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Mobile sensing to advance tumor modeling in cancer patients: A conceptual framework  
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A B S T R A C T   

As mobile and wearable devices continue to grow in popularity, there is strong yet unrealized potential to 
harness people's mobile sensing data to improve our understanding of their cellular and biologically-based 
diseases. Breakthrough technical innovations in tumor modeling, such as the three dimensional tumor micro-
environment system (TMES), allow researchers to study the behavior of tumor cells in a controlled environment 
that closely mimics the human body. Although patients' health behaviors are known to impact their tumor 
growth through circulating hormones (cortisol, melatonin), capturing this process is a challenge to rendering 
realistic tumor models in the TMES or similar tumor modeling systems. The goal of this paper is to propose a 
conceptual framework that unifies researchers from digital health, data science, oncology, and cellular signaling, 
in a common cause to improve cancer patients' treatment outcomes through mobile sensing. In support of our 
framework, existing studies indicate that it is feasible to use people's mobile sensing data to approximate their 
underlying hormone levels. Further, it was found that when cortisol is cycled through the TMES based on actual 
patients' cortisol levels, there is a significant increase in pancreatic tumor cell growth compared to when cortisol 
levels are at normal healthy levels. Taken together, findings from these studies indicate that continuous moni-
toring of people's hormone levels through mobile sensing may improve experimentation in the TMES, by 
informing how hormones should be introduced. We hope our framework inspires digital health researchers in the 
psychosocial sciences to consider how their expertise can be applied to advancing outcomes across levels of 
inquiry, from behavioral to cellular.   

1. Introduction 

This paper is about an unlikely relationship between digital health 
and basic cancer research, two fields that traditionally have little in 
common. Drawing them together, however, are breakthrough in-
novations in mobile sensing, machine learning, and tumor modeling, 
that collectively have the potential to revolutionize cancer treatment 
outcomes. The goal of this paper is to propose a conceptual biobehav-
ioral framework that leverages patients' mobile sensing data to render 
more realistic models of their tumors. We hope this framework em-
powers digital health researchers in the psychosocial sciences to 
consider how their expertise can be applied across traditional disci-
plinary boundaries. 

1.1. Digital health research: untapped potential for investigating 
biologically-based outcomes 

Advances in digital technologies have revolutionized many aspects 
of health and medicine. In particular, the growing adoption in the 
general population of commercially-available mobile devices (i.e., 
smartphones, smartwatches, wearables) has led to increased efforts to 
use people's behavioral data to advance precision medicine (Steinhubl 
et al., 2015; Topol, 2014)—medical care that delivers the right treat-
ments to the right patients at the right time (Collins and Varmus, 2015). 

In digital precision medicine, data related to people's heath related be-
haviors, such as their physical activity (Trifan et al., 2019), sleep 
disruption (Staples et al., 2017), and stress response (Egilmez et al., 
2017) are captured unobtrusively from their mobile devices. Data from 
these mobile devices, or mobile sensing data, are then used to inform 
when and where an intervention should be delivered (Trifan et al., 2019; 
Aung et al., 2017; Harari et al., 2017). Reviews and meta-analyses 
demonstrate that people's mobile sensing data can provide a nuanced 
understanding of their behavior, which can then be used to optimize the 
delivery of behavioral interventions (Trifan et al., 2019; Harari et al., 
2017; Mohr et al., 2017). 

A foundational principle of mobile sensing, often referred to as 
‘digital phenotyping’ (Mohr et al., 2020), is that people's behaviors can 
be approximated through data captured by their mobile devices (Mohr 
et al., 2017). Embedded in virtually every commercial mobile device is a 
multitude of sensors that measure physical properties such as geo-
location, acceleration, and light. Due to unparalleled technological ad-
vances in recent years, these sensors have become more precise, more 
agile, and less impeded by geographical boundaries (Steinhubl et al., 
2015). It is now commonplace for mobile devices to be connected to 
various systems and networks, allowing users to access their data almost 
anywhere on demand. To help guide digital health researchers, a 
layered, hierarchical framework is often used to provide a schematic 
outline of how people's mobile sensing data is related to the behavioral 
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markers they are meant to inform (Mohr et al., 2017). In this framework, 
people's raw sensor data is transformed into low-level data features. 
Data features refer to the individual measurable characteristics of a 
dataset, often represented through variables or columns in a dataset. 
Low-level features, such as movement intensity and bedtime/waketime, 
are derived through feature extraction, which is the process of reducing 
the dimensionality of the data to capture the most relevant or repre-
sentative features for subsequent analyses (Guyon et al., 2008; Khalid 
et al., 2014). Higher-order behavioral markers, such as sleep disruption, 
are then approximated through machine learning algorithms that use 
lower-level features as inputs (Kliegr et al., 2020; Turgeon and Lanovaz, 
2020). This hierarchical framework is particularly relevant to digital 
health researchers given the unprecedented amounts of raw, unpro-
cessed sensor data that is able to be collected via people's mobile de-
vices. In particular, capturing mobile sensing data from patients 
suffering from a chronic illness has strong potential for advancing pre-
cision medicine because it offers a nuanced understanding of their daily 
behaviors. This can help clinicians determine when to route a patient 
into care, what level of care to deliver, and whether care that has been 
delivered is effective. 

Using mobile sensing data to estimate people's behaviors has led to 
increasingly sophisticated intervention designs and behavioral detection 
methods. For example, just-in-time adaptive interventions (JITAIs) aim 
to provide the right type of support, at the right dose, at the right time, 
by adapting to an individual's internal or contextual state (Nahum-Shani 
et al., 2017). This degree of precision is often enabled by sensor data 
collected in micro-randomized trials (MRTs), data from which are used 
to construct JITAIs. MRTs can leverage the sensing capabilities of mobile 
devices to sequentially randomize users to types and/or levels of an 
intervention to determine its near- and long-term effectiveness (Klasnja 
et al., 2015; Qian et al., 2022). Researchers conducting MRTs have used 
a range of features from participants' mobile sensing data to trigger a 
randomization sequence such as their location, activity type, and stress 
level (Klasnja et al., 2015; Qian et al., 2022). This has led to the 
development of JITAIs targeting a range of health outcomes such as 
weight loss, smoking cessation, and medication adherence (Wang and 
Miller, n.d.). 

Importantly, the power and precision afforded by mobile sensors 
presents digital health researchers with an opportunity to apply their 
expertise to advancing discovery in more basic levels of inquiry. In 
theory, a hierarchical framework that links people's mobile sensing data 
with their underlying biological processes could be used to inform 
outcomes at the biological level. Despite a large and robust body of 
literature demonstrating a direct link between people's health behaviors 
and their underlying biological processes, such as levels of circulating 
hormones (Segerstrom et al., 2014; Marketon and Glaser, 2008; Robles 
et al., 2006; Kyrou and Tsigos, 2009), digital health researchers have yet 
to explore the potential for using people's mobile sensing data to inform 
outcomes related to their cellular and biologically-based disorders, such 
as malignant tumors. 

1.2. Basic cancer research: a need to better account for the impact of 
patients’ behaviors 

A goal of basic cancer research is to understand, and ultimately 
target, the genetic and cellular processes that drive the growth of tumors 
in humans. Despite remarkable advancements in cancer therapeutics 
that have contributed to an overall cancer survival rate of >70 % 
(Brenner, 2002), the five-year survival rate for the deadliest forms of 
cancer is <20 % (Jemal et al., 2017). These cancers tend to spread 
quickly and not respond well to conventional cancer treatments. To 
address this, cancer researchers develop tumor models to study the 
etiology of these cancers and how they grow and respond to different 
treatments in a controlled setting. This has traditionally involved the use 
of genetically engineered mice to derive tumor models, however, find-
ings from these experiments often have limited generalizability to 

human patients (Ijichi, 2011; Borowsky, 2011; Fong and Kakar, 2009). 
Recent innovations, such as the three-dimensional multi-cell type tumor 
microenvironment system (TMES) (Gioeli et al., 2019; Roller et al., 
2021), provide a rigorous and realistic platform to model the growth of 
patient-derived tumor cells by allowing researchers to mimic the tumor 
microenvironment in human patients. By leveraging the ability of the 
TMES to flow media (e.g., hormones) in and out of the system, cancer 
researchers can model the rhythm of circulating hormones, such as 
cortisol, that are associated with key health behaviors in patients, such 
as sleep and stress. By experimenting with different hormone levels in 
the TMES, the findings can shed light on the effect of human behaviors 
known to impact tumor growth and response to chemotherapy (Rob-
ertson et al., 2016; Sklar and Anisman, 1979; Thaker et al., 2006). 

To develop tumor models that are realistic and generalizable, it is 
essential to account for patients' day-to-day health behaviors in the 
tumor microenvironment system, such as their stress response, sleep 
disruption, exercise, and diet. Literature in cancer has documented a 
robust association between people's health behaviors and their tumor 
progression (Robertson et al., 2016; Sklar and Anisman, 1979; Thaker 
et al., 2006). In particular, hormones associated with these behaviors, 
such as cortisol and melatonin, have been found to significantly impact 
tumor growth (Blask, 2009; Schuller et al., 2011; Li et al., 2017). 
Research has found that health behaviors contribute to individual 
variation in cancer outcomes by activating sympathetic and neuroen-
docrine responses (Costanzo et al., 2011). Hormones, which are prod-
ucts of these responses, have downstream effects that can directly 
impact the tumor microenvironment, and thus tumor growth (Costanzo 
et al., 2011). Understanding the relationship between people's health 
behaviors and their hormone levels can inform cancer researchers of 
how they should introduce hormones in experiments using the TMES, or 
similar tumor model systems, to answer fundamental questions about 
how people's behaviors influence their tumor biology. In the TMES, this 
can be done by adjusting the flow and timing of hormones and other 
biological elements in the system, thereby allowing researchers to 
recreate a tumor microenvironment as found in a human patient. An 
obstacle to this approach is collecting enough hormone-relevant data 
from patients to meaningfully inform TMES experimentation. Having a 
way to continuously monitor patients' critical hormone levels over time 
could lead to ultra-realistic tumor models that accurately portray the 
impact of patients' health behaviors. 

2. An unlikely partnership: a framework that integrates 
innovations in digital health and basic cancer research 

Our conceptual framework (Fig. 1) extends the hierarchical sense-
making framework by Mohr et al. (2017). Our framework integrates 
innovations from multiple disciplines—mobile sensing from behavioral 
health, machine learning from data science, tumor modeling from can-
cer biology—to advance the role of digital health in tumor modeling. It 
capitalizes on the burgeoning interest from researchers to harness 
technology and algorithmic approaches to solve complex issues in 
medicine. Whereas artificial intelligence (AI) has captured the imagi-
nation of the general population, machine learning is what enables 
machines to mimic human-like intelligence without explicit program-
ming (Das et al., 2015). As highlighted in recent reviews (Rajpurkar 
et al., 2022; Johnson et al., 2021), many aspects of health and medicine 
are at the precipice of being dramatically changed by AI. While this is 
made possible by the wealth of data collected by healthcare systems, it is 
spurred on by the vast amounts of data available through the widespread 
adoption of common networked devices like smartphones, smart-
watches, and wearables. Thus, we believe our framework has strong 
relevance to the future of digital health applications in medicine. 

Our framework leverages widely accepted approaches to approxi-
mating health behaviors, such as insomnia and stress reactivity, by 
transforming data captured by sensors into low-level data features 
through handcrafted and/or automatic feature engineering methods 
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(Trifan et al., 2019; Mohr et al., 2017; Sheikh et al., 2021), which can in 
turn be used to approximate more complex behaviors and constructs. 
Although a detailed review of machine learning and feature extraction 
approaches in health behaviors is beyond the scope of this paper, 
interested readers are encouraged to seek out the many excellent re-
sources that exist on these topics (Jiang et al., 2020; Bzdok and Meyer- 
Lindenberg, 2018; Hoogendoorn and Funk, 2018). 

Our framework establishes a connection between mobile sensing 
data and the underlying biological processes by leveraging data features 
extracted from individuals' mobile sensing data to detect hormone levels 
such as melatonin and cortisol. This linkage may also involve higher- 
order behavioral markers and constructs, analogous to latent con-
structs in psychological research, which cannot be directly observed but 
can be approximated by combining lower-level data features. It is 
important to note that there may be robust support for the use of various 
data features in directly approximating hormone levels, depending on 
the feature in question. For instance, numerous studies have demon-
strated a strong association between physiological arousal and under-
lying cortisol levels across different populations (Peifer et al., 2014; Rief 
et al., 1998; Evans et al., 1994). Therefore, researchers may discover 
that aggregating lower-level data features into higher-order behavioral 
markers or constructs is not always necessary for approximating 
different hormones. However, further studies are warranted to explore 
this in greater detail. 

Establishing a process for using people's mobile sensing data to 
automatically assess hormone levels has multiple advantages over tak-
ing serum or saliva samples. Namely, it is less burdensome to collect, 
cheaper to analyze, and can offer nearly continuous monitoring. In our 
framework, estimates of hormone levels in actual patients are then used 
to inform how hormones should be introduced in the TMES or a similar 
tumor model system. This could lead to the widespread adoption of 
using commercial devices to continuously approximate a patient's hor-
mone levels or other biological markers, with the goal of developing 
tumor models that more accurately reflect the impact of patients' health 
related behaviors on their tumor growth. 

Critically, two things are necessary to demonstrate the feasibility and 
potential usefulness of this framework. First, it is necessary to demon-
strate the feasibility of using people's mobile sensing data to detect their 
underlying hormone levels. Second, it is necessary to demonstrate that 
detecting people's hormone levels through their mobile sensing data can 
meaningfully impact TMES experimentation to produce more realistic 
tumor models. 

2.1. From mobile sensing to hormones: studies demonstrating the 
feasibility of using mobile sensing data to detect hormone levels 

Two published papers demonstrate the feasibility of using people's 
mobile sensing data to detect their underlying hormone levels. In a 
recent study, Castaldo et al. (2021) found that healthy participants' 
mobile sensing data can be used to monitor their melatonin-onset. They 
used a chest-worn commercial medical-rated device (Zephyr Bio-
Harness™ 3.0; Medtronic, Inc., Annapolis, MD, USA) to collect elec-
trocardiogram signals for 24 h. Deep learning of the mobile sensing data 
demonstrated that patterns of heart-rate variability, physical activity, 
and skin temperature could precisely and reliably detect melatonin- 
onset assessed through people's saliva samples. 

In a recently published paper, our team demonstrated the feasibility 
of using cancer patients' mobile sensing data to detect their cortisol 
levels over time, using a less invasive device and over a longer duration 
(Dong et al., 2021). In a study of ten newly diagnosed pancreatic cancer 
patients with self-reported moderate insomnia symptoms, patients' 
mobile sensing data (accelerometer, inclinometer, light) was captured 
by a wrist-worn actigraph that was worn on their non-dominant hand for 
5 days. We focused on the impact of disrupted sleep on pancreatic 
cancer, which has one of the lowest 5-year survival rates of all cancers at 
approximately 5 % (Ilic and Ilic, 2016). Cortisol, a marker of disrupted 
sleep and a known cancer agonist (Harari et al., 2017; Guyon et al., 
2008), was measured in saliva samples collected by patients three times 
each day for five days (Dong et al., 2021). Handcrafted features were 
extracted from the raw sensor data based on the literature. Automatic 

Fig. 1. The framework below depicts how data gathered from mobile devices can be used to inform underlying biological processes. A laboratory study of tumor cells 
in a tumor modeling system is necessary to understand the impact of sensed behaviors on tumor growth through hormones in an intermediate biological marker, such 
as circulating cortisol levels in saliva. 
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feature engineering using Graph Representation Learning was used to 
extract additional features. Machine learning of both handcrafted and 
automatic features was able to detect patients' salivary cortisol levels 
with low Mean Absolute Error (MAE). Our paper indicates that machine 
learning of patients' mobile sensing data composed of can be used detect 
their salivary cortisol levels over a 5-day period with good performance. 
Collectively, these studies strongly suggest the feasibility of using cancer 
patients' mobile sensing data to detect their underlying hormone levels. 

2.2. From hormones to tumor models: a study demonstrating the potential 
usefulness of using patient-derived hormone values to inform 
experimentation in a tumor modeling system 

No studies have used cancer patients' assessed hormone levels to 
inform experimentation in a tumor modeling system. Showing this is not 
only possible, but useful for advancing cancer science, is needed to 
support the feasibility and potential usefulness of our framework. Our 
team conducted a proof-of-concept TMES experiment to study the 
impact of patient-derived cortisol levels on tumor growth. We used 
cortisol data from our previously reported observational study of ten 
pancreatic cancer patients. A detailed description of our study partici-
pants, inclusionary/exclusionary criteria and saliva collection proced-
ures, can be found in Dong et al. (2021). 

The supplemental material contains detailed information about the 
technical aspects of the TMES setup. We found that when cortisol was 
cycled through the TMES based on patients' actual cortisol levels, there 
was a significant increase in pancreatic tumor cell growth compared to 
when cortisol levels were at normal healthy levels based on values in the 
literature (Konishi et al., 2012; Rodenbeck et al., 2002), as seen in Fig. 2. 
These findings suggest that cortisol levels in pancreatic cancer patients 
with disrupted sleep contribute to increased pancreatic tumor growth 
versus patients without disrupted sleep. Consistent with our framework, 
in conjunction with the previous studies demonstrating the feasibility of 
detecting patients' hormone levels from their mobile sensing data, these 
findings support the feasibility of ultimately using people's continuously 
detected hormone levels from their mobile sensing data to inform 
experimentation in the TMES to produce more realistic models of their 
tumors. 

2.3. From mobile sensing to personalized tumor modeling: a hypothetical 
integrated system 

To meaningfully improve the modeling of tumors using cancer pa-
tients' mobile sensing data, the design of a comprehensive system is 
crucial. Our envisioned system comprises several interconnected com-
ponents: data collection, hormone level approximation, tumor experi-
mentation and prediction, and a feedback loop for personalization. In 
this system, cancer patients would wear a smartwatch connected to their 
smartphones through a dedicated app. This app would securely transmit 
encrypted data to a reliable computing platform, such as Amazon Web 
Services, ensuring data storage and privacy. This combination of hard-
ware/software connected integration is commonplace for popular 
tracking devices. Artificial Intelligence (AI)-assisted technology would 
automatically compute individual hormone levels using validated ma-
chine learning algorithms. These hormone levels would be displayed in 
patients' electronic health records or another secure platform accessible 
to clinicians and researchers. To project tumor growth and response to 
anticancer treatments, a patient's tumor cells would be experimentally 
studied within a 3D Tumor Microenvironment System (TMES), consid-
ering their respective hormone values. This integration of hormone data 
into tumor models facilitates personalized predictions and treatment 
recommendations tailored to the patient's specific cortisol dynamics and 
tumor characteristics. The integrated system would also incorporate a 
feedback loop to continuously refine and improve the cortisol approxi-
mation and tumor models for future patients. As more data becomes 
available from smartwatches and tumor experimentation, the system 

can update the machine learning algorithms and refine the cortisol 
estimation process. This iterative process ensures that the system 
evolves with new insights and data, enabling ongoing personalization 
for improved modeling and treatment strategies. 

3. Discussion 

Our conceptual biobehavioral framework is the result of break-
through innovations in digital health, machine learning, and cancer 
tumor modeling. We anticipate that researchers in digital health and 
machine learning may be unfamiliar with innovations in cancer research 
such as the TMES. Similarly, it is expected that basic cancer researchers 
may be unfamiliar with how mobile sensing and machine learning can 
be used to advance their scientific agenda. This highlights an exciting 
aspect of our framework. By integrating innovations from disparate 
fields, it expands the reach of digital health and highlights its ability to 
inform outcomes at different levels of inquiry, from behavioral to 
cellular. In addition to previous papers that support the feasibility of 
using people's mobile sensing data to detect their underlying hormone 

Fig. 2. Modeling effects of cortisol in the TMES. (A) Patient cortisol levels. (B) 
Quantitation of growth of tumor cells in the TMES under control and sleep 
disrupted hormone conditions derived from patients. Compared to cells under 
normal healthy sleep conditions (Panels C and E), the elongation of endothelial 
cells was similar under sleep disrupted hormone conditions (Panel D), while 
images of tumor and stromal cells suggested increased tumor growth (Panel F). 
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levels, findings from our TMES experiment suggest that patients' sensed 
hormone levels can ultimately be used to render more realistic models of 
their tumors. Although this research is preliminary, findings from these 
studies support the feasibility and potential usefulness of our frame-
work. We hope it serves as a launching pad for future studies at the 
intersection of digital health and cancer biology. 

We believe our framework has immense potential for advancing both 
digital health and basic science in cancer. Data from wearables may 
improve the precision of tumor models by more accurately accounting 
for the impact of health-related behaviors. We envision that mobile 
sensing data collected from individual patients may one day be used to 
inform experiments in the TMES or other similar tumor model systems. 
This could generate ‘patient avatars’ that clinicians can use to tailor 
treatments based on their patients' health behaviors. To realize this 
potential, future studies need to obtain stable and robust estimates of 
patients' hormones through their mobile sensing data. This may lead to 
new innovations in machine learning or a better understanding of how 
people's behaviors influence their hormone levels. 

A novel aspect of our framework is the use of people's mobile sensing 
data from commercial devices to approximate their hormone levels. The 
studies referenced in this paper use commercially-available devices to 
capture people's mobile sensing data, using hormone levels in their 
saliva samples as ground truth. A strength of this approach is the po-
tential for scalability in the long-term. Using widely accessible mobile 
devices to track patients' hormone levels could be a breakthrough so-
lution to better understanding, and treating, their tumors. However, a 
drawback of this approach in the short-term is the need to collect pa-
tients' saliva or blood samples in large validation studies to serve as the 
ground truth for training machine learning models. An alternative yet 
attractive approach is to use transdermal devices that unobtrusively 
monitor hormone levels. This new and exciting technology is being 
pioneered by researchers in the chemical, biofluidic, and materials sci-
ences, who have begun testing prototyping biochemical sensors that can 
measure people's cortisol levels through their sweat and other bodily 
fluids (Kaushik et al., 2014; Ku et al., 2020; Bandodkar et al., 2019; Zhao 
et al., 2019). This technology is still being developed and currently no 
commercial products exist. However, it has strong potential for unob-
trusive hormone monitoring for improving treatment outcomes for large 
populations of cancer patients. Of particular relevance to our frame-
work, using transdermal devices to unobtrusively monitor people's 
hormone levels would replace the need to validate hormone detection 
through people's mobile sensing data from currently available com-
mercial devices (i.e., smartphones, smartwatches, wearables). Because 
repeatedly collecting saliva or blood samples is impractical for clinical 
decision making, wearable biochemical sensors may one day replace the 
need for specimen collection while providing a source of continuous 
data from patients to improve their care. 

Although the purpose of this paper is to propose a conceptual 
framework, it should be interpreted in light of several limitations. 
Although there are now at least two published papers using mobile 
sensing data to approximate people's hormone levels using widely 
available consumer products (Castaldo et al., 2021; Dong et al., 2021), 
more studies are needed to replicate these findings and validate this 
approach. Findings from our own observational study are based on ten 
cancer patients, most of whom are White, which may limit their 
generalizability. While the TMES experiment described in this paper 
used cortisol values based on actual patient values, we used mean values 
which ignores potentially important individual differences in cortisol 
fluctuation. Future studies aimed at developing a process for using 
people's mobile sensing data to detect their hormone levels may also 
want to cluster patients based on their hormone trajectories. Although 
our framework focuses on cancer outcomes, researchers may also 
investigate whether the proposed framework has relevance to other 
biologically based disorders, such as endocrine disorders and disorders 
of metabolism. In spite of these limitations, we believe our framework 
can be useful for guiding future research at the intersection of cancer and 

digital health. It is important to note that our framework is still in an 
early conceptual stage. We encourage researchers to propose changes to 
our framework, based on their own findings and emerging innovations 
in their field of study. 

As sensors and data analytic approaches become increasingly so-
phisticated, there is a need to ensure the privacy and security of people's 
data. This is particularly relevant to the proposed framework that uses 
people's mobile sensing data to approximate an intimate aspect of their 
biology, their underlying hormone levels. As noted by others (Mohr 
et al., 2020; Shilton, 2009; Ulrich et al., 2020), trust between re-
searchers/clinicians and patients is critical to fulfilling the potential of 
mobile sensing. This can only be achieved if researchers are clear and 
transparent about the risks and benefits of their research to participants. 
This includes ethical practices in data collection, such as following the 
principle of least privilege (Saltzer and Schroeder, 1975), which in a 
research context calls on researchers to collect no more data from par-
ticipants than is necessary. As mobile sensing capabilities, data ana-
lytics, and tumor modeling systems continue to evolve, making data 
repositories attractive targets for cyber-attack, researchers must be 
prepared to adopt increasingly stringent practices to preserve the public 
trust. 

4. Conclusions 

With the continued advancement of mobile sensing capabilities, 
machine learning, and novel technologies in other fields (e.g., TMES), 
digital health researchers may soon find themselves at a crossroad be-
tween familiar and unfamiliar paths. A focus of digital health re-
searchers has been to use people's mobile sensing data to approximate 
their behaviors to inform the delivery of biobehavioral interventions. 
This work, which is still being developed, has immense potential for 
improving people's mental and behavioral health. We believe there is 
also opportunity for digital health researchers to consider how their 
expertise, in conjunction with their colleagues in the basic sciences, can 
be leveraged to advance research in outcomes beyond the realm of 
people's mental and behavioral health. We hope our framework provides 
some guidance and inspiration for those who are interested in exploring 
off the beaten path. 
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