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Abstract

Protein sequence features are explored in relation to the production of over-expressed extracellular proteins by fungi.
Knowledge on features influencing protein production and secretion could be employed to improve enzyme production
levels in industrial bioprocesses via protein engineering. A large set, over 600 homologous and nearly 2,000 heterologous
fungal genes, were overexpressed in Aspergillus niger using a standardized expression cassette and scored for high versus
no production. Subsequently, sequence-based machine learning techniques were applied for identifying relevant DNA and
protein sequence features. The amino-acid composition of the protein sequence was found to be most predictive and
interpretation revealed that, for both homologous and heterologous gene expression, the same features are important:
tyrosine and asparagine composition was found to have a positive correlation with high-level production, whereas for
unsuccessful production, contributions were found for methionine and lysine composition. The predictor is available online
at http://bioinformatics.tudelft.nl/hipsec. Subsequent work aims at validating these findings by protein engineering as a
method for increasing expression levels per gene copy.
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Introduction

In industrial enzyme production, high-level protein production

and secretion are key requirements. The commercial market value

was estimated to be nearly US$ 5 billion in 2009; roughly half of

production is accounted for by filamentous fungi [1]. Interest in

industrial enzymes is still growing, driven by the increased demand

for sustainable production processes and the need to move from a

fossil fuel-based to a bio-based economy. This calls for the

exploration of novel enzymes, as well as predictable methods for

high-yield production processes. The filamentous fungi Aspergillus

niger, Aspergillus oryzae and Hypocrea jecorina are the major fungal

workhorses in industrial enzyme production, due to their efficiency

in producing polysaccharide-degrading enzymes (particularly

amylases, pectinases, lipases and xylanases) in high amounts.

The genome sequence of the enzyme producing A. niger strain

CBS513.88 was published in 2007 [2] and compared with a

related citric-acid producing strain ATCC1015 in 2011 [3].

Although rational genetic engineering strategies have been

developed [4–6], including codon optimization, strong promoters

etc., protein overexpression is still often an art. Heterologous

expression in particular is less successful, often hampered by low

production levels [7]. Although protein overexpression, including

the secretion process and quality control mechanisms such as

UPR-ERAD, has been studied widely [8–12], no generic solution

to improve heterologous overexpression is yet available. More

successful is the use of fusion proteins, at the cost of reduced

overall yield due to the production of the fusion partner. We

propose another strategy: to re-engineer proteins to better match

the cell’s production and secretion machinery. In this paper, we

take a first step in this direction.

Our aim is to identify protein characteristics that correlate with

the production level of secreted proteins in a library of A. niger

strains. Ideally, data on protein structure, folding and even post-

translational modification and processing, both intracellular and

extracellular, should be exploited to enhance our understanding of

the cellular processing of successful and unsuccessful candidates.

Such data is however limited and expensive to obtain, unattain-

able for large sets of non-commercial proteins. On the other hand,

some of this information is also captured in the protein sequence as

such, which therefore should be informative. Using a large and
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diverse library of protein sequences should allow focus on generic

aspects, ignoring protein-specific aspects.

We constructed a unique library of over 2,600 strains to

overexpress a selected protein sequence. After transformation

using overexpression cassettes, productivity of each strain was

screened by shake-flask growth and analysis of the protein

composition of the supernatant on gel. Protein production was

scored positive when, compared to the mother strain, an

additional band on SDS-PAGE gel was observed in the expected

molecular weight range; otherwise it was scored negative.

Characteristics found to distinguish between proteins in the

positive and negative classes may point to sequence features that

could be adapted in optimization schemes to further ‘‘streamline’’

proteins that already show good expression, in analogy to what has

been achieved with codon optimization, where gene sequences are

adapted to match the translational machinery [13].

Statistically significant associations between sequence features

and positive and negative class membership can be obtained

relatively easy. However, such analyses are typically univariate,

considering only individual features. In contrast, machine learning

algorithms can combine large numbers of features and by that

achieve more optimal prediction performance. Recently, different

machine learning techniques have been applied on sequence data

to predict protein localization [14–16] or protein solubility [17]. A

disadvantage of machine learning approaches is that they often

result in ‘‘black boxes’’, not easily providing insight into the

properties that are defining for the prediction. With few exceptions

[18,19], sequence-based predictors are rarely interpreted.

We developed a sequence-based predictor for extracellular

protein production by A. niger, with the explicit goal of interpreting

which combinations of features are most predictive. We consider a

large number of potentially interesting features and develop

predictors for both homologous and heterologous gene expression.

Sequence data was found to be predictive for both, although less

accurate prediction results were obtained for the heterologous data

set. Interestingly, interpretation of the underlying model param-

eters show that for both data sets similar properties are predictive

for extracellular protein production. The trained classifier

algorithms are made available in a freely accessible online tool

(http://bioinformatics.tudelft.nl/hipsec).

Methods

Experimental Setup
Proteins were experimentally tested for high-level production in

A. niger. Binary success scores were obtained by SDS-PAGE of (at

least) triplicate shake-flask samples with strains over-expressing the

introduced gene as described below. A positive success score was

given when a clear visible band was present, negative otherwise.

Strain. The strain used in this work is a recombinant strain

derived from DS03043, a progenitor of CBS 513.88, in which the

glaA loci (i.e., the promoter and coding sequences) were deleted,

creating the so-called DglaA loci. From this strain, a strain was

derived with a strongly reduced production of abundantly secreted

proteins by inactivation of the major protease pepA and a number

of alpha-amylases [20]. This protease- and amylase-reduced strain

was used as host strain for over-expression of proteins.

Molecular biology techniques. In order to obtain targeted

integration and expression of any desired gene in the above-

mentioned host strain, a standard expression unit was used, where

the gene of interest was inserted between the host-own

glucoamylase promoter (original 2 kb 59 glaA sequence) and

glucoamylase terminator elements (original 2 kb 39 glaA sequence)

in a proprietary Escherichia coli vector. The expression unit, a linear

piece of DNA, was targeted via single-crossover to the DglaA locus

using the homology in the 2 kb 3’- and direct downstream 2 kb 3’’-
glaA regions with the identical 2kb-left and 2kb-right flanks of the

expression cassette, as described in [20]. All gene sequences were

cloned in the E. coli vector exactly from start ATG until stop

codon.

Shake flask fermentations. A. niger strain spores were pre-

cultured in 20 ml CSL pre-culture medium (100 ml flask, baffle).

After growth for 18{24 hours at 34uC and 170 rpm, 10 ml of this

culture was transferred to Fermentation Medium (FM). Fermen-

tation in FM was performed in 500 ml flasks with baffle with

100 ml fermentation broth at 34uC and 170 rpm for the number

of days indicated. The CSL medium consisted of (in amount per

liter): 100 g Corn Steep Solids (Roquette), 1 g NaH2PO4 :H2O,

0.5 g MgSO4 :7H2O, 10 g glucose:H2O and 0.25 g Basildon

(antifoam). The ingredients were dissolved in demi-water and the

pH was adjusted to pH 5.8 with NaOH or H2SO4; 100 ml flasks

with baffle and foam ball were filled with 20 ml fermentation

medium and sterilized for 20 min. at 120uC. The fermentation

medium (FM) consisted of (in amount per liter): 150 g mal-

tose:H2O, 60 g Soytone (peptone), 1 g NaH2PO4
:H2O, 15 g

MgSO4
:7H2O, 0.08 g Tween 80, 0.02 g Basildon (antifoam), 20 g

MES, 1 g L-arginine. The ingredients were dissolved in demi-

water and the pH was adjusted to pH 6.2 with NaOH or H2SO4;

500 ml flasks with baffle and foam ball were filled with 100 ml

fermentation medium and sterilized for 20 min. at 120uC.

SDS-PAGE electrophoresis. Sample pre-treatment: 30 ml

sample was added to 35 ml water and 25 ml NuPAGETM LDS

sample buffer (4|, Invitrogen) and 10 ml NuPAGETM Sample

Reducing agent (10|, Invitrogen). Samples were heated for ten

minutes at 70uC in a thermo mixer. SDS-PAGE was performed in

duplicate according to the supplier’s instructions (Invitrogen: 4–

12% Bis-Tris gel, MES SDS running buffer, 35 min. runtime).

One of the two gels was used for blotting, 10 ml of the sample

solutions and 1 ml marker M12 (Invitrogen) were applied on the

gels (NuPAGETM BisTris, Invitrogen). The gels were run at

200 V, using the XCELL Surelock, with 600 ml 20 times diluted

MES-SDS buffer in the outer buffer chamber and 200 ml 20 times

diluted MES-SDS buffer, containing 0.5 ml of antioxidant

(NuPAGETM Invitrogen) in the inner buffer chamber. After

running, the gels were fixed for one hour with 50% methanol/7%

acetic acid (50 ml), rinsed twice with demineralised water and

stained with Sypro Ruby (50 ml, Invitrogen) overnight. Images

were made using the Typhoon 9200 (610 BP 30, Green (532 nm),

PMT 600 V, 100 micron) after washing the gel for ten minutes

with demineralised water. Typical detection limit for the

fermentation samples using the described method is around

50 mg/l.

Data
Two protein data sets were tested for high-level production, one

for homologous gene expression (Supplementary Table S1) and

one for heterologous gene expression. Proteins in the heterologous

data set originated from 14 different fungal donor organisms

(Supplementary Table S2–S3). All proteins have a signal peptide

(length w10 amino acids) as predicted by SignalP 3.0 [21], and a

total sequence length longer than 100 amino acids. Proteins

containing the most common ER retention signal (C-terminal

[HK]DEL) and proteins predicted to be transmembrane by both

TMHMM [22] and Phobius [23] were filtered out of the data set.

To avoid biasing subsequent analyses, sequence redundancy

was reduced using BLASTCLUST [24]. Two sequences were

considered redundant when the aligned sequences shared w40%
identity over a length of minimal 90% for at least one of the
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sequences. From the obtained protein clusters, we selected a

representative protein, with the shortest average distance to all

other proteins in the cluster, and removed the remainder. If a

cluster contained proteins with both positive and negative labels,

one positive and one negative protein was selected. This resulted in

data sets hom and het containing 345 proteins (178 positives, 167

negatives) and 991 proteins (163 positives, 828 negatives),

respectively.

To train a classifier on hom en test it on het, a data set hethom

was constructed that contains the het data set without proteins that

share w40% identity with any protein in hom. This data set

contained 906 (128 positives, 778 negatives) proteins.

Protein Representations
Figure 1 shows the ten different sequences that were used to

represent a protein: r0) the ORF codon sequence, using a 64 letter

codon alphabet; r1) the N-terminal signal peptide sequence; r2) the

mature protein sequence (excluding the signal peptide); r3) the

predicted solvent accessibility sequence, using B for buried and E

for exposed; r4) the parts of the mature protein sequence predicted

to be buried, and r5) to be exposed, both using the 20 letter amino

acid alphabet; r6) the predicted secondary structure sequence,

using H for a-helix, E for b-strand, and C for random coil; r7) the

parts of the mature protein sequence predicted to be in a helix

structure; r8) in a strand structure; and r9) in a random coil region,

all three using the 20 letter amino acid alphabet.

We used randomized versions of the different structural

sequences: r4
0) randomized buried sequence, r5

0) randomized

exposed sequence, r7
0) randomized helix sequence, r8

0) random-

ized strand sequence, and r9
0) randomized coil sequence, to test

whether their actual amino acid content or just their length is

predictive. For example, if for a given protein 50 residues are

predicted to be in a helix structure, i.e. the helix sequence has

length 50, a randomized helix sequence is constructed by selecting

50 residues from the entire protein sequence at random.

Structural Predictions
SignalP 3.0 [21] was used to predict N-terminal signal peptide

presence and signal peptide cleavage site. From the neural network

output, we used the default D-value threshold (0:43) to decide if a

protein contains a signal peptide and used the predicted signal

peptide cleavage site to split a protein sequence into a signal

peptide part and a mature protein sequence part (Figure 1A).

NetSurfP 1.0 [25] was used to predict structural location (either

buried or exposed) of each amino acid in a mature protein

sequence (Figure 1B). PsiPred 3.21 [26] was used to predict

secondary structure of the mature protein sequence, using

UniRef90 as a database (Figure 1C).

Classification
A linear support vector machine (LIBSVM [27]) was used for

classification [28], in which the prediction y is a weighted

Figure 1. Different sequence-based protein representations. The different shades of gray denote predicted buried (B) and exposed (E)
regions in case of the the solvent accessibility, and predicted helix (H), strand (E), and random coil (C) region in case of the secondary structure.
doi:10.1371/journal.pone.0045869.g001
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combination of kernels K(si,z) between the training objects i and a

test object z:

y~
X

si[S

aiyiW(si)W(sz)~
X

si[S

aiyiK(si, sz) ð1Þ

For each object (protein) i, ai is the weight assigned to the object

as obtained from the trained classifier (0vaiƒ1 if the object is a

support vector, ai~0 otherwise), yi the class label ({1 or 1), si the

sequence of protein i, and W(si) a mapping from sequence to

feature space. The SVM is trained by optimizing a quadratic

programming problem:

max
a

X

si[S

ai{
1

2

X

si[S

X

sj[S

yiyjaiajK(si,sj) s:t: 0ƒaiƒC Vi

and
X

si[S

aiyi~0

ð2Þ

The parameter C, controlling the trade-off between training

error and classifier complexity, was optimized using a simple grid

search over 1:0|10{6,1:0|10{5, . . . ,1:0|106. Classifier per-

formance on a data set was estimated by running a double 10-fold

cross-validation (CV) loop, in which C was optimized in an inner

CV-loop on the training set. As performance measure we used the

area under the receiver-operator characteristic curve (AUROC) [29].

Classifier performance is defined as the average AUROC over the

CV-loops. When separate training and test sets are used, a

classifier was trained on the first data set, optimizing C in a 10-fold

CV-loop, and tested on the second data set, again using the AUROC

as performance measure.

In the cross-validation error estimation procedure, a predictor is

repeatedly trained on 90% of the data set and tested on the

remaining 10% of the data set. If features derived from a training

set that are important for discriminating between the positive and

negative class also yield good performance on the test set, then

these features apparently allow good generalization. In this sense,

a good CV performance can be interpreted as an in silico validation

of the features found.

Classifier Interpretation and Comparison
For a given set of sequences S, the feature weight vector w from

a trained SVM classifier was obtained using:

w~
X

si[S

aiyiW(si): ð3Þ

Classifiers were compared by taking the correlation between w
of both trained classifiers. A high correlation indicates a high

similarity between the classifiers, both assigning similar weights to

the same features.

Feature Sets
We derived distinct sets of sequence-based features, f0–f22,

which will be described below. A visualization of feature matrices

f0, f1, f2, and f12 for hom and het are given in Supplementary

Figures S1–S8. Features f1–f14 were used in an inner product

kernel (K(x, y)~xT y); for features f15–f22 we used a spectrum

kernel (see below).

Composition-based features. (f0 – f9) The composition of

sequences r0 – r9 (Figure 1). For a sequence s on alphabet A, the

composition c is defined as:

c(s)~
count(l,s)

DsD
Vl [ A, ð4Þ

in which count (l,s) is a function that counts the number of

occurrences of letter l in sequence s, and DsD is the length of the

sequence. The size of the feature vector c depends on the size of

alphabet A, e.g. the composition of the codon sequence r0 results

in a feature vector of length 64 and the composition of the protein

sequence r2 results in a feature vector of length 20. This means

that f0 and f2 consist of 64 and 20 features respectively.

f4
0, f5

0, f7
0, f8

0 and f9
0 are the compositional features of the

randomized sequences r4
0, r5

0, r7
0, r8

0 and r9
0

f10) Predefined amino acid cluster composition of r2 using the 11

predefined clusters in Table 1. The clusters are based on those

defined in [30]. (Note: In this clustering it sometimes occurs that

an amino acid is both inside and outside a cluster, based on its

state; e.g. a free cysteine is in the polar cluster, while a cysteine that

forms a disulfide bridge is outside the polar cluster. Without

structural data, amino acid states are unknown. We therefore

removed an amino acid from the cluster if it also resides

somewhere outside that cluster, i.e. cysteine is not considered to

be part of the polar cluster.) For a sequence s and clusters G, the

cluster composition vector cc is defined as:

cc(s,G)~

P
l[g

count(l,s)

DsD
Vg [ G: ð5Þ

f11) Optimized amino acid cluster composition of the protein

sequence (r2) using clusters that are optimized for our data set

using the method described in the next section (Amino acid

clustering).

Sequence-derived features. f12) Using r0, codon usage was

calculated for the 59 codons that non-uniquely encode for an

amino acid. Codon usage is defined as the codon count divided by

the amino acid count of the amino acid it encodes for.

f13) Four other sequence-derived features: the signal peptide

length, the protein sequence length, the codon adaptation index

Table 1. Predefined amino acid clusters.

cluster amino acids

small V, C, A, G, T, P, S, D, N

polar uncharged S, W, N, Q, T, Y

aromatic F, Y, W, H

acidic D, E

charged H, K, R, E, D

basic K, R, H

hydrophobic I, L, V, M, F, Y, W, H, C, A, T, K

tiny A, G, S

nonpolar A, V, L, I, M, G, F, P

aliphatic I, L, V

polar Y, W, H, K, R, D, E, T, S, N, Q

doi:10.1371/journal.pone.0045869.t001
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[31] that was calculated using a codon usage index derived from

all A. niger genes, and the isoelectric point. The last two values were

calculated using the codon sequence (r0) and the protein sequence

(r2) respectively, both using the Biopython software package [32].
Selected features. f14) A two-sample t-test (python SciPy

package [33]), was applied to a set of 124 features, combining the

features from feature sets f0, f1, f2, f3, f6, f10, and f13. Features

with a p-value v1:0|10{4 were selected for forward feature

selection, 36 and 33 features for hom and het respectively

(Supplementary Table S4).

In a 10-fold cross-validation loop, forward feature selection was

applied on the training set. Features were added one by one, based

on their prediction performance as determined using a second

inner 10-fold CV-loop, until prediction performance starts to

drop. To reduce calculation time, parameter C was not optimized

but based on observations fixed to 1:0|103 and 1:0|10{6 for

hom and het, respectively. The selected features per CV-loop for

both hom and het are given in Supplementary Table S5.
Pattern-based features. f15, f16, . . . , f22) We employed

spectrum kernels [34], which define similarities between sequences

based on fixed-length subsequence (k-mer) counts, as implemented

by Shogun [35] to search for predictive patterns. We calculated

k~2,3,4,5 spectrum kernels using r2 (f15, . . . , f18) and r1

(f19, . . . , f22).

Amino Acid Clustering
We developed a method that forms amino acid clusters using

our data sets, thereby constructing new features optimized for our

data. A cluster is defined as a set of one or more amino acids. For

the resulting clusters, each amino acid can be in one cluster only,

not every amino acid needs to be in a cluster.

The method starts with selecting the best performing amino

acid, i.e. the amino acid that, when used as the only feature,

provides the best classification performance, the same as in

forward feature selection. For example, if the fraction of lysine in a

protein provides the best separation between the positive and

negative class, this amino acid will start the first cluster. In the next

iteration, for the remaining 19 amino acids, classification

performance is tested for two cases: 1) with the amino acid added

as new cluster and 2) with the amino acid added to the existing

cluster. In case of the example, when adding alanine, classification

performance is tested both using the fraction of lysine and the

fraction of alanine as two separate features, and using the sum of

the fractions of lysine and alanine as a single feature. The case that

provides the best classification performance is selected. In the next

iteration, with 18 amino acids remaining, the same procedure is

applied. This iteration cycle is proceeded until there are no more

amino acids left. Finally, the overall best performing clusters are

the output of the method. Consequently, it might happen that

some amino acids will not be selected at all.

This procedure is implemented in a 10-fold CV-loop, obtaining

the best performing clusters on the training set and using them as

cluster composition features on the test set. The selection protocol

is applied in an inner CV-loop to avoid biases towards the training

data. The obtained clusters per CV-loop are given in Supple-

mentary Table S6.

Statistical Pattern Discovery
The statistical motif finding approach MEME [36] was used to

find patterns (described as position-dependent letter-probability

matrix) that occur once in every sequence (oops mode) of a data

set. Discriminative motif discovery was performed using the

successful secreted proteins as input with the unsuccessful secreted

proteins as negative sequences and vice versa. This was done for

both hom and het. The minimal and maximal motif lengths were

set to 2 and 15 respectively.

Results

Sequence Data is Predictive for High-level Protein
Production

To test if the sequence data is informative, we used it to predict

successful high-level protein production. Classifiers were built

using an extensive set of sequence-based features. Performance

results (AUROC) of 10-fold CV experiments on both hom and het
are shown in Table 2, 0:5 indicating random prediction and 1:0
perfect prediction. Best classification performances of 0.85 and

0.75 AUROC respectively (boldface in Table 2) show that sequence

data is predictive. As additional support, classifier outcome for the

A. niger proteome (Supplementary Figure S11) shows an expected

result, predicting successful high-level production for only a

fraction of the proteome.

Considering the composition-based features, similar results were

observed for the codon sequence (f0) and the protein sequence (f2),

which is expected because of the relation between the two

sequences. For hom, high performance using protein sequences is

in line with results of our previous work [37]. Similarly, results of

other previous work, regarding only protein localization and not

production rate, reported different amino acid compositions for

Table 2. Prediction performance scores (AUROC).

features homRhom hetRhet

Composition-based features

f0 0.85 0.70 ORF codon composition

f1 0.66 0.51 signal peptide AA composition

f2 0.83 0.70 mature protein AA
composition

f3 0.68 0.51 buried-exposed composition

f4 (f49) 0.80 (0.80) 0.65 (0.64) buried AA composition

f5 (f59) 0.82 (0.78) 0.64 (0.65) exposed AA composition

f6 0.62 0.57 helix-strand-coil composition

f7 (f79) 0.68 (0.70) 0.60 (0.57) helix AA composition

f8 (f89) 0.70 (0.72) 0.61 (0.57) strand AA composition

f9 (f99) 0.80 (0.80) 0.65 (0.65) coil AA composition

f10 0.80 0.63 AA clusters composition

f11 0.83 0.67 optimized AA clusters comp.

Sequence-derived features

f12 0.64 0.54 codon usage

Selected features

f14 0.84 0.75 feature selection

Pattern-based features

f15 0.82 0.63 2-mer counts protein

f16 0.77 0.61 3-mer counts protein

f17 0.68 0.60 4-mer counts protein

f18 0.57 0.47 5-mer counts protein

f19 0.63 0.54 2-mer counts signal peptide

f20 0.59 0.52 3-mer counts signal peptide

f21 0.54 0.51 4-mer counts signal peptide

f22 0.56 0.50 5-mer counts signal peptide

doi:10.1371/journal.pone.0045869.t002
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intra- and extracellular proteins [38,39]. Although the codon

sequence shows a slightly higher score for hom, it does not

significantly outperform the protein sequence (p~0:14 for a

paired t-test on the test scores of the 10 CV-loops).

The predictive power of the amino acid composition of the

signal peptide (f1) proves to be limited, clearly outperformed by

both the codon and protein sequence. More advanced methods,

taking into account letter/pattern location [40,41], did not

improve prediction results (results not shown).

Similar Characteristics are Important for Both Data Sets
Figure 2 shows the ROC-curves of the composition-based

classifiers discussed thus far. Figure 2A and Figure 2B show the

average result of a 10-fold CV-loop on hom and het respectively.

Figure 2C shows the result of a classifier trained on hom and tested

on het. Remarkably, this shows similar results as the classifiers

trained on het, suggesting that the homologous classifier general-

izes well to predict high-level production for het. In fact, the

classifiers trained on het performed even slightly worse. This might

be due to the fact that this data set is too heterogeneous,

originating from 14 different species, which makes it harder to

build a generic classifier and may have caused over-fitting in the

CV-loops.

The good generalization of the hom classifier on the het data set

suggests that classifiers trained on hom and het are similar, i.e.

perform their predictions based on the same sequence character-

istics. The correlation of 0:65 in Figure 3 shows that this is indeed

the case. The figure shows the contribution of each amino acid as

obtained from the hom and het classifier, both trained using the

protein amino acid composition (f2). Positive values indicate

contribution to successful high-level production and negative

values indicate contribution to unsuccessful high-level production.

For both hom and het, a remarkable positive and negative

contribution of respectively tyrosine (Y) and methionine (M) is

apparent. For hom, also asparagine (N) and lysine (K) show an

outstanding positive and negative contribution respectively.

Considering amino acid properties, it is observed that the basic

and the sulfur-containing amino acids have a negative contribu-

tion whereas the (uncharged) aromatic amino acids have a positive

contribution.

Besides comparing the amino acid contributions of the hom and

het classifier, we also compared them to amino acid synthesis costs

as defined in [42]. With the exception of the aromatic amino acids,

a negative correlation is shown between the hom contributions and

the amino acid costs (Supplementary Figures S9–S10), suggesting

a preference for ‘‘cheap’’ amino acids for high-level secretion.

Basic and Aromatic Amino Acids are Predictive
From a structural and functional perspective, it is often more

useful to look at the physicochemical properties of an amino acid,

rather than looking at the 20 amino acids as different entities.

Therefore, based on physicochemical properties [30], we defined

11 predefined amino acid clusters (Table 1), and used these as

features (f10). In this case, a correlation of 0:71 was observed

between the hom and het classifier (Figure 3B). The aromatic

amino acids have a high contribution to high-level production,

which, looking back at Figure 3A, is similar to the amino acid

contributions, except for the positively charged histidine (H). A

negative contribution is observed for the basic amino acids, also

consistent with the observations in Figure 3A.

Since it is unclear which amino acid clusters are suitable for

what problem, we developed a novel method that uses the data set

to construct clusters. The best performing clusters (f11) obtained in

ten CV-loops are jointly shown as a heat map in Figure 4. The

non-diagonal values show the number of times that two amino

acids were found in the same cluster. The diagonal values show

how often an amino acid was found in any cluster.

The diagonal values correspond to the results observed in

Figure 3A: highly contributing amino acids were often found in a

cluster. For het, noteworthy exceptions are phenylalanine (F) and

glycine (G), both of which always ended up in a cluster despite

their low contribution.

The non-diagonal values also match the results in Figure 3A. As

can be observed, amino acids with a positive contribution (green

letters) and amino acids with a negative contribution (red letters)

often form clusters, whereas amino acids with contradicting

contributions rarely do. The occurrence of only few light cells

show that not many amino acids consistently form the same

cluster. Only clusters with phenylalanine (F), glycine (G), aspartic

acid (D), and glutamine (Q) occur relatively often in both data sets,

but those do not share an obvious physicochemical property.

Despite the high contributions observed for the aromatic amino

acids in Figure 3B, clustering of these amino acids occurred only a

few times.

Figure 2. Classification performances. ROC-curves of composition-based classifiers using the codon sequence (f0), the signal peptide sequence
(f1), and the protein sequence (f2). Performances are shown for classifiers A) trained and tested on hom, B) trained and tested on het, and C) trained
on hom and tested on het.
doi:10.1371/journal.pone.0045869.g002
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Structural Subsequences have Limited Information
The secondary structure composition (f6) shows to be little

predictive, with an AUROC of 0.62 and 0.57 for hom and het

respectively. Results using the amino acid composition of the helix

(f7), strand (f8), and coil sequence (f9) suggest that the coil sequence

is more informative than the helix and strand sequence, however,

a similar result was obtained using a randomized version of the

sequence (f9
0, score between brackets in Table 2). This indicates

that the coil sequence, although it provides higher classification

performance, is not more informative than the helix and strand

Figure 3. Comparing hom and het classifiers. Amino acid contributions obtained from hom and het trained classifiers are the x- and y-values
respectively, the correlation is denoted by r. Contributions are normalized per classifier (axis): each contribution is divided by the maximum absolute
contribution. The plots show the contributions obtained from classifiers trained using A) the protein amino acid composition (f2) and B) the
predefined amino acid cluster composition (f10).
doi:10.1371/journal.pone.0045869.g003

Figure 4. Best performing amino acid clusters. The heat maps show the combined result of the best performing clusters obtained in 10 CV-
loops for both hom (A) and het (B). The values on the diagonals denote how often an amino acid ended up in a cluster (due to selecting the optimal
clusters, amino acids might not be selected at all). The colors on the non-diagonal places denote how often two amino acids ended up in the same
cluster. Complete linkage hierarchical clustering was used to cluster the heat map, using the euclidean distance as distance measure. The color of the
amino acid letters indicates if the amino acid has a positive (green) or negative (red) contribution in Figure 3A.
doi:10.1371/journal.pone.0045869.g004
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sequence. The better performance can be explained by the length

of the sequence, proteins are on average composed of 60% coil,

20% helix, and 20% strand.

Considering the solvent accessibility, the distribution of buried

and exposed amino acids (f3) is only predictive for hom (AUROC

0:68). The buried amino acids showed a positive contribution to

high-level production (data not shown). Results using the amino

acid composition of the buried (f4) and exposed sequence (f5),

separately, are similar to the randomized buried (f4
0) and

randomized exposed sequence (f5
0), indicating that neither of the

two sequences is more informative than a randomly selected

sequence of the same length.

Best Performance with Only Few Features
Thus far, all discussed classifiers were trained on a relatively

small set of related features. Combining all features results in a

large feature set which complicates both classification and

interpretation. To resolve this, we used a forward feature selection

protocol similar to the one used in previous work [37].

A classification performance of 0:84 AUROC was obtained for

hom (f14 in Table 2), similar to the results obtained using the

protein’s amino acid or codon composition. Interpretation of the

selected features shows a similar trend compared to the amino acid

contributions observed in Figure 3A. As shown in Figure 5A, the

first three selected features were almost always lysine (K), tyrosine

(Y), and asparagine (N), or, as shown by a different shade of the

same color, a correlated feature (rw0:65).

For het, feature selection resulted in the best obtained prediction

performance of 0:75 AUROC (f14). A relatively low number of

features, on average six, were selected each CV-loop, most of

which were codons. Remarkably, the codon TAC (Y) was

consistently selected first (Figure 5B). Methionine (M and ATG)

and the codons AAC (N) and TTC (F) were most often selected

second and third.

The fact that codons are selected before amino acids suggests

the importance of codon usage. However, taking codon usage as

features provided an AUROC of only 0:54 (f12). This could be due to

the heterogeneous codon usage of the different organisms in het.

With an AUROC of 0:64, codon usage in hom appeared to be a little

predictive.

A Role for N-glycosylation Motifs
Functional patterns, often called (short) linear motifs [43]

(SLiMs), have been associated with protein targeting. The most

well-known example is the C-terminal [HK]DEL motif that causes

ER retention. Also a case with a secretion specific signal has been

identified [44].

All proteins in our data sets contain a signal peptide, proteins

with an ER-retention signal and proteins with predicted

transmembrane regions are filtered out. Still, successful high-level

production was observed for only half of the proteins in hom.

Unsuccessful high-level production could for example be caused

by a low production rate or a high degradation rate, resulting in a

too low concentration to detect on the gel (i.e. v50mg=l). An

alternative explanation could be the existence of additional

retention or targeting signals. The statistical motif finding

approach MEME [36] was used to search for such signals.

For hom, the pattern N½GI �T , which matches the N-glycosyl-

ation pattern N½^P�½ST �, was found for successful high-level

production. Instead of retention or targeting, this indicates

importance of this post-translational modification. No other

patterns related to either successful or unsuccessful high-level

production were found, indicating the absence of additional

generic targeting or retention signals.

SLiMs related to post-translational modifications can occur

more than once in a sequence. Therefore we also searched for

reoccurring patterns by building classifiers using fixed length

pattern (k-mer) counts as features. Using the signal peptide and the

protein sequence, results for k~2 to k~5 are shown in Table 2

(f15–f22). In general, classification performances rapidly drop with

increasing pattern length, caused by an explosion of the number of

possible k-mers that results in sparse kernels [28] which are

difficult to use for classification. Again, the N-glycosylation pattern

was identified. Inspection of the 3-mer classifier trained on hom

showed that six out of the seven 3-mers with the most positive

contribution match the N-glycosylation pattern.

The N-glycosylation pattern is much more abundant in hom

than in het, with on average 3.37 N-glycosylation patterns per

protein for hom compared to an average of 1.42 per protein for

het. A clear difference is observed between the positive and

negative proteins in hom, containing an average of 4.71 and 1.95

patterns respectively. Although much smaller, with an average of

1.72 and 1.36 patterns for the positive and negative class,

respectively, het shows a difference as well, suggesting that the

Figure 5. Feature selection. For the first three feature selection
iterations (x-axis), the bar plot shows how often features were selected
in the 10 CV-loops for both hom (A) and het (B). Features with a
different shade of the same color are correlated (rw0:65). The letters
between brackets in the legend are amino acids that denote either
which amino acids are in the cluster, e.g. the basic cluster contains
amino acids R, K, and, H, or for which amino acid a codon encodes, e.g.
codon TAC encodes for Y.
doi:10.1371/journal.pone.0045869.g005
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addition of N-glycosylation sites might be useful to improve

heterologous secretion [45].

Discussion

Using machine learning techniques, we explored which

combinations of a large number of features best helps predicting

successful high-level protein production in A. niger. The results

show that composition-based features were most predictive, but

that the exact representation – by codons, amino acids or amino

acid clusters – has little influence. Taking into account predicted

structural location of the amino acids did not further improve

prediction results. Although all proteins have a signal peptide and

the signal peptide is usually cleaved off in the ER [46], its sequence

is still somewhat predictive. This suggests a role for the signal

peptide in determining translocation efficiency, possibly due to a

higher affinity to the SRP.

Classifiers trained on hom and het showed similar amino acid

contributions, indicating that the properties found important for

high-level production are generic in nature. The fact that poorer

prediction performance was still obtained for het suggests that

organism-specific properties may be important for high-level

production. However, the heterogeneous nature of the het data

and the resulting limited number of samples per donor organism

hinder the identification of such properties using machine

learning.

Feature selection on a larger set of features, including some

derived from the sequence, confirmed that mainly composition-

based features were selected in the first iterations. In fact, mainly

codons and only a few amino acid features were selected for het. In

the first three iterations, only codons were selected, implying room

for production improvement by codon adaptation of heterologous

proteins.

Among the composition-based features, a number of individual

amino acids stood out as strongly contributing, either positively or

negatively, to predicted high-level production:

N Tyrosine (Y), tryptophan (W) and phenylalanine (F) contribute

positively. These aromatic amino acids are usually found in the

protein core; their ability to form stacks can contribute to

protein stability. A correlation between protein stability and

secretion efficiency has been observed [47–49]. Moreover,

improving secretion by increasing the protein stability is shown

to be a successful strategy [50,51]. It is hypothesized that

proteins with a high stability more frequently escape from the

ER quality control system, since they will more often be in the

correctly folded state, which in general is the only state to leave

the ER [48,52].

N Asparagine (N) has a high positive contribution for hom. Since

motif analysis showed the N-glycosylation pattern to be both

predictive and abundant in hom the contribution of asparagine

could be related to this post-translational process in which a

specific set of enzymes catalyzes the formation of N-linked

glycans. Details are still unknown, but N-linked glycans are

known to play an import role in protein folding and quality

control [53]. Although N-linked glycosylation is not a

prerequisite for secretion [54], there is ample evidence that

introduction or modification of glycosylation sites can lead to

improved secretion [45,55,56].

N Methionine (M) shows a strong negative contribution. The fact

that it is a sulfur-containing amino acid, and that the other

sulfur-containing amino acid, cysteine (C) also has a negative

contribution, suggests a negative influence of sulfur-containing

amino acids. Another explanation could be that methionine is

encoded by the start codon ATG, which could slow down

translation due to ribosome reinitiation on alternative start

sites [57].

N Lysine (K) also has a strongly negative contribution, as do the

other basic amino acids arginine (R) and histidine (H) for hom.

The positive charge, usually exposed at the protein surface,

could facilitate binding to the negatively charged cell

membrane, thereby preventing the protein to be filtered out,

or could be related to protein thermostability due to charge-

charge interactions on the protein surface [58].

In conclusion, we have exploited a large experimental dataset

on production of proteins in A. niger, using both homologous and

heterologous gene expression and employed machine learning

algorithms to find combinations of features optimally predictive of

presence or absence of high-level production. These features were

all derived directly or indirectly from the protein sequences, and

could be useful to improve industrial production rates of existing

targets and to explore possibilities for new products. In future

work, we intend to verify a number of the hypotheses provided

here by engineering proteins to better reflect the features found to

be related to high production rates.

Supporting Information

Figure S1 Shows the hom protein composition feature
matrix (f2). The heat map visualizes the feature matrix with the

features on the x-axis and the proteins on the y-axis, the colors

denote the feature value. Both the features (columns) and the

proteins (rows) are clustered using complete linkage hierarchical

clustering. The first bar to the right of heat map shows the protein

labels, white for successful high-level production and gray for

unsuccessful high-level production. The second bar to the right of

the heat map shows from which donor organism the protein

originates. In this case all proteins originate from A. niger, which is

also the host organism.

(PDF)

Figure S2 Shows a heat map of the het protein sequence
composition feature matrix (f2), similar to Figure S1.
(PDF)

Figure S3 Shows a heat map of the hom codon sequence
composition feature matrix (f0), similar to Figure S1.
(PDF)

Figure S4 Shows a heat map of the het codon sequence
composition feature matrix (f0), similar to Figure S1.
(PDF)

Figure S5 Shows a heat map of the hom signal peptide
composition feature matrix (f1), similar to Figure S1.
(PDF)

Figure S6 Shows a heat map of the het signal peptide
composition feature matrix (f1), similar to Figure S1.
(PDF)

Figure S7 Shows a heat map of the hom codon usage
feature matrix (f12), similar to Figure S1.
(PDF)

Figure S8 Shows a heat map of the het codon usage
feature matrix (f12), similar to Figure S1.
(PDF)

Figure S9 Shows the amino acid contributions of the
hom classifier (x-axis) versus amino acid costs (y-axis). A

correlation is observed for the non-aromatic amino acids,
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suggesting a preference for ‘‘cheap amino acids for high-level

secretion.

(PDF)

Figure S10 Shows the amino acid contributions of the
het classifier (x-axis) versus amino acid costs (y-axis).

(PDF)

Figure S11 Shows the classifier outcomes of the hom
protein composition classifier. A) The histogram shows the

classifier outcomes for the hom data set with the negatively labeled

proteins in red and the positively labeled proteins in green. Note

that the classifier is trained using the same data set. B) The

histogram shows the classifier outcomes for the A. niger proteome in

light grey. The subset of the proteome that contains a predicted

signal peptide (SignalP 3.0) is shown in dark grey.

(PDF)

Table S1 Contains the labeled data set with Aspergillus
niger proteins (hom) that were tested for successful high-
level production and secretion. Labels pos and neg indicate

successful and unsuccessful high-rate production respectively.

(XLS)

Table S2 Contains the names and abbreviations of the
14 fungal donor organisms for which there are proteins
in the heterologous data set (het).
(TXT)

Table S3 Contains the total number of proteins and the
number of successfull and unsuccessfull proteins in both
hom and het, and per organism in het.

(XLS)

Table S4 Contains the t-values and corresponding p-
values as obtained from a two-sample t-test on the 124
features that were used for feature selection. For both

hom and het, the features are ordered by the absolute t-value.

(XLS)

Table S5 Contains the selected features in each CV-loop
with forward feature selection on both hom and het.

(XLS)

Table S6 Contains the best performing amino acid
clusters in each CV-loop obtained with the amino acid
clustering procedure on both hom and het.

(TXT)
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