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Abstract

Pathological fear and anxiety disorders can have debilitating impacts on individual patients

and society. The neural circuitry underlying fear learning and extinction has been known to

play a crucial role in the development and maintenance of anxiety disorders. Pavlovian con-

ditioning, where a subject learns an association between a biologically-relevant stimulus

and a neutral cue, has been instrumental in guiding the development of therapies for treating

anxiety disorders. To date, a number of physiological signal responses such as skin conduc-

tance, heart rate, electroencephalography and cerebral blood flow have been analyzed in

Pavlovian fear conditioning experiments. However, physiological markers are often exam-

ined separately to gain insight into the neural processes underlying fear acquisition. We pro-

pose a method to track a single brain-related sympathetic arousal state from physiological

signal features during fear conditioning. We develop a state-space formulation that proba-

bilistically relates features from skin conductance and heart rate to the unobserved sympa-

thetic arousal state. We use an expectation-maximization framework for state estimation

and model parameter recovery. State estimation is performed via Bayesian filtering. We

evaluate our model on simulated and experimental data acquired in a trace fear conditioning

experiment. Results on simulated data show the ability of our proposed method to estimate

an unobserved arousal state and recover model parameters. Results on experimental data

are consistent with skin conductance measurements and provide good fits to heartbeats

modeled as a binary point process. The ability to track arousal from skin conductance and

heart rate within a state-space model is an important precursor to the development of wear-

able monitors that could aid in patient care. Anxiety and trauma-related disorders are often

accompanied by a heightened sympathetic tone and the methods described herein could

find clinical applications in remote monitoring for therapeutic purposes.
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Introduction

Human emotions represent complex processes within the nervous system. Changes in emo-

tion manifest themselves through a number of physiological means. For instance, the human

fear response, which can be activated when the brain interprets external environmental stimuli

as posing a threat to survival, can cause an elevation in blood pressure, heart rate and sweating,

preparing the body for action [1]. Emotions play an important role in our everyday lives as

well, and are essential to self-expression, social interaction and decision-making. Much work

throughout the years has aided our understanding of the neural correlates of emotion and the

hemodynamic and electrical responses that accompany changes thereof [2–5]. High-level neu-

ral processes such as cognition, emotion, motivation etc. are, however, not directly observed.

Nevertheless, the physiological and biochemical changes that accompany these neural pro-

cesses are observable, and provide a means for their estimation. This window to neural state

estimation is one that can have important implications for wearable monitoring. To illustrate,

anxiety disorders often include symptoms of excessive fear and worry [6], and there is a height-

ened level of sympathetic nervous system activation in these patients [7]. The elevated sympa-

thetic activation in trauma-related disorders such as post-traumatic stress disorder (PTSD) has

also been noted in the literature [8, 9]. Increased sympathetic drive gives rise to measurable

biosignal changes, particularly in response to certain stimuli/cues (e.g. elevated heart rate and

facial electromyography [EMG] responses to trauma-related cues in PTSD patients [10]). An

index of sympathetic arousal extracted conveniently from physiological signals could aid in

the management of neuropsychiatric disorders involving pathological fear and anxiety.

Anxiety disorders are among the most prevalent form of mental disorder [11]. They involve

high costs both to the individual patient and to society in general [12, 13]. Anxiety disorders

are often accompanied by behavioral symptoms such as difficulty concentrating, situational

avoidance, irritability and restlessness [6]. While fear and anxiety are part of the normal

human experience, they nonetheless have the potential to grow disproportionately to the per-

ceived threat and persist over time; this necessitates medical intervention. The neural circuitry

underlying fear acquisition and the mechanisms involved thereof have long been considered

crucial to the understanding of anxiety disorders and the development of treatment options

[14, 15]. Of particular interest in fear learning and extinction has been the study of Pavlovian

conditioning. Here, a subject learns an association between a biologically-relevant stimulus

and a neutral cue through repeated pairing [16]. The paradigm originated with experiments

conducted by the Russian scientist Ivan Pavlov in the early part of the 20th century [16]. In his

classic experiment, Pavlov repeatedly paired the ringing of a bell with food, eventually causing

a dog to salivate merely at the ringing of the bell [17]. In this particular case, the food was

named as the unconditioned stimulus (US) and the ringing of the bell as the conditioned stim-

ulus (CS). Learning the association between the CS and US lies at the heart of Pavlovian condi-

tioning; eventually the CS alone will begin to elicit the biological response typically associated

with the US. In fear conditioning experiments, the US is unpleasant. It can take the form of a

mild electric shock, a loud sound, an aversive image or a blast of air to the throat [17, 18]. Pav-

lovian fear conditioning has been examined in both human subjects and animal models. Addi-

tional forms of fear conditioning experiments arose later. These include differential

conditioning and the use of more complex stimuli. In differential conditioning, there are two

types of conditioned stimuli—CS+ and CS-. The CS- is never associated with the US. The CS

+ may be associated fully or partially with the US. The CS+ can also be chosen to reinforce the

threat of the US (e.g. the image of a fearful face may be used as the CS+ and a neutral face as

the CS-). Anxiety disorders and PTSD are thought to involve a pathological dysregulation of

the individual fear response and its related neural circuitry—particularly with regard to fear
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extinction [19]. Pavlovian fear conditioning experiments conducted on these patient popula-

tions have also helped shed light on the specific brain regions that may be involved in this dys-

regulation (e.g. [20–22]).

Skin conductance (or equivalently skin resistance or potential) has been the most com-

monly measured physiological signal in human fear conditioning experiments [18]. Changes

in the conductivity of the skin occur due to salty sweat secretions and can be easily measured

with electrodes placed on the fingers or palms of a subject. Skin conductance increases with

sympathetic nervous system activation and is responsive to emotional arousal [17]. A skin con-

ductance signal comprises of both a slow-varying tonic component and a faster varying phasic

component [23]. The phasic component comprises of a series of individual skin conductance

responses (SCRs). Each SCR occurs due to the expulsion of sweat in response to a burst of

sudomotor neural activity [24, 25] which in turn may occur due to arousing stimuli [26]. In a

typical fear conditioning experiment, the CS+ cues increasingly begin to elicit SCRs (which are

typically elicited by the US) causing a rise in the skin conductance signal [27]. Heart rate is yet

another measure of autonomic activity commonly used in Pavlovian fear conditioning [17],

and several studies have examined the heart rate response in these experiments (e.g. [28–31]).

Differences in these autonomic responses have also been noted between healthy subjects and

neuropsychiatric patients (e.g. PTSD [32]). The fear-potentiated startle reflex is yet another

measurement commonly acquired in fear conditioning experiments [33–35]. This is usually

measured with the aid of EMG sensors placed around the eye to capture blinks. The startle

reflex is more responsive to negative valence US than it is to neutral or positive valence stimuli

[18, 36] (valence refers to the pleasure-displeasure or positive-negative axis of emotion [37]).

Direct measures of the central nervous system have also been analyzed in fear conditioning

experiments. Examples include cerebral blood flow from functional magnetic resonance imag-

ing [27] and electroencephalography (EEG) [38].

While many different signals have been examined during fear conditioning, their responses

have largely been analyzed separately. Here we seek to extract a single underlying sympathetic

arousal state that gives rise to the observed variations in autonomic responses. We use a state-

space formulation to do so. The arousal state that gives rise to the measurable changes in skin

conductance and heart rate is unobserved. Now sympathetic nerve fibers innervate the sweat

glands [39], and we select three commonly used skin conductance features of arousal that are

generated by the tiny sweat secretions [40]. We also use heart rate which is related to arousal

[41]. We relate these physiological markers to the unobserved sympathetic arousal state proba-

bilistically and derive a Bayesian filter for state estimation. The filter is applied within an

expectation-maximization (EM) framework that simultaneously estimates arousal and recov-

ers unknown model parameters.

In a recent work [42], we developed a state-space model and corresponding Bayesian filter

for estimating sympathetic arousal from the three skin conductance features just referred to.

Here we extend the model to include a spiking-type observation from electrocardiography

(ECG) signals. The current method therefore combines information from both the skin and

the heart for estimating arousal. Our work can also be seen as a contribution from a state-

space modeling viewpoint since it is an extension to [43]. Coleman et al. [43] developed a

state-space model to estimate a cognitive learning state based on observing a binary correct/

incorrect response variable, a continuous-valued reaction time variable and a neural spiking

signal (characterized by a conditional intensity function [CIF]) in each trial of a multi-trial

behavioral experiment involving a non-human primate. Our current state-space model incor-

porates one binary variable, two continuous-valued variables and a different form of the CIF—

one which is more suited to heart rate. The following section describes our methodology. We

thereafter provide results on both simulated and experimental data. We finally conclude with a
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discussion of our results and note future directions of research. State-space methodologies to

track internal brain dynamics could ultimately lead to the development of convenient wearable

monitors for long-term patient care. PTSD, for instance, is often accompanied by symptoms

of hyperarousal [44], and a wearable device for estimating arousal may be helpful in tracking

the status of a patient over time [45].

Materials and methods

Data

We used the “PsPM-TC: SCR, ECG, EMG and respiration measurements in a discriminant

trace fear conditioning task with visual CS and electrical US” data set [46]. The data set is

described in detail in [28, 47, 48], and is publicly available through the Zenodo repository. The

original experiment involved 23 subjects (13 males, 10 females, age 23.8±3.0 years) from

whom four subjects were discarded [28]. The data set that is available online contains physio-

logical signal measurements from the other 19 healthy subjects who participated in the trace

fear conditioning task. In trace fear conditioning, as opposed to delay fear conditioning, there

is a time gap between the termination of the CS+ cue and the US onset [17]. Blue and red rect-

angles on a computer screen were used as the CS+ and CS- visual cues. The US was a series of

0.2 ms square electrical pulses applied at a frequency of 10 Hz for a duration of 0.5 s to the sub-

ject’s forearm using a pin-cathode/ring-anode electrode configuration. The stimulation inten-

sity was set to approximately 90% of each subject’s pain threshold following a two-step

procedure. Skin conductance was recorded from Ag/AgCl cup electrodes placed on the the-

nar/hypothenar of each subject’s non-dominant hand and ECG was likewise recorded using

Ag/AgCl electrodes placed on the limbs. Only 50% of the CS+ trials were accompanied by the

US. The general layout of a trace fear conditioning experiment is shown in Fig 1. Skin conduc-

tance and ECG can be contaminated by various sources of noise including motion artifacts

and powerline noise. We analyzed data from 12 subjects for whom information could be

extracted from the signals where low to moderate noise contamination was present. We rela-

beled the original subject numbers with participant numbers.

Preprocessing

Skin conductance is a low-bandwidth signal and we first lowpass filtered the data at 0.5 Hz and

then downsampled to 4 Hz. Cut-off frequencies as low as 0.4 Hz have also been used in the

Fig 1. General layout of a trace fear conditioning experiment. A typical fear conditioning experiment consists of two types of cues

(CS+ and CS-) and a US. The CS- is never accompanied by the US. In the data set used here, the CS+ was accompanied by the US

(electric shock) only 50% of the time, and blue and red rectangles were used as the CS+ and CS- cues. Other experimental paradigms

are also possible (for instance, where the CS+ is always accompanied by the US or where the CS+ reinforces the unpleasant US). In

trace conditioning, there is a gap between the time when the CS+ stimulus ends and when the US begins. The figure was adapted

from [17].

https://doi.org/10.1371/journal.pone.0231659.g001
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literature when filtering skin conductance data [49]. We next decomposed each skin conduc-

tance signal zk into its constituent tonic (sk) and phasic components (~rk) using cvxEDA [50].

We also detected ECG R-peaks using MATLAB’s findpeaks function and manually corrected

erroneous heartbeats.

State-space model

Random walks and first-order autoregressive (AR) models have frequently been used to cap-

ture the evolution of unobservable neural states across time (e.g. learning [43, 51–53], sleep

[54] and neural states underlying spiking activity [55]). We assume that sympathetic arousal xk
evolves with time following the model in [55].

xk ¼ rxk� 1 þ aIk þ εk; ð1Þ

where εk � N ð0; s2
εÞ and Ik is an indicator function representing external stimuli. ρ and α are

coefficients to be determined. We take four different observations to estimate the unobserved

sympathetic arousal state—three from skin conductance and one from ECG.

Skin conductance

As noted earlier, sympathetic nerve fibers in the autonomic nervous system innervate the

sweat glands [39]. Consequently, skin conductance, which varies based on sweat secretions,

functions as an indicator of sympathetic arousal [56]. Several different skin conductance fea-

tures have been notably used in the literature as indices of arousal. Firstly, the rate at which

SCRs appear has been taken as an index of arousal—the higher the arousal, the higher the rate

of SCR occurrence. SCR rate has been used as a marker of arousal in experiments involving

thought suppression [57], alcohol craving [58] and audio processing [59]. Secondly, SCR

amplitude has been considered an index of arousal as well. This has been used in studies

involving emotional visual stimuli [60] and sounds [61]. Finally the tonic level has been used

as an index of arousal in several studies. Examples include biofeedback tasks [62], antisocial

behavior [63] and the presentation of visual stimuli [64]. SCR rate, SCR amplitude and the

tonic level have been the three most commonly reported skin conductance markers of auto-

nomic activity in the literature [40].

We first consider the appearance of SCRs. SCRs can be detected as phasic peaks that exceed

a threshold between 0.01–0.05 μS [23]. We assign mk = 1 or mk = 0 based on whether or not an

SCR occurred at the kth time index using a threshold of 0.015 μS. The 0.015 μS threshold is

selected similar to our previous work in [42] to provide a balance between detecting SCR

peaks and avoiding the detection of noise as SCRs. The occurrence of SCRs follows a Bernoulli

distribution with a density function pmk
k ð1 � pkÞ

1� mk where pk is the probability that mk = 1.

Therefore, we relate sympathetic arousal to the occurrence of SCRs using the theory of general-

ized linear models. We use a logit transformation following the suggestion in [65].

log
pk

1 � pk

� �

¼ b0 þ b1xk ) pk ¼
1

1þ e� ðb0þb1xkÞ
; ð2Þ

where β0 and β1 are regression coefficients to be determined. Therefore,

PðmkjxkÞ ¼ pmk
k ð1 � pkÞ

1� mk ¼
1

1þ e� ðb0þb1xkÞ

� �mk e� ðb0þb1xkÞ

1þ e� ðb0þb1xkÞ

� �1� mk

: ð3Þ

Secondly, we consider the continuous-valued tonic skin conductance level sk which is also

known to be related to arousal [66]. Other neural state estimation methods (e.g. [43, 52]) have
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assumed linear relationships between continuous-valued observations and the latent state to

be determined. We too take sk to be linearly related to xk.

sk ¼ d0 þ d1xk þ wk; ð4Þ

where wk � N ð0; s2
wÞ captures sensor noise and modeling error, and δ0 and δ1 are regression

coefficients to be determined.

We next consider the rapidly-fluctuating phasic component ~rk. Two main aspects are to be

noted regarding the phasic component. Firstly, its distribution is skewed. A logarithmic or

square-root transformation is commonly suggested to correct skew in skin conductance mea-

sures [67]. Here we apply a logarithmic transformation (Fig 2). Secondly, it is the amplitudes

of the SCRs that are considered to be related to sympathetic arousal [68]. Therefore, we derive

an artificial signal rk by interpolating over the SCR peaks and the first and last values of the log

transformed ~rk. These two steps can also be combined and expressed mathematically as fol-

lows. Taking

r� ¼ f~r1;~rKg [ f~rkjmk ¼ 1g ð5Þ

to denote the phasic SCR peaks along with the first and last values, rk is derived by applying a

Fig 2. Phasic skin conductance skew correction. The phasic component of a skin conductance signal fluctuates more rapidly than its tonic

counterpart and has a positively skewed amplitude histogram. The upper sub-panel depicts the phasic skin conductance from participant 1

extracted using cvxEDA. The lower sub-panels show the the amplitude histograms before and after a log transformation.

https://doi.org/10.1371/journal.pone.0231659.g002
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cubic interpolation over log r� (Fig 3). The positive skew of the SCR amplitudes is one that has

been noted in the literature and the logarithmic transformation is often used for correction

[69]. Similar to the case of sk, we assume a linear relationship between rk and xk as well.

rk ¼ g0 þ g1xk þ vk; ð6Þ

where the coefficients γ0 and γ1 are similar to δ0 and δ1, and vk � N ð0; s2
vÞ represents a noise

term similar to wk. M
K
¼ fm1;m2; . . . ;mKg, R

K
¼ fr1; r2; . . . ; rKg and SK

¼ fs1; s2; . . . ; sKg
form the complete series of skin conductance observations (Fig 4).

Heart rate

We next wish to extract an ECG biomarker for estimating sympathetic arousal. Now both the

sympathetic and parasympathetic branches of the autonomic nervous system regulate heart

rate. The sympathetic nervous system increases heart rate and the force of contraction via the

neurotransmitter norepinephrine [70]. In contrast, parasympathetic activation causes the

release of actylcholine at the heart and has the opposite effect. Beat-to-beat variations in RR-

intervals, known as heart rate variability (HRV), reflect these changes in sympathetic and para-

sympathetic control on the heart. In this model, we relate sympathetic arousal to heart rate.

Studies in animal models have shown that the stimulation of autonomic nerve fibers leading to

the heart results in an almost linear relationship between stimulation frequency and RR-inter-

vals [71, 72]. Based on findings in these studies, we select a linear model to capture the rela-

tionship between RR-intervals and sympathetic arousal xk.

Fig 3. Extraction of the phasic-derived component rk from ~rk. The amplitudes of each of the SCRs are related to

sympathetic arousal. Therefore, we derive an artificial phasic-related component by detecting peaks and then

interpolating over the log values of the peak amplitudes. The figure shows a zoomed-in section illustrating the

derivation.

https://doi.org/10.1371/journal.pone.0231659.g003
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Heartbeats occur due to the depolarization of cells in the heart’s sinoatrial (SA) node which

subsequently propagates throughout the atria and ventricles. The rise in the membrane poten-

tials in the SA node cells can be modeled as a Gaussian random walk with drift [73, 74]. Conse-

quently, the times between successive ventricular contractions can be modeled using the

inverse Gaussian probability density model. Barbieri et al. [73, 75] successfully used a history-

dependent inverse Gaussian (HDIG) probability density function to model RR-intervals. If L
consecutive R-peaks occur at times ul within (0, T] such that 0< u1 < u2 < . . .< uL� T, and

Fig 4. Constituent components of a skin conductance signal. The sub-panels from top to bottom respectively depict,

(a) the skin conductance signal zk; (b) the phasic component with the detected SCR peaks; (c) the phasic-derived

component rk; (d) the tonic component sk. mk = 1 or mk = 0 is assigned based on whether or not an SCR occurred at

the kth time-point. We make use of the observations mk, rk and sk at each time point to estimate xk.

https://doi.org/10.1371/journal.pone.0231659.g004
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hl = ul − ul−1 is the lth RR-interval, then the HDIG density function for RR-intervals at t> ul is,

gðtjulÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yqþ1

2pðt � ulÞ
3

s

exp
� yqþ1½t � ul � m̂�

2

2

2m̂
ðt � ulÞ

( )

; ð7Þ

where q is the model order, θq+1 is related to the variance and

m̂ ¼ y0 þ
Xq

i¼1

yihl� iþ1 ð8Þ

is the HDIG mean [75]. The θi’s are coefficients to be determined. This model expresses the

dependence of an RR-interval on its immediate history (this dependence has also led to the

successful application of AR models to the analysis of HRV [76, 77]). Barbieri et al. [73]

divided the time axis into bins of size Δ = 5 ms and performed local likelihood estimation to

determine the θi’s every Δ ms (i.e, the θi’s were time-varying). These time-varying parameters

capture part of the non-stationary nature of HRV that occurs due to underlying pathological

and physiological reasons [78].

Based on our earlier assumption of linearity between sympathetic arousal xk and the RR-

intervals, we re-define a new HDIG RR-interval mean μ as one which depends linearly on

both the immediate history and the arousal xk, i.e.,

m ¼ y0 þ
Xq

i¼1

yihl� iþ1 þ Zxk; ð9Þ

where η is a coefficient to be determined. Moreover, we also assume that the θi’s are fixed and

that variations in sympathetic arousal account for part of the RR-interval stochasticity.

According to this formulation, changes in arousal would cause the HDIG probability density

function to shift to the right or to the left.

Recall that we analyze skin conductance data at a sampling frequency of 4 Hz due to its low

bandwidth (sampling time ts = 250 ms). Now the bin size Δ = 5 ms proposed by Barbieri et al.

[73] used for the HDIG model is much smaller. There are J = ts/Δ = 50 heart rate observation

bins corresponding to the kth skin conductance sample. We index these smaller heart rate bins

over j and generate a binary point process by assigning nk,j = 1 or nk,j = 0 depending on

whether or not an R-peak occurred at the time. The joint density over these J observations is

then [79]

Pðnk;1; nk;2; . . . ; nk;JjxkÞ ¼ e
PJ

j¼1
log ðlk;jDÞnk;j � lk;jD

; ð10Þ

where the CIF λk,j is

lk;j ≜
gðtk;jjuk;jÞ

1 �
R tk;j
uk;j

gðzjuk;jÞdz
; ð11Þ

where uk,j is the time of occurrence of the last R-peak prior to time tk,j. N
K
¼

fn1;1; n1;2; . . . ; n1;J ; n2;1; n2;2; . . . ; n2;J ; . . . ; nK;1; nK;2; . . . ; nK;Jg form the set of heart rate

observations.

State estimation and parameter recovery

Given the observations YK
¼ fMK

;RK
;SK

;N K
g, we wish to estimate xk 8k and determine

the set of unknown model parameters. We perform this using Bayesian filtering applied within
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an EM framework. At the E-step, we use both a forward filter and a backward smoother to esti-

mate xk. At the M-step, we use the estimated values of xk to obtain the next set of model param-

eters that maximizes the expected value of the complete data log likelihood. The algorithm

iterates between the E-step and the M-step until convergence. We derive the forward filter

equations and the M-step updates in S1 Appendix based on [43].

Expectation step. We make a Gaussian approximation to the posterior density p(xk|yk)
similar to [43] to obtain the following filter equations for k = 2: K.

Predict:

xkjk� 1 ¼ rxk� 1jk� 1 þ aIk ð12Þ

s2
kjk� 1

¼ r2s2
k� 1jk� 1

þ s2
ε ð13Þ

Update:

ck ¼
s2

kjk� 1

s2
vs

2
w þ s

2
kjk� 1ðg

2
1
s2

w þ d
2

1
s2

vÞ
ð14Þ

xkjk ¼ xkjk� 1 þ ck½b1s
2
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2
wðmk � pkjkÞ þ g1s

2
wðrk � g0 � g1xkjk� 1Þ

þ d1s
2
vðsk � d0 � d1xkjk� 1Þ þ s

2
vs

2
w

XJ

j¼1

1

lk;jjk

@lk;jjk

@xk
ðnk;j � lk;jjkDÞ�

ð15Þ
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1

s2
kjk� 1
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2

1
pkjkð1 � pkjkÞ þ

g2
1

s2
v

þ
d
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1

s2
w

�
XJ
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1

lk;jjk

@
2
lk;jjk

@x2
k
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"(

�
nk;j

l
2

k;jjk

@lk;jjk

@xk

� �2
#)

� 1
ð16Þ

These equations are similar to the Kalman filter predict and update steps. Eq (15) applies a

correction to xk|k−1 based on a comparison between the skin conductance and heart rate mea-

surements observed at time index k and their model predictions. For instance, the phasic-

derived rk is compared to its model prediction γ0 + γ1 xk|k−1 and the appearance of an SCR mk

is compared to its predicted probability pk|k. Eq (15) is also solved numerically using Newton’s

method as xk|k appears on both sides of the equality sign [51]. The smoothed state and variance

estimates xk|K and s2
kjK are [80]

Ak ≜r
s2

kjk

s2
kþ1jk

ð17Þ

xkjK ¼ xkjk þ Akðxkþ1jK � xkþ1jkÞ ð18Þ

s2
kjK ¼ s2

kjk þ A2
kðs

2
kþ1jK � s

2
kþ1jkÞ: ð19Þ

Maximization step—Model parameters related to skin conductance. The model param-

eters r; a; b0; b1; d0; d1; s
2
w; g0; g1; s

2
v and s2

ε are calculated at the M-step. Making use of the

PLOS ONE Arousal estimation using skin conductance and heart rate

PLOS ONE | https://doi.org/10.1371/journal.pone.0231659 April 23, 2020 10 / 34

https://doi.org/10.1371/journal.pone.0231659


state-space covariances in [81] and defining the following

Uk ≜x2
kjK þ s

2
kjK ð20Þ

Uk;kþ1 ≜xkjKxkþ1jK þ Aks
2
kþ1jK ; ð21Þ

we obtain the following updates for the (n + 1)th EM iteration.

rðnþ1Þ

aðnþ1Þ

" #
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The M-step updates are likewise obtained for δ0 and δ1 by replacing rk with sk in Eq (23).

The update for s2
w can be obtained similarly by making the corresponding changes to γ0, γ1

and rk in Eq (24).

Estimating β0 and β1 requires the maximization of (S1 Appendix) [43]

�Q1 ¼
XK

k¼1

E mkðb0 þ b1xkÞ � log ð1þ eb0þb1xkÞ
� �

: ð26Þ

Owing to the difficulty of analytically computing �Q1, two alternate approaches (based on

approximations) are commonly used in the literature for estimating β0 and β1. These are as

follows:

1. The first approach is to set β1 = 1 and calculate β0 empirically [51, 52]. This results from

using the model

log
pk

1 � pk

� �

¼ b0 þ xk ) pk ¼
1

1þ e� ðb0þxkÞ
: ð27Þ
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It can be assumed that xk� 0 at the very beginning. Therefore

log
p0

1 � p0

� �

� b0: ð28Þ

β0 can now be calculated from Eq (28) taking p0 as the chance probability that mk = 1. For

instance, in behavioral learning experiments involving correct/incorrect responses, p0 is the

probability that a subject gets an answer correct at the very outset prior to any learning

occurring (i.e., the chance probability) [51, 52]. In our prior work on Bayesian filtering

using skin conductance data, taking p0 as the average probability of an SCR occurring in

the whole experiment provided good results [42, 45, 82, 83].

2. The second approach is by means of a Taylor series expansion [43]. Each of the summed

terms in �Q1 can be expanded around xk|K. Thereafter, �Q1 can be approximated by only

using the first few Taylor series terms. The derivatives of the approximated �Q1 with respect

to β0 and β1 can then be taken and set to zero to find the M-step updates. These derivatives

yield the following (S1 Appendix) [43]:

XK

k¼1

mk � pkjK �
1

2
b

2ðnþ1Þ

1
s2

kjKpkjKð1 � pkjKÞð1 � 2pkjKÞ

� �

� 0 ð29Þ

XK

k¼1

mkxkjK � xkjKpkjK �
1

2
b
ðnþ1Þ

1
s2

kjKpkjKð1 � pkjKÞ

�

2þ b
ðnþ1Þ

1
xkjKð1 � 2pkjKÞ

h io
� 0:

ð30Þ

These two equations can be numerically solved using MATLAB’s fsolve function to provide

the M-step updates for β0 and β1.

Both types approximations described above provide reasonably good results in our own

experience and either option can be used. Note that the β0 and β1 coefficients appear in expo-

nents, as in Eq (2) for instance, and state estimation can be sensitive to them. Due to this sensi-

tivity in the exponent terms, the second approximation option can cause convergence issues as

it tries to iteratively estimate β0 and β1 at the M-step. In contrast, β0 and β1 are calculated using

alternate means in the first option. Thus it is less likely to have difficulty converging. We use a

convergence criteria similar to [52] and consider all model parameters estimated at the M-step

to have converged once the mean absolute difference between successive iterations does not

exceed a specified tolerance level. Here, we use a tolerance level in the order of 10−5–10−6 on

simulated and experimental data.

Maximization step—Model parameters related to heart rate. Ideally, all model parame-

ters related to both skin conductance and heart rate should be estimated at the M-step simulta-

neously. Recall that we have to determine θ0, θ1, . . ., θq+1 and η for heart rate. Calculating these

values at the M-step requires the maximization of (S1 Appendix) [43]

�Q2 ¼
XK

k¼1

XJ

j¼1

E log ðlk;jDÞnk;j � lk;jD
h i

: ð31Þ

Maximizing �Q2 with respect to the θi’s and η for a fixed model order q is extremely time

consuming. Additionally, multiple values of q need to be evaluated for selecting the best order.
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Owing to the large time complexity, we resorted to an alternate two-step strategy for determin-

ing the model parameters related to heart rate.

• Step 1: Determining the model order q and the θi coefficients

The HDIG density function models the RR-interval mean as a weighted sum of the previ-

ous q RR-intervals. This is similar to an AR model where a value in a time series is pre-

dicted from its past values [78]. Barbieri et al. [73] used the HDIG density function to

model RR-intervals in ten subjects who participated in a tilt-table experiment. They inves-

tigated different model orders q and selected q = 2 for two subjects and q = 4 for eight sub-

jects based on goodness-of-fit and Akaike’s information criteria. Goodness-of-fit was

assessed using the Kolmogorov-Smirnov (KS) plot. The KS plot is based on the time rescal-

ing theorem [84] and provides an indication of how good a CIF fits to point process obser-

vations. The time rescaling theorem is frequently used in the analysis of neural spike trains

[85–87] and heartbeats [73, 75, 78, 88]. The closer the KS plot is to the 45˚diagonal, the

better the fit is to the observed binary point process data. Thus, the maximum distance

between the KS plot and the 45˚diagonal (known as the KS distance), provides a quantita-

tive measure of goodness-of-fit. In [78], Barbieri et al. performed a partial autocorrelation

analysis of RR-intervals and selected an AR(8) HDIG model order for a tilt table study.

Similar to [78], we too perform a partial autocorrelation analysis of the subjects’ RR-inter-

vals (Fig 5). For many subjects, the autocorrelation terms beyond a lag of eight tend to be

small in comparison to the first few lags. We therefore chose to investigate model orders

up to q = 8. For each model order q, we estimated θ0, θ1, . . ., θq+1 offline via maximum like-

lihood [73]. The best model order q and the θi coefficients were selected based on the

smallest KS distance (Table 1). We performed step 1 for each participant prior to arousal

estimation using EM.

• Step 2: Determining η
After selecting the θi’s and the model order q, we run the full EM algorithm for arousal esti-

mation for a fixed set of values for η. Since RR-intervals would decrease (i.e., heart rate

would speed up) with increased sympathetic drive, we chose to try the set of negative values

{−10−6, −10−5, −10−4, −10−3, −10−2, −10−1} for η. We resorted to this two-step strategy

because determining η and the θi’s simultaneously at the M-step proved to be extremely time

consuming. �Q2 in Eq (31) can be approximated by

�Q2 �
XK

k¼1

XJ

j¼1

log ðlk;jjKDÞnk;j � lk;jjKDþ
1

2

1

lk;jjK

@
2
lk;jjK

@x2
k
ðnk;j � lk;jjKDÞ

"

�
nk;j

l
2

k;jjK

@lk;jjK

@xk

� �2
#

s2
kjK :

ð32Þ

We derive this in S1 Appendix. Ideally, the η value with the largest �Q2 during state esti-

mation should be selected. However, the inclusion of xk in the HDIG model causes the

KS plot obtained via maximum likelihood to change. Therefore, η should be chosen to

maximize �Q2 subject to the new KS plot falling within or reasonably close to the 95%

confidence bounds to the 45˚diagonal (based on the time rescaling theorem, the 45˚-

diagonal corresponds to the perfect CIF estimate for a given set of point process

observations).
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Fig 5. Partial autocorrelation analysis of RR-intervals. For all participants, the partial autocorrelation values are large at the first few lags

and then become smaller. For many participants, the dependence of the current RR-interval on a lag of beyond eight is small. Consequently,

we chose to investigate model orders q = 1, 2, . . ., 8 for each participant and selected the value of q giving rise to the smallest KS distance.

https://doi.org/10.1371/journal.pone.0231659.g005
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Results

Simulated data

We simulated two sets of data to check the ability of our model to estimate an unobserved

arousal state and recover model parameters. The model parameters were chosen based on

prior experience with skin conductance and heart rate data. We used the first approximation

strategy for β0 and β1 (i.e., setting β1 = 1 and calculating β0 based on an empirical approxima-

tion). We used p0 = 0.01 to generate β0 (i.e., β0 = log[p0(1 − p0)−1]). Recall that during estima-

tion, we calculate β0 empirically by estimating p̂0 as the average probability that mk = 1 in the

data. The two simulated data sets correspond to two instances where p̂0 > 0:01 and p̂0 < 0:01.

We also set the indicator function Ik = 1 at 25 arbitrary locations.

The state estimation results are shown in Figs 6 and 7. The model parameters used and

their estimates are shown in Table 2. In both cases, there is a good fit to the continuous-valued

observations rk and sk. In the case of p̂0 > 0:01, the fits are better to the binary observations

and to the states. The approximation with p̂0 < 0:01 tends to underestimate the probability of

the binary observations. This is likely because β0 and β1 appear in the exponents, and estima-

tion is therefore more sensitive to them. The fits to the heartbeats are also good with the KS

plot lying within the 95% confidence bounds. We calculated the θi coefficients separately using

maximum likelihood and estimated η from a fixed set of values using the EM algorithm.

Experimental data

We set Ik = 1 corresponding to the times at which the CS+, CS- and US stimuli were presented.

Unlike in the case of simulated data, additional constraints had to be placed when running the

EM algorithm on experimental data. Here, there was a tendency for the model parameters to

converge to a location where there was an almost perfect fit to one of the continuous-valued

observations (either rk or sk). It is likely that local extrema exist in the model parameter search

space at these points and the EM algorithm can converge to them. In order to avoid xk overfit-

ting to rk or to sk, we first divided them by their respective standard deviations and then moni-

tored the variance terms s2ðnþ1Þ
v and s2ðnþ1Þ

w at each iteration. All the model parameters were

Table 1. Model parameter selection for heart rate.

Original study subject number Participant Model order q KS distance

5 1 3 0.021327

6 2 8 0.025880

7 3 1 0.019057

10 4 6 0.063215

11 5 6 0.047393

12 6 1 0.022211

13 7 3 0.015398

14 8 2 0.030028

16 9 5 0.022618

17 10 2 0.028208

18 11 8 0.016154

19 12 4 0.019527

KS plots are frequently used to evaluate the goodness-of-fit to spiking-type observations (e.g. single neuron spiking,

R-peaks). Here we selected q and the θi coefficients based on the minimum KS distances. The subject ID numbers

according to the original study are also shown in the table.

https://doi.org/10.1371/journal.pone.0231659.t001
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Fig 6. State estimation with simulated data (p̂0 > 0:01). The sub-panels respectively depict, (a) the Bernoulli trial probabilities pk (blue), their

estimate (red) and the presence or absence of binary observations (light green and black dots); (b) the quantile-quantile (QQ) plot for the

residual error of pk; (c) the exponent of rk (blue) and its estimate (red); (d) the QQ plot for the residual error of rk; (e) sk (blue) and its estimate

(red); (f) the QQ plot for the residual error of sk; (g) the arousal state xk (blue), its estimate (red) and the presence or absence of stimuli Ik
driving the state (cyan and blacks dots); (h) the QQ plot for the residual error of xk; (i) the sequence of RR-intervals rri (orange dots) and the

estimated RR-interval mean μ (solid blue line); (j) the KS plot for the heartbeats.

https://doi.org/10.1371/journal.pone.0231659.g006
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Fig 7. State estimation with simulated data (p̂0 < 0:01). The sub-panels respectively depict, (a) the Bernoulli trial probabilities pk (blue), their

estimate (red) and the presence or absence of binary observations (light green and black dots); (b) the QQ plot for the residual error of pk; (c)

the exponent of rk (blue) and its estimate (red); (d) the QQ plot for the residual error of rk; (e) sk (blue) and its estimate (red); (f) the QQ plot

for the residual error of sk; (g) the arousal state xk (blue), its estimate (red) and the presence or absence of stimuli Ik driving the state (cyan and

blacks dots); (h) the QQ plot for the residual error of xk; (i) the sequence of RR-intervals rri (orange dots) and the estimated RR-interval mean μ
(solid blue line); (j) the KS plot for the heartbeats.

https://doi.org/10.1371/journal.pone.0231659.g007
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only allowed to update if the absolute difference between the variance terms exceeded 0.1.

Thus the EM algorithm was prevented from overfitting by driving down one of the variance

terms at the expense of the other. The EM iterations were stopped once it was detected that

overfitting (as measured by the variance difference criteria) to either rk or sk would occur at

the next iteration. This approach is similar to the early stopping criteria used to prevent over-

fitting when training artificial neural networks via gradient descent [89]. We also calculated β1

and β2 at the M-step as overfitting, rather than convergence, is the major concern with experi-

mental data. We also included an additional constraint to prevent the α coefficient from

becoming negative during estimation as this would imply that the external stimuli (for

instance, the electric shock) decreases arousal. The model parameter estimates are given in

S1 Appendix.

Pavlovian fear conditioning experiments have often sought to examine average differences

in physiological features between the trial types. Since this is similar to the study of event-

related potentials (ERPs) with EEG data, we provide the ERP-like images for the three types of

trials—CS-, CS+ without the US (CS+US-) and CS+ with the US (CS+US+). The state estima-

tion results are shown in Figs 8, 9 and 10 and the KS plots for fits to the heartbeats are shown

in Fig 11. The mean and standard deviation of xk within each of the 10 s periods considered

for the ERP-like plots is shown in Table 3.

We first consider Figs 8, 9 and 10. Overall, both the skin conductance and estimated arousal

states are highest in the CS+US+ trials. The participants may be divided into three categories

based on their physiological responses and state estimates. Participants 3, 4, 5 and 11 have very

similar averaged responses. We group them in category A. For each of the participants in cate-

gory A, the average response to the CS+US+ is highest followed by the CS+US-. The CS- trials

have the lowest average response. This is as expected. Clear gaps are visible between the aver-

aged responses for each of the three types of trials. The gaps are visible for both averaged skin

Table 2. Parameter estimation with simulated data.

Parameter value Estimated value (p̂0 > 0:01) Estimated value (p̂0 < 0:01)

α = 0.04 0.0082 0.0281

ρ = 0.995 0.9941 0.9947

δ0 = −0.7 -0.739 -0.704

δ1 = 0.2 0.2532 0.4417

s2
w ¼ 0:003 0.003 0.0031

γ0 = 0.35 0.2716 0.3422

γ1 = 0.4 0.5057 0.8848

s2
v ¼ 0:002 0.0019 0.0022

β0 = −4.5951 -4.5458 -4.7015

β1 = 1 1 (set) 1 (set)

s2
ε ¼ 0:03 0.0188 0.0058

θ0 = 0.27432 0.24028 0.29978

θ1 = 0.83697 0.83787 0.76209

θ2 = −0.10511 -0.07417 -0.05446

θ3 = 234.22144 239.28030 237.89351

η = −0.005 -0.001 -0.001

We simulated two sets of data with the same set of parameters. For one of them, the approximation for p0 was slightly

less than the true value and for the other it was slightly above.

https://doi.org/10.1371/journal.pone.0231659.t002
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Fig 8. Sympathetic arousal estimation for participants 1-4 in the trace fear conditioning experiment. The sub-panels from top to

bottom respectively depict, (a) the skin conductance signal zk; (b) the presence or absence of SCR peaks (light green and black dots) and

the smoothed Bernoulli trial probability estimates of pk (red line); (c) the exponent of the phasic derived signal rk (solid green line) and its

estimate (dotted line); (d) the tonic part sk (solid light mauve line) and its estimate (dotted line); (e) the smoothed arousal state estimates of

xk and the presence or absence of visual or electric stimuli (cyan and blacks dots); (f) the sequence of RR-intervals rri (orange dots) and the

estimated RR-interval mean μ (solid blue line); (g) a 10 s ERP-like skin conductance plot for the CS- (green), CS+ without a shock (mauve

—CS+US-) and CS+ with the shock (red—CS+US+) trials; (h) 10 s ERP-like arousal state plots along with their confidence intervals.

https://doi.org/10.1371/journal.pone.0231659.g008
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Fig 9. Sympathetic arousal estimation for participants 5-8 in the trace fear conditioning experiment. The sub-panels from top to

bottom respectively depict, (a) the skin conductance signal zk; (b) the presence or absence of SCR peaks (light green and black dots) and the

smoothed Bernoulli trial probability estimates of pk (red line); (c) the exponent of the phasic derived signal rk (solid green line) and its

estimate (dotted line); (d) the tonic part sk (solid light mauve line) and its estimate (dotted line); (e) the smoothed arousal state estimates of

xk and the presence or absence of visual or electric stimuli (cyan and blacks dots); (f) the sequence of RR-intervals rri (orange dots) and the

estimated RR-interval mean μ (solid blue line); (g) a 10 s ERP-like skin conductance plot for the CS- (green), CS+ without a shock (mauve

—CS+US-) and CS+ with the shock (red—CS+US+) trials; (h) 10 s ERP-like arousal state plots along with their confidence intervals.

https://doi.org/10.1371/journal.pone.0231659.g009
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Fig 10. Sympathetic arousal estimation for participants 9-12 in the trace fear conditioning experiment. The sub-panels from

top to bottom respectively depict, (a) the skin conductance signal zk; (b) the presence or absence of SCR peaks (light green and

black dots) and the smoothed Bernoulli trial probability estimates of pk (red line); (c) the exponent of the phasic derived signal rk
(solid green line) and its estimate (dotted line); (d) the tonic part sk (solid light mauve line) and its estimate (dotted line); (e) the

smoothed arousal state estimates of xk and the presence or absence of visual or electric stimuli (cyan and blacks dots); (f) the

sequence of RR-intervals rri (orange dots) and the estimated RR-interval mean μ (solid blue line); (g) a 10 s ERP-like skin

conductance plot for the CS- (green), CS+ without a shock (mauve—CS+US-) and CS+ with the shock (red—CS+US+) trials; (h)

10 s ERP-like arousal state plots along with their confidence intervals.

https://doi.org/10.1371/journal.pone.0231659.g010
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Fig 11. KS plots for the participants. The KS plots for the participants lie close to the 45˚diagonal indicating a good fit to the heartbeats (a

point process). Deviations from the 45˚diagonal are most prominent for participants 4 and 5.

https://doi.org/10.1371/journal.pone.0231659.g011
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conductance and arousal. In category B are participants 1, 6, 9 and 12. For these participants,

the gap between the CS+US- and CS- trials is very small. However, the average response for

the CS+US+ is still larger. For participants 1 and 9, the averaged CS+US- and CS- curves lie

almost on top of each other. For participant 6, there is a small rise in the averaged CS+US-

skin conductance curve above the CS- curve while the corresponding state estimates are very

close to each other. There is however, a slight upward trend in the averaged CS+US- arousal

state curve curve and a corresponding downward trend in the averaged CS- curve. Participants

7, 8 and 10 are grouped into category C. Here, the general trend is that the averaged CS- curve

tends to exceed the CS+US- curve. Participant 2 is an exception. Here, the averaged skin con-

ductance and state estimates for the CS- and CS+US- are interchanged. We provide a discus-

sion of these results in the following section. We include a separate discussion for participant 2

for whom there appears to be a mismatch between the averaged skin conductance and arousal

state estimate curves. Participant 2 appears to develop a skin conductance arousal response to

the CS- trials towards the end of the experiment. This is unusual as the participant should have

by then learned that the CS- trials are never accompanied by the electric shock.

We next consider Table 3 which summarizes the results from the ERP-like plots in the

figures. Again, consistent with Figs 8, 9 and 10, the highest xk values generally occur in the

CS+US+ trials. The difference between the CS+US- and CS- trials is less distinguishable and

there are differences between participants. We have grouped the participants into categories A,

B and C in the table. The means and standard deviations of the arousal state xk for each cate-

gory are also shown here. The responses for individual participants are generally as expected

in category A. For individual participants in categories B and C, the responses are not as

would be expected in a typical fear conditioning experiment since the mean values for the CS-

trials sometimes exceed those of the CS+US- trials. For category A as a whole, the mean value

Table 3. Mean and standard deviation of xk in different trial conditions.

Category Participant CS+US+ CS+US- CS- CS+US+ > CS+US- CS+US- > CS-

mean s.d. mean s.d. mean s.d. (p-value) (p-value)

A 3 1.9720 0.3203 1.7754 0.0499 1.5035 0.1138 0.0001� < 0.0001�

4 1.0546 0.3222 0.8771 0.0687 0.6756 0.1183 0.0005� < 0.0001�

5 1.9982 0.1939 1.9864 0.0427 1.8153 0.0794 0.3537 < 0.0001�

11 -0.4086 0.2796 -0.5008 0.0904 -0.9051 0.1477 0.0253� < 0.0001�

Overall (A) 1.1541 1.0215 1.0345 0.9846 0.7723 1.0639

B 1 -0.5490 0.1140 -0.8844 0.0248 -0.8402 0.0493 < 0.0001� > 0.9999

6 0.0515 0.1725 -0.3859 0.0321 -0.3178 0.0617 < 0.0001� > 0.9999

9 1.9902 0.1579 1.6591 0.0429 1.6319 0.0428 < 0.0001� 0.0029�

12 0.8392 0.1611 0.5776 0.0224 0.5804 0.0628 < 0.0001� 0.6034

Overall (B) 0.5830 0.9649 0.2416 0.9762 0.2636 0.9438

C 7 -1.0530 0.0416 -1.2204 0.0276 -1.0636 0.0220 < 0.0001� > 0.9999

8 -0.2820 0.0568 -0.6205 0.0398 -0.5316 0.0235 < 0.0001� > 0.9999

10 0.2368 0.1206 -0.2129 0.0382 -0.0371 0.0433 < 0.0001� > 0.9999

Overall (C) -0.3661 0.5381 -0.6846 0.4170 -0.5441 0.4221

– 2 3.8671 0.2012 3.4755 0.0753 3.6719 0.0546 <0.0001� > 0.9999

Overall 0.8098 1.3836 0.5438 1.3742 0.5153 1.3683

Fear conditioning experiments frequently examine physiological responses across the different types of trials. The table shows the mean and standard deviation of the

averaged xk values over the 10 s period shown in Figs 8, 9 and 10 for the CS+US+, CS+US- and CS- trials. The results for the participants are shown according to the

categories A, B and C, and p-values less than 0.05 are indicated with a �.

https://doi.org/10.1371/journal.pone.0231659.t003
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for xk is largest in the CS+US+ trials followed by the CS+US- trials and then by the CS- trials.

For category B, the mean value for the CS- trials is larger than that for the CS+US- trials. It is

the same for category C, but the difference is larger. We also performed one-tailed t-tests to

check if the means for CS+US+ trials were greater than those of the CS+US- trials, and if the

means of the CS+US- trials were larger than those of the CS- trials for each participant. In gen-

eral, the differences are significant in both cases for participants in category A. The differences

are less apparent for participants in categories B and C. The weaker response to the CS+US-

trials may be in part due to the use of the trace, rather than the delay, fear conditioning para-

digm as we describe in the subsequent section. Other possibilities include an insufficient

unpleasantness of the US on a per-subject level.

The KS plots for the participants are close to the 45˚diagonal indicating a good fit to the

heartbeat observations. Deviations outside the 95% confidence bounds are most prominent

for participants 4 and 5. The HDIG model developed by Barbieri et al. [73, 75] uses time-vary-

ing θi coefficients that are estimated every 5 ms. The use of a fixed set of θi’s estimated via max-

imum likelihood together with changes in arousal may have been insufficient to account for

the HRV stochasticity completely. We have discussed how time-varying HDIG parameters

may be incorporated into the model in the following section.

Discussion

Simulated data

The presence of binary-valued observations requires the use of a data transformation accord-

ing to the theory of generalized linear models. Here, we use the logit transform to relate mk =

{0, 1} to xk similar to [51, 52]. The logit transform necessitates the estimation of two parame-

ters that appear in exponents (β0 and β1). Estimating exponents can be challenging as a small

change may have a significant effect. We earlier noted two approaches found in the literature

that are based on approximations which can be used to estimate β0 and β1. One of the

approaches is less likely to cause difficulties in converging to parameters. We use this approach

to test the ability of our model to estimate an unobserved arousal state and estimate model

parameters. While we obtain good results with simulated data, the ability to fit to the binary

observations was better in one case (p̂0 > 0:01) than in the other. This is likely due to the sen-

sitivity of the model to the exponent terms. The need to estimate exponent terms and the sensi-

tivity thereof are limitations of the present model. An alternate strategy would be to use a

different type of data transform on the binary data and relate it to xk. For instance, the comple-

mentary log-log and the inverse normal are additional transforms that are suggested for binary

data [65]. These additional methods could be investigated in future to examine sensitivity to

the exponents.

Numerical issues can also arise during state estimation. This is in part due to the use of the

HDIG density function and its parameters. State estimation also depends on integrals and

derivatives of the HDIG CIF over very small numbers. These factors can cause numerical

issues during EM. A simpler probability density function or a Gaussian approximation to the

HDIG density function may be helpful in avoiding some of the numerical instabilities that

may arise. Yet another alternative would be to use particle filters with Monte-Carlo sampling

for state estimation [90, 91].

Experimental data

In Pavlovian fear conditioning, a neutral stimulus is paired with an unpleasant stimulus such

as an electric shock. Through repeated exposure, a subject learns an association between the

two types of stimuli and eventually begins to elicit a response typically associated with the
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unpleasant stimuli to the neutral predictor as well. Due to ethical considerations involved in

causing pain to human subjects, the intensity of the electric shocks used in fear conditioning

experiments is often adjusted to be “highly annoying, but not painful” [17]. In the data set

used here, the shock intensity was adjusted to 90% of each subject’s pain threshold [28]. Sub-

jects have different pain thresholds and an electric shock that is not painful enough may not

cause the subject to fear the US as much. This is one of the possible reasons why variations are

seen among the subjects analyzed in this data set. Ideally, we would expect to see the highest

averaged responses (skin conductance and arousal) for CS+US+ and then for CS+US-. The

CS- trials would be expected to have the lowest averaged responses. However, this clear differ-

ence is only visible in the four participants in category A. It appears that these four subjects

learned the association between the CS+ cue and the electric shock and developed a fear

response to the CS+ alone. In participants belonging to both the other categories, a clear sepa-

ration with the averaged responses for CS+US- being higher than the averaged responses for

CS- is not seen. There is almost no difference between the averaged responses for the CS+US-

and CS- trials for participants in category B. The response is inverted for category C partici-

pants. The reason for responses such as those seen in category B and C is likely due to the par-

ticipants not learning to fear the unpleasant electric shock enough. A further possibility for the

lack of a response to the CS+ trials could be the type of experiment that was used. The data

come from a trace fear conditioning experiment. In trace fear conditioning, there is a gap

between the time the CS+ ends and the application of the US. In delay fear conditioning, the

CS+ stimuli co-terminate with US without any time gap. Due to the closer pairing in time, the

response to the CS+ stimuli in delay fear conditioning is usually larger than in trace fear condi-

tioning [17]. Trace conditioning involves the hippocampus while delay conditioning predomi-

nantly involves the amygdala [17]. Finally, the experiment included the electric shock only in

50% of the CS+ trials. Therefore, a participant learns that not all CS+ trials precede a shock.

The use of: (i) trace conditioning, (ii) CS+ only accompanying the US in 50% of the trials and

(iii) shocks that may not have been unpleasant enough are possible reasons why only four par-

ticipants had a response as expected.

Participant 2 was a notable exception as the averaged skin conductance and state estimates

for CS- and CS+US- do not match each other. A total of 160 trials were included in the fear

conditioning experiment—40 CS+US+, 40 CS+US- and 80 CS- trials. The trials occur in ran-

dom order. Fig 12 shows how the averaged CS- responses vary during the course of the 80 CS-

trials. For comparison, the CS+US- responses are shown as a reference. The CS- trials are

shown in three blocks: trials 1-20, trials 21-60 and trials 61-80. Shown below each of the sub-

panels are the corresponding averaged arousal states for each of those blocks. We would typi-

cally expect that the response to the CS- stimuli decreases as the subject learns that the CS- is

never associated with the US. However, this is not the case for participant 2. There is a decrease

followed by an increase in the CS- response. This decrease followed by an increase occurs both

in skin conductance and the arousal state. Now the gap between the CS- and CS+US-

responses is much larger in blocks 1 and 3. Therefore, when averaged, the skin conductance

and state estimates are inverted. The use of the backward smoother during state estimation,

and not just the forward filter, likely affects this as well. The smoother causes future estimates

to affect past estimates. Consequently, the larger gap in block 3 affects the earlier estimates as

well. If the method we present were implemented on a wearable device for emotion monitor-

ing, the effect of the future on past values could be reduced by running the EM algorithm on

smaller segments of data instead of on longer segments. The use of larger data segments how-

ever, is likely to make the estimate smoother.
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Selection of heart rate model parameters

We select the θi coefficients and η separately. While this procedure eases computation (the θi’s
no longer have to be repeatedly estimated at the M-step until convergence), it also creates the

challenge of having to optimize both types of parameters simultaneously. To illustrate, the θi
coefficients are calculated offline via maximum likelihood. This may give rise to a KS plot indi-

cating a reasonably good fit to the heartbeat observations. However, the inclusion of ηxk into

the HDIG mean during state estimation alters the KS plot and the KS distance. Therefore, η
has to be finally selected based on a trade-off of maximizing �Q2 subject to the KS plot remain-

ing within or close to the 95% confidence bounds. Moreover, the separate selection of the θi’s
and η can also give rise to numerical issues; this can especially occur at larger η values. As

noted above, the HDIG CIF involves derivatives and integrals over small numbers. Conse-

quently, the Newton-Raphson method used to solve Eq (15) can go into infeasible regions. The

HDIG model we use here is computationally demanding. The use of a simpler probability den-

sity function to model RR-intervals may permit parameters related to heart rate to be esti-

mated simultaneously at the M-step. This would partly eliminate issues arising due to the need

to separately optimize model parameters.

Alternatively, the θi coefficients could be considered as additional states. This would permit

simultaneous estimation of sympathetic arousal and the θi’s. Additionally, it would also allow

Fig 12. Variation of the averaged skin conductance and state estimates across trials for participant 2. Sub-panels (a) and (e) show the

averaged skin conductance (zk) and arousal (xk) estimates for all CS+US- trials. Sub-panels (b)-(d) and (f)-(h) show the variation of the

averaged skin conductance and arousal estimates for the CS- trials across trial blocks 1-20, 21-60 and 61-80. For zk, there is a drop from trials

1-20 to 21-60. However, there is an increase from 61-80. The same pattern is visible for xk. However, the gap is much larger for xk in trials 61-

80. Therefore when averaged across all blocks, the relative positions of the CS+US- and CS- are interchanged (Fig 8).

https://doi.org/10.1371/journal.pone.0231659.g012
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the θi’s to be time-varying and account for some of the HRV stochasticity. In this case, the

state vector to be estimated would consist of both xk and the time-varying θi’s. Barbieri et al.

estimated a vector consisting of only the θi coefficients via Bayesian filtering in [75]. Their

model could be extended to include xk.

State-space model

We have used a single indicator function to model the effect of the CS+, CS- and US stimuli.

In the data set used here, the CS+ and CS- were simple shapes that appeared on a computer

screen. More complex stimuli have also been used in fear conditioning (e.g. complex sounds

[92]). In addition, the CS+ and CS- cues can be chosen to reinforce a particular emotion (e.g.

[93–95]). For instance, the CS+ stimuli could be the image of a fearful face (thus reinforcing

the anticipated fear of the US) while the CS- could be a neutral face. Our current model does

not distinguish between these variations in the type of stimuli as it uses a single indicator func-

tion. A further extension would be to use stimulus-specific indicator functions in the state

equation, i.e.,

xk ¼ rxk� 1 þ aCSþIk;CSþ þ aCS� Ik;CS� þ þaUSIk;US þ εk ð33Þ

and determine each of the α coefficients separately at the M-step. This would, however, come

at the expense of added computational complexity.

Model validation and feature selection

The sympathetic arousal xk that we estimate is unobserved. Consequently, we rely on a qualita-

tive form of validation rather than a quantitative one. Here we observe the general similarity

between the averaged xk and skin conductance in different trial conditions as a means of vali-

dation on experimental data. Nerves from the sympathetic branch of the nervous system

innervate a number of locations within the human body (e.g. skin, heart, bronchi, eye). We

could therefore record signals/features from any location innervated by sympathetic nerve

fibers, and treat them as the set of observations yk with which to estimate xk in typical state-

space fashion. Thus, our choice of features here is largely based on the literature and human

physiology. As we noted above, sympathetic fibers innervate the sweat glands, and the rate of

SCR occurrence, the SCR amplitudes and the tonic level are the most commonly used skin

conductance-related measures of sympathetic arousal [40]. Moreover, increased sympathetic

drive increases heart rate. While frequency-domain features of heart rate could have been

extracted, there is a lack of consensus regarding the precise interpretation of particular HRV

spectral bands (the interpretation of the low frequency band, thought to reflect sympathetic

activity, in particular, has been controversial [96]). There is more agreement that sympathetic

drive increases heart rate (a relatively straight-forward time-domain feature).

A skin conductance signal comprises of both a slow-varying tonic component and a fast-

varying phasic component. The phasic component consists of the series of SCRs which are

reflections of instantaneous sympathetic nervous activity. Currently, we use both a log trans-

formation and an interpolation over the SCR amplitudes for correcting skewness and artifi-

cially deriving a continuous-valued signal rk with which to estimate xk. This can lead to a loss

in the physiological intuition underlying the phasic SCRs—namely the instantaneous sympa-

thetic activation they represent. This can especially be seen if two large SCRs separated in time

occur. The interpolation will give rise to a continuous-valued rk that remains high all through-

out the region in-between the two SCRs and the decrease in sympathetic arousal in the middle

is lost. Thus a better way to model the phasic SCR occurrences and their amplitudes would be
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to consider them as forming a marked point process, i.e., a point process where the events are

associated with an amplitude. This is a future direction of research.

Application to real-world scenarios

Anxiety, stress and trauma-related disorders affect a sizeable number of people and incur sig-

nificant costs to both the individual patient and to society [11–13]. Disorders such as PTSD,

which have a higher incidence among combat veterans [97, 98], involve a pathological condi-

tion related to a prolonged or heightened activation of the sympathetic nervous system [8, 9].

Symptoms of this elevated sympathetic arousal include irritability, an exaggerated startle

response, hypervigilance and sleeping difficulties [99]. Patients diagnosed with anxiety disor-

ders also have elevated sympathetic tones [7]. Current healthcare systems largely function in a

location-centric manner, i.e., patients come to centralized locations to receive care once they

are ill. Remote health monitoring reflects a gradual transition away from this model with an

increased focus on the individual patient. In this model, wearable devices help keep track of a

patient’s condition and provide clinical decision support, thus helping reduce healthcare costs.

Our state-space algorithm, which continually tracks the level of sympathetic arousal over time,

could be embedded in a wearable device and used to remotely monitor patients diagnosed

with pathological fear or anxiety disorders. It could also be used to monitor patients with

major depression, which is typically associated with abnormally low levels of arousal [100].

Furthermore, our approach has the advantage of being unsupervised and therefore does not

require expert-labeled data for each individual patient.

Changes occur in the human body over time (e.g. due to aging, disease onset, changes in

social situations). As such, models trained on data need to be updated continually. Our current

state-space method functions offline due to a need to perform both forward filtering and back-

ward smoothing, and the estimated model parameters are fixed within that particular duration

of time. One possibility for adapting to the inherent stochasticity of the human body would be

to re-train the models from time to time. In a real-world application, we could just run the for-

ward filter of the E-step for providing a continual estimate of a person’s arousal level. The full

EM procedure could be run in the background from time to time so that the model updates

periodically. This periodic re-training would allow the model to account for intra-subject vari-

ability. Another possibility would be to combine the current Bayesian filtering approach with

reinforcement learning in order to allow the model parameters to update over time. As it

stands, the model is able to account for inter-subject variability since it is trained for each indi-

vidual separately, but can only account for variations in time through regular re-training.

Conclusion

Pavlovian fear conditioning has been the focus of much study over the course of the past sev-

eral decades. A better understanding of the neural basis of fear conditioning and associated

physiological changes has the potential to provide important insights into emotional disorders

involving pathological fear and anxiety. A method to estimate the level of sympathetic arousal/

activation, which plays a crucial role in the fear response, could also be beneficial in treating

patients diagnosed with these disorders. We present an EM-based state-space model that uti-

lizes skin conductance and heart rate features to do so, and evaluate it on both simulated and

experimental data. Results on simulated data show the ability to accurately recover an unob-

served state variable xk from a binary variable, two continuous variables and a spiking-type

variable. As a mathematical modeling contribution, this is an extension to [43] which esti-

mated a cognitive learning state from one binary variable, one continuous variable and a spik-

ing-type variable. Experimental evaluation of our model was performed on a fear conditioning
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experiment. Trial-averaged skin conductance values are frequently compared in fear condi-

tioning experiments. Our algorithm’s state estimates show a general agreement with the aver-

aged skin conductance values between different trial conditions. However, there is less

separation between the CS+US- and CS- trials. This may be due to trace fear conditioning elic-

iting weaker responses compared to typical delay fear conditioning [17] or an insufficient US

strength. Thus, the model suggests a preliminary line of evidence for estimating sympathetic

arousal from binary, continuous and spiking-type observations taken from both the skin and

the heart (organs which are innervated by sympathetic nerve fibers) using state-space methods.

The state-space formulation presented here relates an internal brain state to observed physio-

logical phenomena. As such it could find applications in wearable healthcare for remotely

monitoring patients diagnosed with certain types of neuropsychiatric disorders or in general

wellness applications such as stress management [101].
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