparison of complete chloroplast genomes of ten

Solanaceae and S. dulcamara confirm the presence of all the genomic rearrangements reported

Table 2. Major changes in the chloroplast genomes of Solanaceae.

Gene Insertion Deletion Pseudogene Notes

accD 2 1 - 24-bp deletion in the ’x = 12 clade’ except

(Nicotiana, Datura, Physalis, Iochromas)

141-bp insertion in Capsicum
9-bp insertion in Solanum

infA - 1 + 124-bp deletion in Solanum
psbD - 1 - 64-bp deletion in Iochroma tongoanum
rpl20 - 1 - 31-bp deletion Physaleae

rpl33 1 - 15-bp insertion in Capsicum lycianthoides
rps19 - - + -

sprA 1 2 - 14-bp insertion in Physalis
52-bp deletion in Capsicum
37-bp deletion Iochromas

trnA-UGC - 2 - 108-bp and 141-bp intron deletion in Nicotiana and Atropa/Hyosciamus

trnF-GAA - - + Uniting a group of Pseudosolanoids

ycf1 - - + Truncated pseudogenization of one ycf1 copy in Solanaceae.

https://doi.org/10.1371/journal.pone.0196069.t002
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previously. We will briefly review the conclusions made before and then highlight the novel

aspects resulting from our analysis and moreover, examine the distribution of these structural

changes using the phylogenetic hypothesis constructed based on complete plastid genome

alignment.

We observed ten characteristic features in Solanaceae plastid genomes linked to indels or

pseudogenization processes (Table 2). Two genes, one copy of ψycf1 and ψrps19 at the IRb/

SSC and IRa/LSC junction were truncated pseudogenes, while infA has become non-func-

tional through partial degradation. The substitutions of infA orthologues in Solanaceae show

almost equal numbers of substitutions at all codon positions with missing start codons. It is

also a pseudogene in Ipomoea representing Convolvulaceae, the sister family of Solanaceae but

it appears to be functional in Coffea of Rubiaceae [75] used as a distant outgroup of Lamiids.

The infA gene seem to have become non-functional in the ancestor of Solanales multiple times

independently. In Solanaceae the pseudogenization further continued with a monophyletic

124-bp deletion in the ancestor of the genus Solanum. Further changes appeared in four pro-

tein-coding genes; there is a 64-bp deletion in psbD of Iochroma tingoanum while 31-bp was

deleted from the rpl20 gene in members of Physaleae. Capsicum lycianthoides Bitter had a

unique 15-bp insertion in the rpl33 gene. The accD gene, which encodes one of the four sub-

units of the acetyl-CoA carboxylase enzyme in most chloroplasts show a 24-bp insertion in the

members of the ‘x = 12 clade’ [61]. This seems to be an ancestral trait shared by members of

Nicotianoideae and Solanoideae and maintained in Datura L., Nicotiana, Physalis L. and

Iochromas but lost independently inHyoscyamus L., Capsicum L. and Solanum. The latter two

went through a characteristic 141-bp and a small 9-bp insertion. The 141-bp deletion was also

confirmed in Capsicum by Jo et al. [72]. The small plastid RNA (sprA) gene, which includes a

complementary segment to the pre-16S rRNA shows high variability among Solanaceae. Func-

tional sprA copies were present in most Solanaceae but several mutation event indicate it has

be non-functional is some groups. A 52-bp deletion appeared in Capsicum at the 5’ and further

37-bp were deleted in iochromas while Physalis showed an autapomorphic 14-bp insertion (S3

Fig). The function sprA has been lost independently multiple times once in Iochrominae and

in Capsaceae, however, the gene remained functional in Capsicum lycianthoides.
Genomic changes also affect tRNA genes and neighboring regions. The most notable

change is the duplication of the original phenylalanine (trnF-GAA) gene in a tandem array

composed by multiple pseudogene copies in Solanaceae. The pseudogene copies are composed

of several highly structured motifs that are partial residues or entire parts of the anticodon, T-

and D-domains of the original trnF gene [66]. Previously it was shown that these copies are

subjected to possible inter- or intrachromosomal recombination events [67] and they have

high taxonomic relevance uniting a unique plastid clade of Pseudosolanoids [68]. They provide

support for previous results [10, 59] separating the Atropina and Juanulloae clades from Sola-

neae, Capsaceae, Physaleae, Datureae and Salpichroina [68]. Another tRNA related structural

change is apparent in the group II intron of trnA-UGC, where 108-bp was deleted in Nicotiana
and extended up to 147-bp in Atropa L. andHyoscyamus.

Gene expression analyses

We carried out the expression analysis of 85 protein-coding genes (Table 3). As we were

mostly interested about CDS/gene features we used only these annotation types for read map-

ping. We also used the RNA-seq data set to verify start/stop codon positions and further ulti-

mate or penultimate editing sites from the reannotation process. A total of 147,721 reads were

mapped to the bittersweet plastid genome with an average 112× read depth. The largest por-

tion of reads 25,910 (17.53%) and 12,582 (8.51%) was derived from adenosine triphosphate
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Table 3. RNA Expression of protein-coding genes in the Solanum dulcamara chloroplast genome. Reads per kilobase per million (RPKM), fragments per kilobase of

exon per million fragments mapped (FPKM) and transcripts per million (TPM) for transcript variants.

Gene Location min. Max Length FPKM RPKM TPM

atpB 54,285 55,781 1,497 278926.7 278926.7 232422.2

atpE 53,887 54,288 402 238932.2 238932.2 199095.9

clpP 71,842 73,864 591 120109.6 120109.6 100084.1

rps7 142,238 142,705 468 91956.3 91956.3 76624.7

rps7 98,701 99,168 468 88572.2 88572.2 73804.8

psbM 30,605 30,709 105 22431.7 22431.7 18691.7

psbA 552 1,613 1,062 21738.5 21738.5 18114.1

ycf1 125,388 131,069 5,682 21573.2 21573.2 17976.3

psbK 7,750 7,935 186 21287.0 21287.0 17737.9

psaJ 68,897 69,031 135 19101.3 19101.3 15916.6

rbcL 56,597 58,030 1,434 13932.8 13932.8 11609.9

rpl20 70,391 70,777 387 11700.0 11700.0 9749.3

psbI 8,248 8,406 159 11493.2 11493.2 9576.9

rps12 71,590 142,184 372 11407.7 11407.7 9505.7

rps12 71,590 100,015 372 11243.9 11243.9 9369.3

psbJ 65,856 65,978 123 10565.0 10565.0 8803.5

atpF 11,989 13,234 555 8579.1 8579.1 7148.8

psbE 66,378 66,629 252 8540.8 8540.8 7116.8

rps16 5,077 6,199 267 7528.7 7528.7 6273.4

atpH 13,637 13,882 246 7180.9 7180.9 5983.6

ycf1 110,382 111,527 1,146 6963.1 6963.1 5802.2

rps18 69,855 70,160 306 6768.2 6768.2 5639.8

rps15 124,723 124,986 264 6537.5 6537.5 5447.5

rps19 85,655 85,933 279 6258.8 6258.8 5215.3

rpl22 85,135 85,602 468 6225.9 6225.9 5187.8

rps14 38,024 38,326 303 6098.1 6098.1 5081.4

ndhH 123,425 124,606 1,182 5531.4 5531.4 4609.1

psbT 76,034 76,138 105 5511.2 5511.2 4592.4

rpl16 82,913 84,349 405 5113.7 5113.7 4261.1

psbZ 37,053 37,241 189 4941.9 4941.9 4117.9

psaC 118,619 118,864 246 4704.7 4704.7 3920.3

cemA 62,915 63,604 690 4472.9 4472.9 3727.1

rps3 84,494 85,150 657 4249.4 4249.4 3540.9

ycf3 43,702 45,689 507 4245.1 4245.1 3537.4

psbC 34,984 36,369 1,386 4211.8 4211.8 3509.6

psbB 74,308 75,834 1,527 4135.4 4135.4 3445.9

rpl33 69,463 69,663 201 3838.7 3838.7 3198.7

ndhA 121,171 123,423 1,092 3830.3 3830.3 3191.7

rpl2 153,916 155,406 825 3704.0 3704.0 3086.5

psaB 38,445 40,649 2,205 3480.8 3480.8 2900.4

petN 29,403 29,492 90 3384.1 3384.1 2819.9

psaA 40,675 42,927 2,253 3343.5 3343.5 2786.1

rpl2 86,000 87,490 825 3322.6 3322.6 2768.6

psbD 33,939 35,000 1,062 3259.8 3259.8 2716.3

petB 76,806 78,207 652 3238.8 3238.8 2698.8

ndhK 50,792 51,535 744 3097.5 3097.5 2581.1

(Continued)
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(ATP) synthase genes and from the photosystem II (PSII) complex. All genes were normally

expressed while the five most abundant were atpB, atpE, clpP, rps7 and psbM (>10,000

FPKM). The assembled consensus sequence from the mapped reads (148,110 bp long) covered

95.22% of the genome spanning through also intergenic spacer (IGS) sequences. Accordingly,

a nearly complete pseudo Solanum dulcamara plastid genome was unexpectedly obtained by

means of transcriptome data. We found multiple transcripts mapping to several non-func-

tional genes for example ycf15, infA, or to truncated pseudogenes ψycf1 and ψrps19 at the JLA

Table 3. (Continued)

Gene Location min. Max Length FPKM RPKM TPM

ndhI 120,574 121,077 504 2860.4 2860.4 2383.5

ndhB 96,202 98,413 1,533 2834.4 2834.4 2361.9

ndhB 142,993 145,204 1,533 2794.7 2794.7 2328.7

rps2 16,048 16,758 711 2770.1 2770.1 2308.3

atpA 10,411 11,934 1,524 2618.0 2618.0 2181.5

atpI 15,056 15,799 744 2565.4 2565.4 2137.6

rps8 81,838 82,242 405 2506.7 2506.7 2088.8

rpl14 82,410 82,778 369 2366.1 2366.1 1971.6

ndhJ 50,210 50,686 477 2256.1 2256.1 1879.9

psbN 76,212 76,343 132 2230.4 2230.4 1858.6

ndhC 51,526 51,888 363 2097.6 2097.6 1747.9

petD 78,398 79,611 483 1639.5 1639.5 1366.2

psbH 76,455 76,676 222 1554.9 1554.9 1295.6

ndhG 119,645 120,175 531 1453.1 1453.1 1210.8

matK 2,136 3,665 1,530 1446.5 1446.5 1205.4

petG 67,909 68,022 114 1424.9 1424.9 1187.3

rpoC1 21,302 24,105 2,067 1414.5 1414.5 1178.7

rps11 80,882 81,298 417 1412.1 1412.1 1176.6

petA 63,824 64,786 963 1244.0 1244.0 1036.6

rpoA 79,803 80,816 1,014 1201.5 1201.5 1001.1

ycf4 61,594 62,148 555 1170.7 1170.7 975.5

ndhE 119,116 119,421 306 1128.0 1128.0 940.0

rpl23 153,616 153,897 282 1116.0 1116.0 930.0

psaI 61,037 61,147 111 1097.5 1097.5 914.6

rpl23 87,509 87,790 282 1080.0 1080.0 900.0

rpl32 114,524 114,691 168 966.9 966.9 805.7

accD 58,765 60,288 1,524 906.0 906.0 754.9

rps4 46,706 47,311 606 770.6 770.6 642.1

rpoB 24,111 27,338 3,228 673.0 673.0 560.8

petL 67,627 67,722 96 634.5 634.5 528.7

ndhD 116,999 118,501 1,503 580.9 580.9 484.1

rpoC2 16,983 21,149 4,167 438.5 438.5 365.4

rpl36 81,400 81,513 114 356.2 356.2 296.8

ycf2 88,118 94,960 6,843 308.6 308.6 257.1

ycf2 146,446 153,288 6,843 281.9 281.9 234.9

ndhF 111,507 113,729 2,223 246.6 246.6 205.5

ccsA 115,826 116,767 942 215.5 215.5 179.6

ycf15 95,045 95,308 264 76.9 76.9 64.1

ycf15 146,098 146,361 264 76.9 76.9 64.1

https://doi.org/10.1371/journal.pone.0196069.t003
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(IRa/LSC). From these infA, ψycf1 and ψrps19 were nearly completely covered (S4 Fig) show-

ing that they are indeed transcribed, while ycf15 had sparse coverage. This indicates that tran-

scriptome sequencing captured both primary and processed mRNA sequences of the

plastome. The detected and mapped reads of the bittersweet plastid RNA population could be

grouped into three major types i) mRNAs ii) non-coding RNAs from IGS regions and iii) tran-

ditonal non-coding RNAs (rRNAs and tRNAs). Similar patterns were observed by Shi et al.

[76] and also in earlier studies using Northern blot hybridization where 90% of the plastid

genome was found to be transcribed [77]. Such patterns could be caused by transcriptional

uncoupling of genes in polycistronic clusters [78]. Non-coding RNAs (ncRNAs) in the plas-

tome are further transcribed from intergenic regions (IGSs), which play important role in

post-transcriptional regulation [79]. Cyanobacteria contain several ncRNAs making it plausi-

ble that also plastomes harbor a wide variety of undetected regulatory ncRNAs [80]. These

results show that non-functional genes are transcribed as a precursor polycistronic transcript,

which are later edited during pre-mRNA maturation. In order to activate the function of other

genes plastid primary transcripts are edited and expression in the plastome mainly occurs at a

post-transcriptional stage. The multiple transcription arrangement leading to the full tran-

scription of plastid genomes is a prokaryotic ancestral trait still preserved in eukaryotic cells

billion years after the primary endosymbiosis [81, 82].

Plastid RNA editing

Chloroplast RNA editing was first discovered in 1991 [83] and it could be defined as the post-

transcriptional modification of pre-RNAs by insertion, deletion or substitution of specific

nucleotides to form functional RNAs. In the plastid genome this processing machinery is cru-

cial to alter the long pre-RNA transcripts as detailed above. The most frequent editing events

in plants are C-to-U changes, however, U-to-C editing has also been observed [84]. RNA edit-

ing is absent in liverworts and green algae while it is abundant in lycophytes, ferns and horn-

worts [85]. To gain insight to the RNA metabolism of bittersweet we first predicted 28 RNA

editing sites out of 35 plastid genes with PREP (Table 4). We aligned RNA read sequences

using bittersweet as a reference genome and by variant searching we confirmed 23 editing sites

from those predicted with PREP. We found four additional editing sites with variant search

not detected by PREP resulting in 27 confirmed editing sites. From these 25 (92.5%) were C-

to-U changes and two were A-to-G and G-to-U conversions resulting in non-synonymous

amino acid changes. The percentage of conversion rates for each edit varied between 25 to

95.9% according to the calculated ratio between the numbers of reads with an alternate base

compared with the reference. Some edits showed high rates (>90%) for atpF, ndhB, petB, psbE

and rps14 genes making it clear that these forms are highly abundant among processed RNAs

in bittersweet. Edits of these particular genes has also been reported in previous studies of

embryophytes [86, 87] suggesting the conserved feature of such sites. It has been proposed that

RNA editing is of monophyletic origin and evolved as a mechanism to conserve certain codons

[88]. For example the start codon (AUG) of the psbL and ndhD is RNA edited (C-to-U) in all

Solanaceae except in Datura stramonium where the start codon of psbL remains unedited.

Conclusions

Comparison of chloroplast genome organization not only provide us with valuable informa-

tion for understanding the processes of chloroplast evolution, but also gives insights into the

mechanisms underlying genomic rearrangements [25]. Furthermore, investigation of plastid

genome structures could trigger further breakthroughs in applied sciences. For example herbi-

cides like PSI and PSII inhibitors have their target genes in the chloroplast genome thus
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understanding the chloroplast genome may indirectly support the exploration of herbicide

resistance and development of novel control methods [89]; while plastid engineering can also

be useful to develop resistance to various abiotic and biotic stress factors based on discovered

resistance traits. Here we report the complete chloroplast genome sequence of Solanum dulca-
mara as a genomic tool for potential plastid genome comparative studies. We also present the

reannotation of Solanaceae plastid genomes using manual curation using S. dulcamara as a ref-

erence. Based on the reannotated genome sequences we introduce a hypothesis of the ancestral

plastid genome organization of Solanaceae and the rearrangements unique to some major

clades. The ancestral plastid genome of Solanaceae had two degraded non-functional genes,

infA and truncated ycf1 copy, a deletion in the trnA intron and the appearance of a highly

divergent gene (sprA). Our ancestral genome reconstruction suggests further rearrangements

in the stem branch of Solanoideae by the expansion of the IR and the occurrence of a truncated

Table 4. RNA editing sites in the Solanum dulcamara chloroplast genome.

Gene Name Length Strand Region Nt pos AA pos Effect Nt Change Score RNASeq PREP Number of reads

atpF 1246 + LSC 92 31 CCA (P) = > CUA (L) C = > U 0.86 + + U; 49 (90.7%), C; 5 (9.3%)

ndhA 2258 + SSC 341 114 UCA (S) = > UUA (L) C = > U 1 + + U; 35 (70%), C; 15 (30%)

ndhA 2258 + SSC 566 189 UCA (S) = > UUA (L) C = > U 1 + + U; 20 (34.4%), C; 38 (65.6%)

ndhA 2258 + SSC 1073 358 UCC (S) = > UUC (F) C = > U 1 + + U; 49 (74.2%), C; 17 (25.8%)

ndhB 2212 + IR 149 50 UCA (S) = > UUA (L) C = > U 1 + + U; 33 (86.8%), C; 5 (13.1%)

ndhB 2212 + IR 467 156 CCA (P) = > CUA (L) C = > U 1 + + U; 34 (87.1%), C; 5 (12.9%)

ndhB 2212 + IR 586 196 CAU (H) = > UAU (Y) C = > U 1 + + U; 26 (82.3%), C; 8 (17.7%)

ndhB 2212 + IR 611 204 UCA (S) = > UUA (L) C = > U 0.80 + + U; 33 (89.1%), C; 4 (10.9%)

ndhB 2212 + IR 737 246 CCA (P) = > CUA (L) C = > U 1 + + U; 47 (95.9%), C; 2 (4.1%)

ndhB 2212 + IR 746 249 UCU (S) = > UUU (F) G = > U 1 + + U; 40 (95.2%), C; 2 (4.8%)

ndhB 2212 + IR 780 260 UGG (P) = > UGU (C) C = > U - + - U; 32 (50.8%), G, 31 (49.2%)

ndhB 2212 + IR 830 277 UCA (S) = > UUA (L) C = > U 1 + + U; 44 (97.1%), C; 1 (2.9%)

ndhB 2212 + IR 836 279 UCA (S) = > UUA (L) C = > U 1 - + -

ndhB 2212 + IR 1481 494 CCA (P) = > CUA (L) C = > U 1 + + U; 20 (52.6%), C; 18 (47.4%)

ndhD 1504 + SSC 2 1 ACG (T) = > AUG (M) C = > U - + - U; 40 (95.2%), C; 2 (4.8%)

ndhF 2223 + SSC 290 97 UCA (S) = > UUA (L) C = > U 1 - + -

petB 1398 - LSC 1168 390 CGG (R) = > UGG (W) C = > U 1 + + U; 15 (93.8%), C; 1 (6.2%)

petB 1398 - LSC 1361 454 CCA (P) = > CUA (L) C = > U 1 + + U; 23 (74.2%), C; 8 (25.8%)

psbE 252 + LSC 214 72 CCU (P) = > UCU (S) C = > U 1 + + U; 112 (93.3%), C; 8 (6.7%)

psbL 124 + LSC 2 1 ACG (T) = > AUG (M) C = > U - + - U; 40 (95.2%), C; 2 (4.8%)

rpl20 387 + LSC 308 103 UCA (S) = > UUA (L) C = > U 0.86 + + U; 107 (56.6%), C; 82 (43.4%)

rpoA 1014 + LSC 830 277 UCA (S) = > UUA (L) C = > U 1 + + U; 8 (61.5%), C; 5 (38.5%)

rpoA 1014 + LSC 903 301 AUG (M) = > GUG (V) A = > G - + - G; 25 (62.5%), A; 15 (37.5%)

rpoB 3213 + LSC 338 113 UCU (S) = > UUU (F) C = > U 1 + + U; 15 (75%), C; 5 (25%)

rpoB 3213 + LSC 473 158 UCA (S) = > UUA (L) C = > U 0.86 + + U; 13 (76.5%), C; 4 (23.5%)

rpoB 3213 + LSC 551 184 UCA (S) = > UUA (L) C = > U 1 - + -

rpoB 3213 + LSC 2000 667 UCU (S) = > UUU (F) C = > U 1 - + -

rpoB 3213 + LSC 2426 809 UCA (S) = > UUA (L) C = > U 0.86 + + U; 5 (25%), C; 15 (75%)

rpoC1 2783 + LSC 41 14 UCA (S) = > UUA (L) C = > U 1 + + U; 5 (27.7%), C; 13 (72.3%)

rpoC2 4167 + LSC 119 40 CCC (P) = > CUC (L) C = > U - + - U; 10 (37.1%), C; 17 (62.9%)

rpoC2 4167 + LSC 3731 1244 UCA (S) = > UUA (L) C = > U 0.86 - + -

rps2 711 + LSC 134 45 ACA (T) = > AUA (I) C = > U - + - C; 8 (38.1%); U; 13 (61.9%)

rps2 711 + LSC 248 83 UCA (S) = > UUA (L) C = > U 1 + + C; 5 (31.3%), U; 11 (68.7%)

rps14 303 + LSC 80 27 UCA (S) = > UUA (L) C = > U 1 + + C; 5 (5.8%), U; 81 (94.2%)

https://doi.org/10.1371/journal.pone.0196069.t004
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ψrps19 copy at the JLA as a consequence of the expansion. This has been followed by indepen-

dent rearrangements in deeper nodes such as the accumulation of trnF pseudogenes in tandem

arrays at a clade referred to as the ‘Pseudosolanoids’ [68] or by the pseudogenization of sprA in

Physaleae and Capsiceae by two deletions. Further degradation of the infA pseudogene is spe-

cific for the largest genus Solanum, including tomato and potato.
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Resources: Jaakko Hyvönen, Péter Poczai.
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