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Abstract
Objective
To develop a valid algorithm for identifying multiple sclerosis (MS) cases in administrative
health claims (AHC) datasets.

Methods
We used 4 AHC datasets from the Veterans Administration (VA), Kaiser Permanente Southern
California (KPSC), Manitoba (Canada), and Saskatchewan (Canada). In the VA, KPSC, and
Manitoba, we tested the performance of candidate algorithms based on inpatient, outpatient,
and disease-modifying therapy (DMT) claims compared to medical records review using
sensitivity, specificity, positive and negative predictive values, and interrater reliability (Youden
J statistic) both overall and stratified by sex and age. In Saskatchewan, we tested the algorithms
in a cohort randomly selected from the general population.

Results
The preferred algorithm required ≥3 MS-related claims from any combination of inpatient,
outpatient, or DMT claims within a 1-year time period; a 2-year time period provided little
gain in performance. Algorithms including DMT claims performed better than those that
did not. Sensitivity (86.6%–96.0%), specificity (66.7%–99.0%), positive predictive value
(95.4%–99.0%), and interrater reliability (Youden J = 0.60–0.92) were generally stable across
datasets and across strata. Some variation in performance in the stratified analyses was observed
but largely reflected changes in the composition of the strata. In Saskatchewan, the preferred
algorithm had a sensitivity of 96%, specificity of 99%, positive predictive value of 99%, and
negative predictive value of 96%.

Conclusions
The performance of each algorithm was remarkably consistent across datasets. The preferred
algorithm required ≥3 MS-related claims from any combination of inpatient, outpatient, or
DMTusewithin 1 year.We recommend this algorithm as the standard AHC case definition forMS.
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The United States has historically been considered a region
with a high prevalence of multiple sclerosis (MS). However,
the prevalence of MS remains poorly described,1 and rigorous
national estimates are lacking. Prevalence estimates are critical
for understanding the national burden of MS, planning for
health service needs, and supporting advocacy efforts.

Multiple methods have been used to estimate the prevalence of
MS worldwide, including surveys, review of medical records or
lists from health care institutions, and administrative health
claims (AHC) data.1–3 AHC data are attractive because of their
relatively low cost, ease of use relative to other methods, and
potential for repeated use over time. However, AHC data are
not collected for research purposes, and their validity must be
assessed before use.4–6 Validation studies are possible for some
AHC datasets in the United States such as the Department of
Veterans Affairs (VA) but not in others such as Medicare be-
cause they cannot be linked back to clinical records.

Therefore, we aimed to test several case definitions (algo-
rithms) for identifying persons with MS using multiple AHC
datasets. We reasoned that if we could identify a best-case
definition that performed well and comparably across diverse
AHC datasets, this would support their use in other health
claims datasets in which validation studies were not feasible.
Further details and rationale for this approach are provided in
one of our companion articles (Nelson et al.,7 “ANewWay to
Estimate Neurologic Disease Prevalence in the United States:
Multiple Sclerosis”). Second, we aimed to determine how
much the duration of the observation period would affect case
detection (i.e., underestimate prevalence) for appropriate
adjustment in our companion prevalence article (Wallin
et al.,8 “The Prevalence of MS in the United States: A
Population-Based Estimate Using Health Care Claims Data”).

Methods
This was a retrospective analysis using linked administrative
and clinical data that was conducted in parallel at 3 primary
sites (dataset characteristics in table e-1 available from Dryad,
doi.org/10.5061/dryad.4c7s325) following a common pro-
tocol. The findings from the initial analysis were then tested in
a fourth independent dataset. Sources of the AHC datasets are
described below. Clinical data were drawn from medical
records. Neurologist-confirmed diagnoses of MS based on the
2010 McDonald criteria9 served as the reference standard for

this study. At the 3 primary sites, the source population for
this study was limited to persons ≥18 years of age who were
alive during the study period (2000–2014) and had ≥1 health
care encounter associated with a diagnostic code for MS
(Manitoba used any demyelinating disease to define its source
population).

Standard protocol approvals, registrations,
and patient consents
Each site obtained local Institutional Review Board or ethics
approval: University of Maryland, Baltimore; Baltimore VA
Research and Development Committee; Kaiser Permanente
Southern California (KPSC); University of Manitoba Health
Research Ethics Board; and University of Saskatchewan Bio-
medical Research Ethics Board. In Manitoba, approval for
administrative data access was obtained from the Health In-
formation Privacy Committee. In Saskatchewan, approval for
data access was obtained from the Saskatchewan Ministry of
Health and the Saskatchewan Health Quality Council.

Data sources

Department of Veterans Affairs
The VA provides comprehensive health care to ≈11 million
military veterans at ≈300 hospitals and 1,500 outpatient
clinics and Veterans Centers distributed throughout the
United States, Puerto Rico, andGuam. Since 1997, the VA has
prospectively collected and maintained extensive data on all
funded health care services, including hospitalizations, phy-
sician visits, and prescriptions dispensed. Diagnoses were
recorded using ICD-9 codes.

The initial validation cohort was drawn from the VA case-
finding algorithm study in 2006,5 which included all patients
in the mid-Atlantic region who were ≥18 years of age with ≥1
encounter with a diagnosis code for MS (ICD-9 code 340).
We added data from the Gulf War Era MS Cohort10 and data
from screening of patients for a planned longitudinal MS
study. We followed the same standardized medical record
review procedures (trained abstractors under the direction
of M.W.) to verify the diagnosis of MS9 for all patients. In
total, these studies yielded a cohort of 3,452 patients (table 1)
from 1999 through 2007.

Kaiser Permanente Southern California
KPSC is a prepaid health maintenance organization with
a membership during the study period of >3.5 million persons

Glossary
AHC = administrative health claims; CI = confidence interval; DMT = disease-modifying therapy; ICD-9 = International
Classification of Disease, 9th revision; ICD-9-CM = International Classification of Disease, 9th revision, clinical modification; ICD-10-
CA = International Classification of Disease, 10th revision, Canadian version; ICD-10-CM = International Classification of Disease,
10th revision, clinical modification; IMS = Intercontinental Marketing Services; IP = inpatient; KPSC = Kaiser Permanente
Southern California; MS = multiple sclerosis; NPV = negative predictive value; OP = outpatient; PPV = positive predictive
value; VA = Department of Veterans Affairs.
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and provides health care coverage to≈20% of the population in
the region it serves. The KPSC membership is largely repre-
sentative of the general population in Southern California with
respect to ethnicity, age, and sex but underrepresents the lowest
and highest ends of the socioeconomic spectrum.11 Physician
visits, hospitalizations, andmedications are captured in datasets
that are linkable by a medical record number.

The validation cohort consisted of all persons ≥18 years of age
with ≥1 inpatient (IP) or outpatient (OP) encounter di-
agnosis code for MS (ICD-9 code 340) who were KPSC
health plan members between 2008 and 2010, had at least 6
months of continuous membership during the study period,
and had complete electronic health records (n = 4,851). We
randomly selected 2,935 (table 1) of these potential cases for
in-depth medical records review by an MS specialist (A.L.-G),
including IP and OP records, MRI scans, and diagnostic test
results, to confirm a diagnosis of MS.9

Manitoba
In the Canadian province of Manitoba, Manitoba Health,
Seniors and Active Living is responsible for the delivery of
publicly funded health care to nearly all residents. Several
datasets are maintained that capture demographic in-
formation (sex, dates of birth, health care coverage, and
death), hospitalizations, physician services, and prescription
drug dispensations. Diagnoses for physician services are

recorded with the clinical modification of ICD-9 (ICD-9-
CM) codes, while diagnoses for hospitalizations are coded
with ICD-9-CM or the Canadian version of ICD-10 codes
(ICD-10-CA), depending on the year.

The Manitoba validation cohort started with the 400 patients
≥18 years of age who were used to develop administrative case
definitions of MS in 2007.6 This cohort was augmented by
review of the medical records of all persons participating in
the MS Clinic Registry (trained abstractors under the super-
vision of R.A.M.) at the Winnipeg MS Clinic who had con-
sented to linkage of their medical records to administrative
data (89% of those approached) as of June 2015 and met the
inclusion criteria as described above. This expanded the val-
idation sample to 1,654 patients (table 1).

Saskatchewan
This constituted the fourth independent site. In the Canadian
province of Saskatchewan, health care is publicly funded as in
Manitoba. Datasets similar to those in Manitoba capture de-
mographic information (sex, dates of birth, health care cov-
erage, and death), hospitalizations, physician services, and
prescription drug dispensations. Diagnoses for physician
services are recorded with ICD-9-CM codes, while diagnoses
for hospitalizations are coded with ICD-9 or ICD-10-CA
codes, depending on the year.

As described elsewhere,12 the validation cohort included 200
randomly selected cases from the Saskatoon MS Clinic with
diagnoses confirmed by an MS specialist and 200 controls
(table 1) from the Inpatient Rehabilitation Center database.
This database specifically captures diagnoses of chronic dis-
eases, including MS.13

MS case definition algorithms
We developed candidate algorithms using ICD-9/ICD-10
codes for MS (340/G35) and lists of MS-specific disease-
modifying therapies (DMTs). To develop these definitions,
we reviewed the literature on validated administrative case
definitions for MS.5,6,12–15 From this review, we considered
the following: (1) 1 encounter with an ICD-9/ICD-10 code
for MS is too nonspecific because these may represent rule-
out codes; (2) increasing the number of health care
encounters required generally increases specificity at the ex-
pense of sensitivity; and (3) prescription claims for MS-
specific DMTs may be helpful to improve sensitivity, speci-
ficity, or both when available. Therefore, the candidate algo-
rithms (table 2) varied the number of IP and OP encounters
with MS listed as one of the diagnoses for that encounter, the
number of prescription claims for a DMT required to classify
a person as an MS case, and the time period over which the
case definition should be met. We included candidate algo-
rithms that did not use prescription claims because these are
not available in all AHC datasets. Because we anticipated
applying these definitions in AHC datasets in which enroll-
ment in a health insurance plan might be limited to short time
periods, we considered only 1- or 2-year time periods over

Table 1 Demographic characteristics of theMS validation
cohorts by data source

Primary Validation Cohorts

VA KPSC MB SK

Total cases, n 3,452 2,935 1,654 400

Sex, n (%)

Male 2,451 (74.0) 725 (24.2) 415 (25.1) 197 (49.3)

Female 1,001 (26.0) 2,253 (75.8) 1,239 (74.9) 203 (50.7)

Age group,
n (%)

18–24 y 118 (3.4) 105 (3.5) 123 (7.4) a

25–34 y 928 (26.9) 400 (13.5) 434 (26.2) 25 (6.25)

35–44 y 1,093 (31.6) 662 (22.5) 554 (33.5) 46 (11.5)

45–54 y 833 (24.1) 769 (26.2) 381 (23.0) 76 (19.0)

55–64 y 302 (8.7) 669 (22.8) 118 (7.1) 83 (20.8)

65–74 y 131 (3.8) 243 (8.5) a 80 (20.0)

≥75 y 47 (1.4) 87 (3.0) a a

Abbreviations: KPSC = Kaiser Permanente Southern California; MB = Man-
itoba, Canada; MS = multiple sclerosis; SK = Saskatchewan, Canada: VA =
Veterans Administration.
SK represents a general population cohort.
a Cells suppressed due to small numbers in accordancewith data access and
privacy requirements.
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which to define a case. Each component of these case defi-
nitions is described further below.

IP encounter
We defined an IP encounter as an IP admission (overnight
stay) for which MS was recorded as one of the diagnoses. To
account for transfers between institutions and to avoid double
counting, we collapsed multiple overlapping hospital admis-
sion and discharge records into 1 IP encounter. In addition, an
IP encounter with an admission date that occurred within 24
hours of a prior IP encounter was counted as a single IP
encounter.5,6

Physician/OP encounters
We defined OP encounters as a visit to an OP clinic with an
ICD code for MS. Multiple OP visits by 1 patient within the
same day were treated as 1 OP encounter. In addition, OP
encounters occurring within an MS IP (admission to dis-
charge date) were not counted as unique OP encounters.

Disease-modifying therapies
We defined prescription claims as dispensations for any of the
MS-specific DMTs approved before or during the study pe-
riod, including interferon beta-1a-SC, interferon beta-1a-IM,
interferon beta-1b-SC, glatiramer acetate, fingolimod, and
natalizumab as identified with National Drug Codes and Drug
Identification numbers (tables e-1 and e-2 available from
Dryad, doi.org/10.5061/dryad.4c7s325). To avoid mis-
classification, claims for natalizumab were not included if the
individual also had an ICD code for inflammatory bowel
disease, a disorder for which this medication is approved
for use.

A caveat in defining IP and OP encounters was that the VA
imposes a hierarchy to the coding such that the primary di-
agnosis for a given encounter should be listed first, followed,
in descending order of importance, by other diagnoses af-
fecting that episode of care. Not all AHC datasets impose such
a hierarchy (e.g., KPSC). Our assessment of the effect of this
coding hierarchy (see Appendix 2 available from Dryad for
additional methods and results, doi.org/10.5061/dryad.

4c7s325) resulted in using MS as a primary diagnosis in the
VA data and MS as any diagnosis in the KPSC and Manitoba
datasets when counting MS encounters.

Analysis
We applied the candidate algorithms in each of the 3 primary
validation cohorts. We compared the performance of the
candidate algorithms with the reference standard diagnoses of
MS frommedical records using sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV).
In addition, interrater agreement was compared between the
algorithms derived from AHC and medical records data using
the crude accuracy score and Youden16 J statistic. We chose
the J statistic over the κ statistic17,18 because it is designed for
use with dichotomous data and equally weights false-positives
and false-negatives. We interpreted the J statistic like κ, when
neither the algorithm nor the medical records were consid-
ered the reference standard, as slight (0–0.20), fair
(0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80),
and excellent (0.81–1.0).19

To determine whether the algorithms performed consistently
across sociodemographic subgroups, we stratified the refer-
ence population by (1) sex, and (2) age group (18–24, 25–34,
35–44, 45–54, 55–64, 65–74, ≥75 years) and repeated our
analyses for the 4 algorithms that performed best across the 3
AHC datasets. The ultimate choice of an algorithm was based
on performance and pragmatic considerations, including ease
of application and interpretation.

Because our 3 primary validation datasets were drawn from
patients with at least 1 encounter for MS (or demyelinating
disease in Manitoba), not the general population, we expected
that the specificity and predictive values of the case definitions
would be artificially depressed compared to the performance in
the general population. Therefore, we tested our case definition
algorithms in a fourth independent dataset in Saskatchewan,14

which included individuals with andwithoutMS as noted above.

Prevalence with limited duration
ascertainment periods
We intended to apply our optimal algorithm to multiple AHC
datasets available in the United States20 to determine preva-
lence in 2010 based on a 3-year ascertainment period. How-
ever, limited periods of observation may substantially reduce
case detection and underestimate prevalence, as is well
recognized in the literature.21–23 Capocaccia et al.22 describe
how they dealt with adjusting data from cancer registries that
had been active for short durations when creating the Europe-
wide project to estimate the prevalence of the most important
cancers (EUROPREVAL). They computed what they called
a completeness index for multiple observation periods using
data from the Connecticut Cancer Registry because it has
been in operation for >50 years. In the 4 registries that had
only 5 observation years, the completeness index ranged from
0.42 to 0.45. The completeness index improved systematically
as the observation period increased. They go on to describe

Table 2 Description of candidate algorithms for MSa

Case definition name Number and type of claims

MS_A ≥2 IP or ≥3 OP

MS_B ≥2 IP or ≥4 OP

MS_C ≥2 IP or ≥5 OP

MS_D ≥2 IP or ≥3 OP or ≥1 DMT

MS_E (IP + OP + DMT) ≥ 3

Abbreviations: DMT = disease modifying therapy; IP = inpatient admission;
MS = multiple sclerosis; OP = outpatient visit.
a The performance of each algorithmwas evaluated on the basis of both a 1-
year and a 2-year time period.
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their model-based methods to estimate the complete preva-
lence based on a limited period using age- and sex-specific
incidence and survival rates for cancer.22 This information is
lacking in the US MS population and cannot be accurately
estimated from data of only 3 years’ duration.23 Therefore, to
assess the effect of a short ascertainment period, we used the
approaches used by Ng et al.21 and Capocaccia et al.22 and
estimated the prevalence of MS using 3 years (2008–2010)
and 10 years (1999–2010) of data in the VA and Manitoba
datasets and compared the difference in these estimates in
2010. Prevalence in each year was defined as all persons ≥18
years meeting our preferred algorithm definition of MS ([IP +
OP + DMT] ≥ 3) among those alive during the calendar year.
The 3-year and 10-year prevalence estimates in 2010 were
cumulative estimates based on all those who had met the
definition at any point in the ascertainment period and who
were alive in 2010.

To validate the above analyses, we repeated these procedures
using the PharMetrics Plus Health Plan Claims Dataset from
Intercontinental Marketing Services (IMS), which was not
used to develop the algorithm. Here, we compared the esti-
mated prevalence derived from 3 years (2013–2015) and 9
years (the longest period available) ending in 2015. The IMS
dataset captures health care claims from ≈120 health plans
across the United States accounting for ≥42 million covered
lives as of 2011, mirrors the demographics of the US Census
population, and has been used for national and regional
benchmarking of health care use and cost.20,24 The data
contained in this dataset are comparable to the data in vali-
dation datasets that included ICD-9-CM diagnosis and IP
procedure codes, provider codes, Current Procedural Ter-
minology (OP procedures) codes, National Drug Code, place
and date of service, enrollment date(s), sex, year of birth, and
US Census region. We report 95% confidence intervals (CIs)
25 for the ratio of the prevalence estimates of longer vs shorter
intervals. Although these prevalence estimates are highly
correlated, which would narrow these intervals substantially,
we report uncorrected 95% CIs to be conservative.

Statistical analyses were conducted with either SAS version
9.4 (SAS Institute Inc, Cary, NC) or SPSS version 22 (IBM
Inc, Armonk, NY).

Data availability
The datasets used in this study constitute secondary analyses of
data from prior studies. Therefore, there are no data-sharing
agreements in place for these data. The exception concerns the
IMS data, which are a limited-use dataset provided gratis to
University of Maryland, Baltimore faculty (W.J.C.), and data
sharing is not allowed under that agreement.

Results
The characteristics of the 3 primary validation cohorts are
representative of the general MS population (table 1).5,6,10,13,26

As expected, there was a higher proportion of males in the VA
data compared with KPSC and Manitoba, but the age dis-
tributions were similar across cohorts.

Initial validation of algorithm
Generally, when an algorithm was applied using 1 year of data,
the sensitivity was lower than when applied using 2 years of
data, while specificity was higher when applied using 1 year of
data (table 3). The more stringent the case definition, that is,
the greater the number of claims required, was, the lower the
sensitivity was and the higher the specificity was. The addition
of prescription claims for DMT to an algorithm increased
sensitivity without a loss of specificity, leading to better per-
formance overall.

Algorithm MS_E ([IP + OP + DMT] ≥ 3) had the highest
sensitivity for both time periods. In contrast, the algorithm with
the highest specificity wasMS_C (≥2 IP or≥5OP) in the 1-year
and 2-year time periods. The PPVs were high for all algorithms,
whereas the NPVs were moderately low, suggesting that the
algorithms were better at ruling in cases of MS than ruling out
non-MS cases (in a population with at least 1 claim for MS).

The proportion of misclassified cases (false-positives and false-
negatives) was relatively low, as reflected in the moderately
high to high accuracy scores; algorithm MS_E had the highest
accuracy over both time periods. The Youden J statistic mir-
rored the crude accuracy scores, revealing a substantial level of
agreement between each algorithm and the reference standard.
Algorithm MS_E had the highest or second highest J statistic
for the 1-year time period with scores of ≥0.60.

We performed the stratified analyses on only the algorithms
that included DMTs because these were the best-performing
definitions (MS_D and MS_E in tables 3). Because the
stratified results were nearly identical across these 4 case
definitions, we present only the results for MS_E-1 ([IP + OP
+ DMT] ≥ 3) for the 1-year time period (figures 1 and 2).

The test characteristics remained stable by sex (men, figure 1B;
women, figure 1C), including sensitivity, specificity, PPV, and
accuracy. In the VA, the NPV and J statistic were lower among
women compared to men but were stable across sexes in the
KPSC and Manitoba datasets. Similarly, sensitivity, PPV, and
accuracy were relatively consistent across age groups and
somewhat stable for specificity. TheNPV and J statistic showed
the greatest variation; however, despite this variability, theMS_
E-1 algorithm performed well across datasets and age groups.
Thus, given its consistent and superior performance, algorithm
MS_E-1 was chosen as the preferred algorithm.

Validation in the general population
The characteristics of the Saskatchewan validation cohort were
comparable to those of the other cohorts. When we applied the
algorithms to the Saskatchewan general population, specific-
ities and PPVs were all ≥0.96 and the NPVs were all ≥0.91. Of
the algorithms using 1 year of data, algorithm MS_E-1
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performed the best, along with algorithm MS_D-1. For pre-
ferred algorithmMS_E, the sensitivity was 0.96, specificity was
0.99, PPVwas 0.99, NPVwas 0.96, and Youden J was 0.96. One
of the 2-year algorithms, MS_D-2, also had a specificity of 0.99
but a marginally higher sensitivity of 0.97.

Corrections for limited-duration
ascertainment periods
Figure 3 compares estimated prevalence based on a 3-year
(2008–2010) ascertainment period to that from 10 years
(2000–2010) of data as of 2010 in the VA and Manitoba

Table 3 Summary of test statistics for each algorithm based on years of data for each data source

MS algorithm Data source Sensitivity, % Specificity, % PPV, % NPV, % Accuracy, % Youden J

1-y epoch (denoted by 21)

MS_A-1 ≥2 IP or ≥3 OP VA 86.1 82.5 97.8 39.6 85.7 0.69

KPSC 78.9 74.9 95.5 34.2 78.3 0.54

MB 89.7 67.2 95.3 46.5 87.0 0.57

MS_B-1 ≥2 IP or ≥4 OP VA 81.5 89.5 98.6 34.8 82.3 0.71

KPSC 66.9 82.3 96.4 26.9 69.0 0.50

MB 79.0 77.9 96.4 33.2 78.9 0.57

MS_C-1 ≥2 IP or ≥5 OP VA 76.1 90.4 98.6 29.4 77.5 0.67

KPSC 55.3 87.4 96.7 22.4 59.5 0.43

MB 68.5 85.6 97.3 26.7 70.5 0.54

MS_D-1 ≥2 IP or ≥3 OP or ≥1 DMT VA 86.6 82.5 97.8 40.4 86.2 0.69

KPSC 87.4 73.0 95.7 46.1 85.6 0.60

MB 93.2 66.7 95.4 56.8 90.1 0.60

MS_E-1 (IP + OP + DMT) ≥ 3 VA 87.2 82.2 97.8 41.4 86.7 0.69

KPSC 85.5 76.2 96.1 43.6 84.3 0.62

MB 93.4 66.1 95.4 56.8 90.1 0.60

2-y epoch (denoted by 22)

MS_A-2 ≥2 IP or ≥3 OP VA 88.3 78.7 97.4 42.6 87.3 0.67

KPSC 83.4 70.7 95.1 38.5 81.8 0.51

MB 93.2 61.0 94.7 54.6 89.4 0.54

MS_B-2 ≥2 IP or ≥4 OP VA 86.0 84.8 98.1 40.0 85.9 0.71

KPSC 74.7 79.8 96.2 31.8 75.4 0.55

MB 87.6 69.7 95.6 42.9 85.5 0.57

MS_C-2 ≥2 IP or ≥5 OP VA 83.5 88.0 96.4 37.1 84.0 0.72

KPSC 66.2 85.1 96.8 27.0 68.6 0.51

MB 81.7 80.5 96.9 37.0 81.6 0.62

MS_D-2 ≥2 IP or ≥3 OP or ≥1 DMT VA 88.5 78.7 97.4 43.0 87.5 0.67

KPSC 89.6 68.8 95.1 49.3 86.9 0.58

MB 95.0 61.0 94.8 62.0 91.0 0.56

MS_ E-2 (IP + OP + DMT) ≥ 3 VA 89.1 78.4 97.4 44.2 88.0 0.68

KPSC 88.1 70.9 95.4 46.6 85.9 0.59

MB 95.1 60.0 94.7 61.9 90.9 0.55

Abbreviations: DMT = disease modifying therapy; IP = inpatient admission; KPSC =Kaiser Permanente Southern California; MB = Manitoba, Canada; MS =
multiple sclerosis; NPV = negative predictive value; OP = outpatient visit; PPV = positive predictive value; VA = Veterans Administration.
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datasets. The underestimation of a 3-year ascertainment
period ranged from 37% (95% CI 13%–66%) in the VA
dataset to 47% (95% CI 23%–76%) in the Manitoba dataset.
In the IMS (validation) dataset, the underestimation of
a 3-year (2013–2015) ascertainment period compared to

a 9-year period (2007–2015) as of 2015 was 39% (95% CI
13%–71%). The estimated prevalence of MS rose steeply up
to about 2010 in all 3 datasets (figures 3 and 4) and then
increased an average of 2.3%/y thereafter (2.1% in the VA,
figure 3A; 2.5% in the IMS, figure 4).

Figure 1 Performance of algorithm MS_E-1 [(IP + OP + DMT) ≥ 3] stratified by sex across the VA, KPSC, and MB datasets

(A) Men and women, (B) men only, and (C) women only.Data are
presented as a proportion that can range between 0 and 1. DMT =
disease-modifying therapy; IP = inpatient; KPSC = Kaiser Perma-
nente Southern California; MB =Manitoba;MS =multiple sclerosis;
NPV = negative predictive value; OP = outpatient; PPV = positive
predictive value; VA = Department of Veterans Affairs.
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Discussion
We undertook this study to identify an algorithm that would
accurately and consistently identify cases of MS across dis-
parate AHC datasets representing different types of health

care systems and geographic regions. The consistency of the
findings across these datasets supports the generalizability of
the algorithms to other AHC datasets in the United States
when such validation studies are not feasible. The preferred
algorithm (MS_E-1) required ≥3 encounters (IP +OP+DMT)

Figure 2 Performance of algorithm MS_E-1 [(IP + OP + DMT) ≥ 3] stratified by age group across the VA, KPSC, and MB
datasets

(A) Sensitivity, (B) specificity, (C) positive predictive value, (D) negative predictive value, (E) accuracy, and (F) Youden J statistic.Data fromManitoba (MB) for the
55- to 64- and 64- to 74-year age groups are suppressed due to small cell sizes. Data are presented as a proportion that can range between 0 and 1. DMT =
disease-modifying therapy; IP = inpatient; KPSC = Kaiser Permanente Southern California; MS = multiple sclerosis; NPV = negative predictive value; OP =
outpatient; PPV = positive predictive value; VA = Department of Veterans Affairs.
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for MS in a 1-year period. Algorithms that did not include
DMT performed less well than those that did. However, we
included the non-DMT algorithms to assess their ability to
accurately identify cases of MS in studies in which pharmacy

claims data might not be available; MS_A-1 performed nearly
as well as the preferred algorithm (MS_E-1) and could be
used when DMT is not available. Thus, by testing a variety of
algorithms, our study provides value, and the findings can be

Figure 3 Comparison of prevalence based on a 3- vs 10-year ascertainment period as of 2010 in the (A) VA and (B) MB
datasets

CI = confidence interval; MB = Manitoba; VA =
Department of Veterans Affairs.

Figure 4 Comparison of prevalence based on a 3- vs 9-year ascertainment period as of 2015 in the IMS (validation) dataset

CI = confidence interval; IMS = Intercontinental
Marketing Services.
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applied in future research into the prevalence of MS across
jurisdictions.

Algorithm MS E-1 ([IP + OP + DMT] ≥ 3) was preferred
because of its consistent, high performance and ease of
application. We hereafter refer to it as the MS algorithm.
The 1-year algorithm readily allows annually updating of
prevalence estimates in datasets with limited years of data.
Sensitivity and PPV were high, consistent with previously
published definitions developed with similar methods in
the United States (VA) and Canada.5,6,12,13 Specificity in
our primary validation cohorts was modest, reflecting that
our study cohorts were selected on the basis of having at
least 1 diagnosis for MS. Tonelli et al.27 evaluated algo-
rithms to measure 40 comorbid conditions in AHC data
from Calgary, Alberta, Canada. They defined an algorithm
as valid if both sensitivity and PPV were ≥0.70 compared to
a reference cohort. They did not consider specificity or
NPV because they are generally ≥0.90 in the assessment of
chronic disease in the general population. Consistent with
these observations and recommendations, when the MS
algorithm was applied to the general population in Sas-
katchewan, sensitivity (0.96), specificity (0.99), and PPV
(0.99) markedly improved. These findings support our
preferred algorithm as a valid method for identifying cases
of MS in AHC datasets.

Minor variation in performance was observed when
stratified by sex and age. However, accuracy remained
high, and the Youden J statistic remained substantial.
These findings indicate that the MS algorithm was an ac-
curate and reliable algorithm for identifying cases of MS
in these disparate datasets and outperforms similar algo-
rithms for identifying amyotrophic lateral sclerosis28 and
Parkinson disease.29

When using AHC data, it is important for investigators to
determine whether there is any hierarchy to the way that
diagnosis codes are recorded because the performance of an
algorithm can be adversely affected. In the VA, such a coding
hierarchy exists, and when encounters with MS in any di-
agnosis position were used vs in the primary diagnosis posi-
tion, specificity was compromised, as was the Youden J
statistic. Surprisingly, accuracy was only slightly reduced but
would likely be more adversely affected when applied to an
entire dataset as opposed to the subset of cases with a di-
agnosis code for MS as used in this study.

Prior reports have defined cohorts in claims data based on
a single encounter with MS listed as one of the diagnoses.30,31

This strategy can result in the inclusion of a substantial
number of false-positives. Prior work on the VA algorithm5

showed that a rigorous algorithm (similar to the MS algo-
rithm) ruled out 43% of the cases who had only a single MS
encounter. This guided our decision to require multiple
encounters as part of all of our algorithms. We strongly en-
courage other investigators to avoid the use of a single MS

encounter to identify an MS cohort because, depending on
the proportion of false-positives included, results could be
substantially biased.

We found that prevalence estimates varied with the dura-
tion of the observation period in 3 different datasets (2
from the United States and 1 from Manitoba, Canada),
suggesting that observation periods should be maximized
to optimize case detection. Specifically, we found that an
observation period of 3 years underestimated the preva-
lence of MS by 37% (95% CI 13%–66%) in the VA dataset
and 47% (95% CI 23%–76%) in the Manitoba dataset. It
should be noted that the 95% CI for these adjustment
factors overlapped, implying that the growth range is
nonsignificantly different for these 2 datasets. The findings
in the IMS (validation) dataset corroborated results from
the VA and suggest that a 3-year ascertainment period
underestimates the 10-year prevalence in US datasets by
≈38% regardless of the final year of the time period of
interest (2010 vs 2015). This is consistent with previous
findings in Quebec, Canada, regarding systemic lupus
erythematosus, a chronic disease like MS for which health
care use may vary over time or with disease activity.21 In
that study, when a 3-year period was used, prevalence was
underestimated by 66% compared with a 15-year period,
while a 5-year period underestimated prevalence by 39%.
Similar results have been reported for the assessment of the
prevalence of cancer in Europe.22 Registries with 5 years of
data underestimated prevalence by 42% to 45%; as the
duration of the registry increased, the underestimation of
prevalence decreased systematically. For investigators
without access to many years of data, these findings suggest
that an adjustment factor should be applied to obtain
a more stable and accurate prevalence estimate. The dif-
ference between the US (VA and IMS) and Manitoba
datasets likely results because Manitoba has a universal
health system with a single government payer and its AHC
datasets capture >98% of the population,6 whereas the US
health care system involves multiple insurance payers,
making it more difficult to achieve complete ascertainment
of cases. Thus, the underestimation value of 37% provides
a conservative (i.e., lower bound) inflation factor, whereas
an inflation factor of 47% based on the Manitoba data likely
better reflects what might be expected with nearly full
capture of the US population over a 10-year period
(i.e., upper bound).

This study included a limited number of AHC datasets that
were restricted to North America, which may limit general-
izability to datasets from other countries. However, the
datasets that were included provided a diverse sampling of
the MS population. The IMS validation dataset did not cover
the same time period as the VA and Manitoba datasets;
however, the 3-year underestimation in prevalence was nearly
the same as the VA dataset despite differences in the time
periods assessed. Our algorithms relied on ICD-9-CM coding
(except for IP encounters in the Manitoba dataset, which
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used ICD-10-CM coding from 2004 onward) and have not
been validated with ICD-10-CM coding. It is unlikely the
algorithms will perform differently when ICD-10-CM coding
is used because MS is still represented by a single 3-digit code.

We conducted a rigorous assessment of algorithms to identify
cases of MS in several different AHC datasets. The algorithm
of choice required the sum of ≥3 MS-related IP admissions,
MS-related OP encounters, or pharmacy claims for a DMT
within a calendar year. Furthermore, this algorithm performed
remarkably well across different datasets and demographic
groups. We propose that this MS algorithm be adopted for
future MS-related studies using AHC datasets to enhance
comparability across studies.
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