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Abstract While physiological differences across skeletal
muscles have been described, the differential gene expres-
sion underlying them and the discovery of how they
interact to perform specific biological processes are largely
to be elucidated. The purpose of the present study was,
firstly, to profile by cDNA microarrays the differential gene
expression between two skeletal muscle types, Psoas major
(PM) and Flexor digitorum (FD), in beef cattle and then to
interpret the results in the context of a bovine gene
coexpression network, detecting possible changes in con-
nectivity across the skeletal muscle system. Eighty four
genes were differentially expressed (DE) between muscles.
Approximately 54% encoded metabolic enzymes and
structural-contractile proteins. DE genes were involved in
similar processes and functions, but the proportion of genes

in each category varied within each muscle. A correlation
matrix was obtained for 61 out of the 84 DE genes from a
gene coexpression network. Different groups of coexpres-
sion were observed, the largest one having 28 metabolic
and contractile genes, up-regulated in PM, and mainly
encoding fast-glycolytic fibre structural components and
glycolytic enzymes. In FD, genes related to cell support
seemed to constitute its identity feature and did not
positively correlate to the rest of DE genes in FD.
Moreover, changes in connectivity for some DE genes
were observed in the different gene ontologies. Our results
confirm the existence of a muscle dependent transcription
and coexpression pattern and suggest the necessity of
integrating different muscle types to perform comprehen-
sive networks for the transcriptional landscape of bovine
skeletal muscle.
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Introduction

The knowledge of how genes regulate differences in
skeletal muscle composition and metabolism is a subject
of outstanding interest in medicine and agriculture, as the
type of muscle plays a role in the development of chronic
metabolic diseases (Tanner et al. 2002), as well as in the
organoleptic properties of the meat (Thompson 2002).
Muscles consist of a heterogeneous population of fibres
with different molecular, structural, contractile, and meta-
bolic properties, which contribute to a wide variety of
functional capabilities. In the bovine, postnatal muscles
have three major fibre types encoded by the expression of
three myosin heavy chain (MyHC) genes: the slow-
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oxidative one or type I, and two fast ones or types IIA and
IIX (Maccatrozzo et al. 2004; Tanabe et al. 1998). Slow
muscles are mainly composed of type I fibres, oriented to
continuous but modest activities mediated by an aerobic
metabolism. On the other hand, fast-glycolytic muscles
consist of a large proportion of type II fibres and are
sporadically demanded for short periods of intense muscu-
lar activity associated with anaerobic metabolism (Brent
and Tabin 2004). The composition of muscle tissue in
bovine is known to be influenced by both the genetic
background and the development prior to birth of the
individuals (Lehnert et al. 2007). Muscle specialisation is
the result of the coordinated expression of contractile and
metabolic proteins together with the histological features
that characterise the fibres. This coordination has been
described in bovines (Moreno-Sánchez et al. 2008) and in
some other species (Acevedo and Rivero 2006; Quiroz-
Rothe and Rivero 2004). Besides the changes in the
expression of the tissue-specific myosin isoforms, skeletal
myofibres have the ability to undergo adaptive metabolic
changes in response to external stimulus such as nutrition
(Cassar-Malek et al. 2004) and exercise (Flück 2006). The
identification of differentially expressed (DE) genes involved
in the functionality of muscles (contractile, metabolic, and
structural properties) and their potential relationship to
differences in muscle plasticity and meat quality are recent
areas of interest (Bernard et al. 2007).

Microarray technology is a useful tool for the compar-
ative study of gene expression differences and to ascertain
those genes involved in the phenotypic characteristics of
muscles. In cattle, although the global gene expression
differences between muscles has not yet been studied using
microarrays, a comparison between Rectus abdominis and
Semitendinosus was performed based on human macro-
arrays (Sudre et al. 2003, 2005). In addition, different
microarray approaches have been developed to study the
differential gene expression between phenotypically distinct
muscles in swine (Bai et al. 2003) and in mice (Campbell et
al. 2001; Wu et al. 2003). Genes encoding for structural
proteins and metabolic enzymes were the main DE groups
in all these experiments. Other groups of DE genes
included mitochondrial genes, transcription factors, and
genes involved in Ca2+ channels. Moreover, ligands for
receptor signals and extracellular matrix related genes were
DE in some of these studies, suggesting the presence of
species- or muscle-specific drivers of molecular character-
istics of muscle.

Once the genes of interest have been detected, the next
major challenge of genomics is to elucidate the functions of
these genes and to discover how they interact to perform
specific biological processes (Stuart et al. 2003). Gene
networks are a promising tool for modelling, analysis, and
visualisation, being considered a semi-quantitative graphi-

cal representation of transcriptional regulation that reveals
groups of functionally related genes and their regulators,
and genes with high transcriptional connectivity (Hudson et
al. 2009). One method for building biological networks is
to establish connections between genes whose expression
profiles are significantly correlated. Some authors have
reported that genes participating in the same pathway are
often correlated under a large number of diverse conditions
(Reverter et al. 2006a; Segal et al. 2003). In fact, different
transcriptional regulatory networks have been proposed
attending to both the species-specific coexpression patterns
(Gardner et al. 2003) and the across-species ones (Stuart et
al. 2003), with several features being species specific. In
cattle, two gene coexpression networks for skeletal muscle
(from Longissimus dorsi data) have been inferred from
microarray gene expression data coming from different
experimental conditions using a cDNA platform (Reverter
et al. 2006b) or an oligonucleotide one (Hudson et al.
2009). To date, these networks represent the most compre-
hensive and largest bovine muscle gene profiling data set.

In the literature, the majority of studies on beef cattle
concerns Longissimus muscle, but how to extrapolate these
results to other muscle types remains challenging. The
purpose of the present study was to profile the differential
gene expression between two skeletal muscle types in beef
cattle, Psoas major (PM) and Flexor digitorum (FD), after
slaughter. To this end, three approaches are followed,
including: the interpretation of the results in the light of
the above-mentioned coexpression network (cDNA plat-
form) of the Longissimus dorsi muscle of cattle, the
assessment of the functional relationships among the DE
genes and the detection of possible changes in connectivity
across the skeletal muscle system. Will the relationships
that exist between genes within a single muscle and species
be conserved across muscle types?

Materials and methods

Animal material

Ten unrelated male calves of the Avileña-Negra Ibérica beef
cattle breed were used for the experiment. The animals
were fattened with the same diet during a finishing period
of around 200 days and slaughtered when they reached
commercial requirements, at an average live weight of
500 kg and 15 months of age. Tissue samples of PM and
FD were collected at slaughter, immediately frozen in liquid
nitrogen, and stored at −80°C until RNA isolation. Animal
Care and Use Committee approval was not obtained for this
study because the samples were collected from carcasses. In
a previous study, we characterised the fibre composition of
PM and FD, in Avileña-Negra Ibérica male calves
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(Moreno-Sánchez et al. 2008). These two muscles were
chosen because of their physiological and meat quality
differences. FD exhibited a large proportion of type I (54%)
and IIA (36%) fibres and lacked type IIX, while PM was
composed by a large proportion of type II (21% IIA and
35% IIX) and a noticeable percentage of type I (29%)
fibres.

For validation purposes using real-time RT-PCR, PM
and FD samples were obtained from another 15 unrelated
male calves, slaughtered under similar conditions as the
individuals used in the microarray experiment. Tissue
samples of PM and FD were collected and stored as
described above.

Microarray methods and data acquisition

The bovine fat and muscle cDNA microarray (Lehnert et al.
2004; Lehnert et al. 2006), arguably the most widely used
in cattle muscle gene expression studies, was used in this
experiment. While previous studies using the same platform
revealed it to be well suited for the expression profiling of
skeletal muscle (Byrne et al. 2005; Lehnert et al. 2006,
2007; Reverter et al. 2005, 2006a, 2008; Tan et al. 2006;
Wang et al. 2005, 2009), we further addressed the coverage
of the transcriptome that could be achieved by the
following approach: We downloaded the most recent
version (Release 8, July 6, 2009) of the “Flat Files” from
the Human Protein Reference Database (HPRD; http://
www.hprd.org) containing features of proteins such as post-
translational modifications, subcellular localisation, pro-
tein–protein interactions and tissue expression. Of the
17,618 unique genes represented in the HPRD dataset,
3,925 (22.3%) are reported to be expressed in skeletal
muscle. Also, 731 of the 841 genes in our platform are
included in the 17,618 HPRD genes. Of these, 231 (31.6%)
are reported to be expressed in skeletal muscle. These
figures result in an over-representation hypergeometric test
p value of 6.97E−10. Although oligonucleotide microarrays
are nowadays becoming the standard in human, mouse and
in a growing number of species, we concluded that the
muscle specificity of the microarray platform used in this
study makes it suitable for the expression profiling of
bovine skeletal muscle.

Twenty microarray slides were hybridised following a
loop design (Kerr 2003) shown in Supplementary Fig. S1.
In each slide, cDNA coming from the two types of muscles
were simultaneously hybridised muscle samples belonging
alternatively to the same or to two different individuals.
Dye channel, red (Cy3) or green (Cy5) was swapped
between muscles from one slide to the next to account for a
possible dye bias.

Total RNA was isolated from frozen muscle tissue using
the Qiagen RNeasy Kit (Qiagen, Hilden, Germany). RNA

purity and integrity were assessed by RNA Nano Labchips
in an Agilent 2100B Bioanalyzer (Agilent Technologies,
Palo Alto, CA, USA). The cDNA was synthesised from
30 μg of total RNA with the CyScribe™ First-Strand
cDNA Labelling Kit (Amersham Biosciences), incorporat-
ing either Cy3-dUTP or Cy5-dUTP into the cDNA. Slides
were pre-hybridised in a solution containing 6× SSC, 0.5%
SDS and 1% bovine serum albumin (Sigma) for 1 h, and
then hybridised overnight at 42°C in a solution containing
50% formamide, 6× SSC, 0.5% SDS, 5× Denhardt’s, 20 μg
of poly(A) (Sigma) and salmon sperm (Invitrogen).
Afterwards, the slides were washed consecutively in three
washing solutions (first 0.2× SSC and 0.1% SDS, second
0.2× SSC and third 0.06× SSC) and were finally dried. All
the hybridisation steps were carried out in a Lucidea™
SlidePro Automated Hybridization Station (Amersham
Biosciences).

Microarray slides were scanned with the GenePix 4000B
scanner (Axon Instruments, Union City, CA, USA) at a
resolution of 5 μm (PMT values ranging from 550 to 700
and laser power 100%). The intensity value for the Cy3 and
Cy5 channels from each spot was acquired by the Gene Pix
Pro 5.0 software (Axon Instruments). Invalid spots were
filtered out and not included in the further normalisation
and analysis processes (Díaz et al. 2009). A total of
269,712 intensity readings from both channels and
corresponding to 8,538 unique clones were retained for
the analysis. Separate for each channel, intensity readings
(y) were background-corrected by subtracting the back-
ground (Bg) from the foreground (Fg) intensities and
log2-transformed to approximate a normal distribution as
follows:

y½ � ¼ log2 Fg� Bgð Þ

Data normalisation and analysis, and clone annotation

Global normalisation and analysis were jointly performed
using a Bayesian approach, detailed in a previous study
(Díaz et al. 2009). Intensity records were analysed using the
model that proved to have the best goodness of fit and the
best predicting ability.

A standardised measure of the differences in gene
expression for each clone (Δg) was obtained as:

$g ¼ P bMg � FbDg

sdg

where P bMg and FbDg represent the posterior means of the
effect of the gth clone in the PM and FD muscles,
respectively, and sdg represents the standard deviation of
the posterior differences.
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To determine which clones were DE, a model-based
cluster analysis was applied to the Δg values. This analysis
grouped clones according to their Δg. The computer
package BAYESMIX (Reverter et al. 2003) was used. The
program provided posterior probabilities of belonging to
each of the clusters for each clone and statistical criteria
(AIC, BIC) that allowed the determination of the number of
clusters that yielded the best fit to the data. Estimates of
false discovery rate (FDR) were obtained from the mixture
models as in McLachlan et al. (2005), transforming the n
finite numbers of clusters into a two-components mixture,
one containing clones that are identified as potentially DE
and another group formed by the potentially non-DE
clones. Thus,

FbDR ¼
XNr

j¼1

bt0 wj

� �
=Nr

where bt0 wj

� �
was the posterior probability that the jth gene

from the subgroup of DE clones (Nr) was not DE. This has
been termed as local false discovery rate (local FDR) (Efron
and Tibshirani 2002) and might be seen as an empirical
Bayes version of the Benjamini and Hochberg methodology
(Efron 2004). The set of DE clones was finally obtained by
establishing a desired FDR for the experiment.

Each DE clone was annotated after BLAST searches
(Altschul et al. 1990) against different available databases.
Gene ontology annotation and enrichment analysis of
functional annotation were performed using the David
database (Huang et al. 2009) and GOrilla (Eden et al.
2009).

Validation by TaqMan real-time RT-PCR

Real-time RT-PCR, with TaqMan MGB probes, was
performed on 11 genes, AK1, ATF4, CA3, CREG1,
CRYAB, CSRP3, GPD1, LDHB, MYH1, PDLIM7 and
PFKM (see gene names in Table 1). Genes were chosen
according to two different criteria, such as to be located in
the region corresponding to FDR values between 5% and
10%, or to have a biological relevance for further studies.
ACTA1 (Actin alpha1) was used as the internal reference
gene as it showed negligible expression differences along
the microarray experiment. The sequences of primers and
probes, which were designed with the Primer Express
software (Applied Biosystems, Foster City, CA, USA), are
listed in the Supplementary Table S1. In silico specificity of
the amplicons was screened by BLAST searches.

Real Total ARN Spin Plus kit (Durviz, Valencia, Spain)
was used for DNA-free total RNA isolation. RNA
quantification and quality control were performed using
NanoDrop ND-1000 UV/Vis (Nanodrop Technologies).
DNA contamination absence was determined by control

PCR in which the reverse transcription step was sup-
pressed. The reactions were set by TaqMan One-Step RT-
PCR Master Mix kit (Applied Biosystems). RT-PCR
amplification reactions (25 µl) contained 40 ng total
RNA, 1× Master Mix without UNG, 1× MultiScribe™
and RNase Inhibitor Mix, 100 nM each of the forward and
reverse primers for the internal reference gene, 100 nM
each of the forward and reverse primers for the tested gene,
and 100 nM each of the TaqMan probes. Reactions were
run on an ABI PRISM 7500 Fast Sequence Detector
(Applied Biosystems) following the manufacturer’s cycling
parameters. Each reaction was repeated three times. The
corresponding mRNA levels were measured and analysed
by the 7500 System Software (Applied Biosystems).
Statistical analysis to assess differences between muscles
was performed on the ΔCt. Both parametric (paired t tests)
and non-parametric (Wilcoxon rank-sum test) tests were
used to check the consistency of the results. The relative
quantification between muscles was done using normalised
2�$$CT values (Livak and Schmittgen 2001).

Integration on the gene coexpression network

To infer coexpression patterns for the DE genes, the list of
DE genes were input in the database of the bovine gene
coexpression network (Reverter et al. 2006b). This gene
coexpression network was constructed by integrating the
data from 147 microarray hybridisations corresponding to
nine seemingly independent experiments and spanning a
total of 47 experimental conditions or treatments. Follow-
ing normalisation via a multivariate mixed ANOVA
model, significant gene-to-gene associations were identi-
fied using partial correlation coefficients coupled with an
information theory approach. The numerical algorithm
was later formalised (Reverter and Chan 2008). A sub-
matrix of correlations between pairs of genes to depict
coexpression patterns was obtained for the DE genes
detected in this experiment that were present in the
network.

Results

Differentially expressed genes and validation by Taqman
real-time RT-PCR

Model-based cluster analysis revealed that the model
considering three clusters was the one that best fit the data.
The central cluster contained those clones with the largest
probability of being non-DE. Two FDR values, 5% and
10%, were imposed as cut-off points. For the FDR of 5%,
72 genes were identified as DE. After relaxing the FDR to
10%, 84 genes were deemed to be DE.
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Table 1 Genes up-regulated in PM and FD according to their GO categories. Total number of genes up-regulated in each muscle is
shown in brackets. Percentages on the left and right of each GO group are related to the number of genes up-regulated in PM and
FD, respectively

Genes up-regulated in PM (49) Genes up-regulated in FD (31)

39%—Metabolic—13%

AK1—Adenylate kinase 1 CA3—Carbonic anhydrase III, muscle specific

ALDOA—Aldolase A, fructose-biphosphate FABP3—Fatty acid binding protein 3, muscle and heart
(mammary-derived growth inhibitor)

ATP2A1—ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 LDHB—Lactate dehydrogenase B

ATP6—ATP synthase F0 subunit 6 SERINC2—Serine incorporator 2

CKM—Creatine kinase, muscle

CKMT2—Creatine kinase, mitochondrial 2 (sarcomeric)

COX3—Cytochrome c oxidase subunit III

CYTB—Cytochrome b

ENO3—Enolase 3 (beta, muscle)

FBP2—Fructose-1,6-bisphosphatase 2

GAPDH—Glyceraldehyde-3-phosphate dehydrogenase

GPD1—Glycerol-3-phosphate dehydrogenase 1 (soluble)

GPI—Glucose phosphate isomerase

LDHA—Lactate dehydrogenase A

PFKM—Phosphofructokinase, muscle

PGAM2—Phosphoglycerate mutase 2 (muscle)

PGM1—Phosphoglucomutase 1

PKM2—Pyruvate kinase, muscle

PYGM—Phosphorylase, glycogen, muscle

31%—Muscle contraction and constituents—26%

ACTN3—Actinin, alpha 3 ACTB—Actin, beta

CALM1—Calmodulin 1 KBTBD10—Kelch repeat and BTB (POZ) domain
containing 10

CASQ1—Calsequestrin 1 MRCL3—Myosin regulatory light chain MRCL3

LOC520988—Similar to myosin-binding protein C,
fast-type (Fast MyBP-C)

MSN—Moesin

MYH1—Myosin, heavy chain 1, skeletal muscle, adult MYL2—Myosin, light chain 2, regulatory, cardiac, slow

MYL1—Myosin, light chain 1, alkali; skeletal, fast MYL6—Myosin, light chain 6, alkali, smooth muscle and
non-muscle

MYL3—Myosin, light chain 3, alkali; ventricular, skeletal, slow PPP1R14A—Protein phosphatase 1, regulatory (inhibitor)
subunit 14A

MYLPF—Fast skeletal myosin light chain 2 TNNT1—Troponin T type 1 (skeletal, slow)

MYOM2—Myomesin (M-protein) 2, 165kDa

MYOZ1—Myozenin 1

TNNC2—Troponin C type 2 (fast)

TNNI2—Troponin I type 2 (skeletal, fast)

TNNT3—Troponin T type 3 (skeletal, fast)

TPM1—Tropomyosin 1 (alpha)

TTN—Titin

24%—Transcription, RNA processing, protein synthesis and modification—26%

ARIH2—Ariadne homolog 2 (Drosophila) CLU—Clusterin

ASB16—Ankyrin repeat and SOCS box-containing 16 CREG1—Cellular repressor of E1A-stimulated genes 1

ATF4—Activating transcription factor 4 (tax-responsive enhancer element B67) CRYAB—Crystallin, alpha B

CTDSP2—CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A)
small phosphatase 2

EEF1A1—Eukaryotic translation elongation factor 1
alpha 1

GMPR—Guanosine monophosphate reductase EIF2AK1—Eukaryotic translation initiation factor
2-alpha kinase 1
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In order to validate the microarray results, differential
expression of 11 DE genes was further analysed by TaqMan
real-time RT- PCR. These genes were mostly a sample of
the DE genes detected between the 5% FDR and the 10%
FDR. Results were consistent both with the microarray
experiment and between parametric and non-parametric
tests, indicating that all genes showed significant differen-
tial expression between muscles. The p values were smaller
or equal than 0.001 for all genes except for two, GREG1
and GPD1, which had p values smaller than 0.05 and 0.01,
respectively. Supplementary Table S1 shows the log2 of the
average n-fold differences in the muscle in which the
corresponding gene appeared up-regulated (PM: ATF4,
GPD1, MYH1, PDLIM7 and PFKM genes; FD: CA3,
CREG1, CRYAB, CSRP3 and LDHB genes). AK1 did not
show any level of expression in the FD muscle. Provided that
all genes used in the validation experiment showed differen-
tial expression, the 84 genes found as DE considering a 10%
FDR were further investigated.

Gene annotation and ontology

Putative gene functions could be assigned to 80 out of the
84 genes, 49 up-regulated in PM and 31 in FD. The

remaining four genes, which are up-regulated in PM,
matched to bovine sequences of unknown function. Table 1
provides a summary of the gene ontology (GO) annotation
of the 80 DE genes. The gene symbol and name, the Gene ID,
the number of DE array elements per gene and the normalised
fold expression changes are shown in Supplementary
Tables S2 and S3 for PM and FD, respectively. Most of the
genes were represented by more than one clone on the
microarray, ranging from 1 to 19, due to the redundancy of
the non-normalised cDNA libraries used to build the array.
The normalised fold changes ranged from 1.50 to 15.82, and
for those genes represented by more than one clone, the
minimum and maximum values are given.

The same GO functional groups appeared represented in
both muscles, except for the extracellular matrix related
group that was only represented in the FD muscle samples.
The proportion of genes in each group varied between
muscles. Thus, metabolic genes were three times more
represented in PM (39%) than in FD (13%). The metabolic
genes detected in PM were mainly involved in glucose and
glycogen metabolic processes. On the other hand, genes
related to muscle development and regeneration were three
times more represented in FD (16%) than in PM (6%). The
DE genes coding for contractile and constituent proteins of

Table 1 (continued)

Genes up-regulated in PM (49) Genes up-regulated in FD (31)

ITGB1BP3—Integrin beta 1 binding protein 3 LOC512251—Similar to heat shock 27kDa protein family,
member 7

LOC493779—18S ribosomal RNA RPLP0—Ribosomal protein, large, P0

MLF1—Myeloid leukaemia factor 1 UBA52—Ubiquitin A-52 residue ribosomal protein fusion
product 1

PPP1R8—Protein phosphatase 1, regulatory (inhibitor) subunit 8

PTMA—Prothymosin, alpha (gene sequence 28)

RPS7—Ribosomal protein S7

rRNA—Ribosomal RNA

6%—Muscle development and regeneration—16%

CWF19L1—CWF19-like 1, cell cycle control CSRP3—Cysteine and glycine-rich protein 3

PEBP4—Phosphatidylethanolamine-binding protein 4 FHL1—Four and a half LIM domains 1 (FHL1), transcript
variant 3

PDLIM7—PDZ and LIM domain 7 (enigma) INO80B—INO80 complex subunit B

MUSTN1—Muskuloskeletal, embryonic nuclear protein 1

TPT1—Tumour protein, translationally controlled 1

0.0%—Extracellular matrix—19%

COL1A1—Collagen type I, alpha 1

COL1A2—Collagen type I, alpha 2

COL3A1—Collagen type III, alpha 1

DCN—Decorin

SPARC—Secreted protein, acidic, cysteine-rich
(osteonectin)

VIM—Vimentin
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muscle, as well as those related to the different mechanisms
involved in gene expression and protein modification,
presented similar percentages in both muscles (24% and
31%).

Integration on the gene coexpression network

The list of 84 DE genes was input in the database of the
bovine gene coexpression network (Reverter et al. 2006a)
to infer coexpression patterns. As previously mentioned,
this network has been constructed based on 47 experimental
conditions and using the same microarray platform as the
one used in the present study. The use of the same platform
will provide a higher level of consistency in interpretation
than would be achieved if different platforms were used.

Figure 1 shows the heat map of the coexpression
correlation matrix for 61 out of the 84 DE genes. Thirty
nine of them were up-regulated in PM (upper left corner of
the correlation matrix) and 22 in FD (lower right corner).
The remaining 23 DE genes did not appear in the
coexpression network, as they were not differentially
expressed in the experiments used to build it. Different
groups of coexpression could be established according to
the strong and positive correlation values (reddish colours)
among genes in each muscle. The largest group was formed
by 28 genes up-regulated in PM listed from ATP2A1 to
MYOM2 in Fig. 1.

Discussion

As in similar studies (Bai et al. 2003; Bernard et al. 2007;
Campbell et al. 2001; Sudre et al. 2005), the microarray
profiling of PM versus FD detected changes in gene
expression that were mainly related to muscle contraction/
structural constituents and to metabolic processes (54% of
DE genes). Muscle contraction and constituents genes
shown in Table 1 constituted one of the major groups of
DE genes. MYH1, the gene coding for the IIX fibre type,
was up-regulated in PM, the only muscle exhibiting the IIX
fibres in this study. In addition to the myosin heavy chains,
a profile for myosin light chains was observed. MYL1,
MYL3 and MYLPF were up-regulated in PM, while MYL2
and MYL6 were up-regulated in FD. MYL1, MYL3 and
MYLPF appeared in a gene coexpression group in Fig. 1
with MYH1, whereas MYL2 showed an independent
pattern, which was consistent with its up-regulation in FD
muscle. Thirteen genes coding for enzymes involved in the
metabolism of sugars, Metabolic genes in Table 1, were up-
regulated in PM, providing this muscle with the metabolic
transcriptomic profile of a muscle with a predominance of
fast fibre types. A group of six genes, from CKM to PYGM
in Fig. 1, showed a strong positive coexpression pattern to

genes from ACTN3 to MYH1, reflecting the physiological
coordination required to store and sequester glycogen and
phosphocreatine, the preferred substrates of the faster fibre
types (Garrett and Kirkendall 2000). While glycolytic
activity was significantly higher in PM than in FD, no
differences were observed between the oxidative activities
of PM and FD in previous experiments (Moreno-Sánchez et
al. 2008), and the gene expression pattern agreed with those
results. Besides the genes coding for glycolytic enzymes,
the mitochondrial genes, ATP6, COX3 and CYTB, which
have key roles in the oxidative phosphorylation pathway,
were up-regulated in PM. Although these mitochondrial
genes were not present in Fig. 1, CKMT2, a component of
the mitochondria, was clustered in the coexpression group
of the metabolic and structural genes and highly co-
expressed with MYH1, reflecting the adaptations required
for the oxidative characteristics of fast fibre types in PM.

Muscle specialisation is the result of the coordinated
expression of contractile and metabolic proteins together
with histological features that characterise the fibres
(Acevedo and Rivero 2006; Quiroz-Rothe and Rivero
2004). The cellular presence of the various MyHC isoforms
has been found to be coordinated with the metabolism
(oxidative or glycolytic) and the morphological features in
FD and PM (Moreno-Sánchez et al. 2008). As previously
mentioned, expression of fast-glycolytic fibre related genes
was positively correlated with expression of genes for
glycolytic enzymes in PM (Fig. 1), which is consistent with
the simultaneous up-regulation of metabolic and structural
genes in PM. This indicates that the coordination estab-
lished at the biochemical level also exists at the transcrip-
tional level. However, the magnitude of the correlations
between fibre attributes at both the biochemical (Moreno-
Sánchez et al. 2008) and the transcriptomic levels (Fig. 1)
suggested that properties of muscles may not be fully
explained by their fibre type composition. Nevertheless,
coordination of oxidative and contractile properties of FD
could not be established because these two muscles did
not exhibit oxidative differences and the difference in type
I fibres between FD and PM (25%) was not supported at
the transcriptional level. However, the gene encoding for
the type I fibres (MYH7) consistently showed higher
expression in FD than in PM (data not shown). Under-
standing these relationships will assist to ascertain the
ability of muscles to react as a result of environmental
factors such as exercise demand, changes in nutrition and
disease challenge.

Organoleptic properties in meat may result from a
combination of different biological processes (Bernard et
al. 2007), and the relationship between meat quality and
muscle attributes is not fully understood. The differential
expression of some of the genes in Table 1 has been
associated with different meat quality traits (Reverter et al.
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2008). Specifically, the up-regulation of CRYAB and
CSRP3 has been associated with low sensory scores of
tenderness, flavour and juiciness (Bernard et al. 2007),
which corresponded to the meat properties of FD in this
comparison, in which CRYAB and CSRP3 were up-
regulated. In addition, different heat shock proteins,
including Hsp27 (LOC512251 in Table 1), have been
described as down-regulated in distinct sensory traits
(Bernard et al. 2007), favouring cytoskeleton actin disor-
ganisation and degradation. Its up-regulation in FD might
suggest that actin was mediating in the toughness of this
muscle. Down-regulation of CRYAB, MUSTN1 and
CSRP3 could also improve meat tenderness (Reverter et
al. 2006b), agreeing with the fact that PM is more tender
than FD (Díaz et al. 2006). Among other meat quality
properties, differences in intramuscular fat content (IMF)

have been described between FD and PM (Díaz et al.
2006), with PM showing higher IMF. However, two fat-
related genes (FABP3 and CLU) appeared up-regulated in
FD. In addition, up-regulation of CRYAB and FHL1 have
been found to be associated with exercise endurance in
mice (Wu et al. 2003); thus, their up-regulation in FD
confirmed the endurance capability of this muscle. Al-
though FD has an endurance-oxidative muscle profile, it
requires further investigation as this profile was not
supported by the DE of mitochondrial or oxidative
metabolism related genes.

Changes in connectivity between genes across GO
groups were found. Since the platform used in this
experiment is the same one used to develop the network,
it allowed a robust comparison with the large integrated
analysis previously undertaken across a range of experi-

Fig. 1 Correlation matrix among the differentially expressed genes.
The 39 genes located in the upper left corner of the correlation matrix
corresponded to genes up-regulated in Psoas major. The 22 genes
located in the lower right corner corresponded to genes up-regulated

in Flexor digitorum. Gene ontology annotations are indicated within
each muscle. Genes belonging to the same GO within each muscle are
grouped inside a green square
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mental conditions (Reverter et al. 2006a) and provided
better consistency in interpretation than would we achieved
if different platforms were used. Thus, four members of the
troponin complex were DE, three fast forms (TNNC2,
TNNI2 and TNNT3) in the PM and a slow form (TNNT1)
in the FD (Table 1). Although all of them were involved in
the striated muscle contraction and the transport of Ca2+,
their coexpression patterns in Fig. 1 were different from the
initially anticipated. The expression of TNNT1 was
positively correlated to the rest of the troponins and genes
up-regulated in PM, when it was expected to be indepen-
dent or negatively correlated to them as they were up-
regulated in different muscles. It represented a change in
connectivity of these genes in the present comparison.
Correlation patterns between troponins need further inves-
tigation as they differ in our experiment from the multiple
conditions represented in the gene coexpression network
(Fig. 1). In addition to these changes in connectivity
(Reverter et al. 2006b) found between muscles, some
others were also observed in the coexpression matrix, when
the correlations among up-regulated genes within muscle
are 0 or negative, as shown for FD in Fig. 1. Under the
experimental conditions used to build the bovine network
(Reverter et al. 2006a), the group genes from LDHB to
MRCL3 in Fig. 1 were negatively correlated to the genes
from KBTBD10 to UBA52. However, all of them were up-
regulated in FD and, therefore, expected to show a positive
correlation. It is noticeable that some of the genes up-
regulated in FD had a different coexpression pattern under
conditions such as nutritional restriction or different quality
diets, with extracellular matrix (ECM) genes being down-
regulated while CSRP3 and EEF1A1 were up-regulated
(Reverter et al. 2004; Byrne et al. 2005; Lehnert et al.
2006). These genes appeared in many comparisons, and the
changes in connectivity shown in our experiment illustrated
how gene interactions can behave differentially under
distinct experimental conditions.

Among the Transcription, RNA processing, protein
synthesis and modification genes in Table 1, two transcrip-
tion factors (TF), ATF4 and CREG1, were found up-
regulated in PM and FD, respectively. Although recent
studies in human did not find any association between TF
mRNA levels and muscle type (Plomgaard et al. 2006),
ATF4 correlated positively with all structural and metabolic
genes up-regulated in PM (Fig. 1) and negatively or not
correlated to ECM-related genes up-regulated in FD. Given
that almost 20% of genes up-regulated in FD were related
to ECM (Table 1), it is worth highlighting that the
expression of these genes has been described to show a
decreasing trend across muscle development (Hudson et al.
2009). Our results suggest a differential evolution of PM
and FD. Differences in transcriptional regulation underpin
much biological variation. TF would be the key in silencing

genes related to ECM in PM and inducing them in FD
muscle at adult ages. This point illustrated how the different
specialisation and evolution of muscles can alter the
established relationships between genes and open new
hypothesis to a deeper investigation of the role of TF in
muscle specialisation. Decoding causal transcriptional
regulation remains challenging in muscle, as only a small
number of well characterised TF is proposed to regulate
development (Hudson et al. 2009). An additional change in
connectivity affected a gene involved in translation in PM.
RPS7, up-regulated in PM, showed a strong and negative
correlation (blue colour) to structural and metabolic genes
up-regulated in PM (Fig. 1). There were also some genes
involved in translation up-regulated in FD (RPLP0 and
EEF1A1), which, in agreement to our pattern of expression,
showed a strong negative correlation to structural and
metabolic genes up-regulated in PM. These results indicat-
ed that the ribosomal synthetic machinery was active in
both muscles and that this up-regulation seemed to be
coupled with the down-regulation of genes involved in fast-
glycolytic features in the gene network conditions.

In conclusion, the present results confirm the existence
of a muscle-dependent transcription pattern and the fact
that the correlation among genes (which are not immuta-
ble) depends on the muscle type. Changes in connectivity
were found in the different GO groups. These results also
suggest the necessity of different muscle type data
integration in order to perform a comprehensive network
able to describe the transcriptional landscape of bovine
skeletal muscle.
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