CELL TECHNOLOGIES IN BIOLOGY AND MEDICINE

Proteomic Profiling of HL-60 Cells during ATRA-Induced Differentiation

I. V. Vakhrushev, S. E. Novikova, A. V. Tsvetkova, P. A. Karalkin, M. A. Pyatnitskii, V. G. Zgoda, and K. N. Yarygin

Translated from *Kletochnye Tekhnologii v Biologii i Meditsine*, No. 2, pp. 71-85, June, 2018 Original article submitted April 3, 2018

Acute promyelocytic leukemia, a form of acute myeloid leukemia, is characterized by cell differentiation arrest at the promyelocyte stage. Current therapeutic options include administration of all trans-retinoic acid (ATRA), but this treatment produces many side effects. ATRA is known to induce differentiation of leukemic cells into granulocytes, but the mechanism of this process is poorly studied. We performed comparative proteomic profiling of HL-60 promyelocytic cells at different stages of ATRA-induced differentiation to identify differentially expressed proteins by high-resolution mass spectrometry and relative quantitative analysis without isotope labels. A total of 1162 proteins identified by at least two unique peptides were analyzed, among them 46 and 172 differentially expressed proteins were identified in the nuclear and cytosol fractions, respectively. These differentially expressed proteins can represent candidate targets for combination therapy of acute promyelocytic leukemia.

Key Words: acute promyelocytic leukemia; trans-retinoic acid; targeted therapy

At the time of the first description of the nosological entity in 1950s, acute promyelocytic leukemia (OPL) was characterized by high mortality rate, primary due to hemorrhagic complications. The median survival was less than 1 week. The disease poorly responded to treatment: the first available therapy with 6-mercaptopurine led to remission in only 5-14% patients; introduction of anthracyclines (including daunorubicin) made it possible to increase the probability of remission to 58% [4]. Discovery of differentiation-inducing effect of all trans-retinoic acid (ATRA) on leukemic cells and introduction of differentiating therapy into clinical practice made a revolution in the treatment of OPL and led to an increase in 5-year complete remission rate to 85% [23]. The main complications of ATRA monotherapy is the development of drug resistance and the risk of severe side effect, so-called differentiation syndrome or retinoic acid syndrome. In some cases, a good clinical result can be achieved due to combination of ATRA with other drugs, such as arsenic trioxide and idarubicin [8,10]. This combination therapy allows reducing the dose of ATRA and, consequently, the risk of complications and side effects associated with differential therapy. Thus, the search for new ATRA agonists is an urgent problem of modern oncology.

The search for new potential targets of tumor therapy is a laborious process and screening of potential regulators of biological processes such as differentiation and proliferation is a very important step in this process. Proteomic approaches, primarily mass spectrometry, are a suitable tool in detection of molecules involved in the realization of cell fate and having therapeutic potential [1,3,26]. Regulatory molecules,

V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia. *Address for correspondence:* vakhrunya@gmail.com. I. V. Vakhrushev.

such as cell receptors (*e.g.* c-kit [12]) and molecules of signal pathways, *e.g.* mammalian target of rapamycin (mTOR)-mediated autophagy pathway, are generally considered among potential targets [11]. Many differentiation-related molecules, including transcription factors acting as biological signaling end-points, are located in the cell nucleus. In light of this, it seems interesting to study the dynamics of nucleus proteome of OPL cells in response to treatment with differentiation inducer ATRA.

Our aim was to identify nuclear proteins, whose content changes during ATRA-induced granulocyte differentiation of HL-60 cells, and that can serve as potential targets of combined therapy of promyelocytic leukemia. HL-60 promyelocytic leukemia cell line was chosen as the model because these cells differentiate into mature granulocytes under the action of ATRA [12,18].

MATERIALS AND METHODS

Cell cultures. Cell culture line HL-60 were obtained from the Cryobank of the V. N. Orekhovich Research Institute of Biomedical Chemistry. After defrosting, the cells were cultured in RPMI-1640 growth medium with 10% fetal calf serum, 100 U/ml penicillin, 100 U/ ml streptomycin, and 2 mM L-glutamine (all reagents were from Gibco) in a CO₂ incubator under standard conditions (37°C, 5% CO₂, 80% humidity). After attaining cell concentration of 10⁶ cells/ml culture, the cells were subcultured at a ratio of 1:3. The cells were counted in a Goryaev's chamber.

MTT test. The sensitivity of HL-60 cells to ATRA was evaluated by the effect of the agent on their proliferative activity. After centrifugation, the cells were resuspended in growth medium to a concentration of 10^{6} /ml and transferred to wells of 24-well flat-bottom plate (1 ml per well). In 2 h after cell seeding into the wells, 1 ml growth medium containing ATRA (Sigma) in concentrations of 200, 180, 160, 140, 120, 110, 100, 80, 60, 40, 20, and 2 μ M was added so that the final concentration of ATRA was 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, or 1 μ M. In the control group, 1 ml growth medium was added.

The cells were incubated under standard conditions for 96 h, then, 200 μ l of aqueous solution of MTT (Sigma) in a concentration of 5 mg/ml (final concentration 0.5 mg/ml) was added to each well and the plates were placed in the incubator for 3 h. After incubation, the content of the wells was carefully collected, transferred into Eppendorf test tubes, and centrifuged in a table centrifuge. Then, the supernatant was gently removed from the tubes, 100 μ l DMSO (PanEco) was added, and the tubes were vortexed until the precipitate was fully dissolved. Optical density 531

of the resultant solution was measured on an Infinite 200 PRO plate reader (Tecan) at λ =550 nm (reference measurements were made at λ =690 nm). Proliferative activity of cells was calculated by the formula D2/D1×100%, where D1 and D2 are optical densities corresponding to cell number before and after incubation with ATRA, respectively.

Flow cytofluorometry. Expression of surface markers on cells was analyzed by flow cytofluorometry. To this end, the cells were precipitated by centrifugation and resuspended in 1 ml PBS with 1% fetal calf serum (Gibco) and 0.1% NaN₂ (Sigma) to cell concentration of 106/ml; the washout procedure was repeated three times. Finally, the cells resuspended in 0.1 ml of the same solution were incubated at 4°C for 60 min with 10 µl monoclonal antibodies directly labeled with phycoerythrin (Becton Dickinson); phycoerythrin-labeled isotypic antibodies (Becton Dickinson) served as the negative control. After precipitation and washing, the cells were resuspended in 0.25 ml of the above buffer and fixed in 0.25 ml 4% paraformaldehyde over 4 min at room temperature. Then, the cell suspension was brought to 1 ml with buffer and filtered to remove cell aggregates (30 μ -pore filter).

Analysis was performed on FACSAria III cytofluorometer sorter (Becton Dickinson). The instrument was operated and the primary data were analyzed using FACSDiva software.

Marker expression was evaluated by the fluorescence intensity histogram of the label conjugated with specific monoclonal antibodies. Ten thousand events were recorded at minimum cell suspension flow rate. To exclude noise and objects less than cells, the registration threshold for direct light scattering was set at 20,000.

Further analysis of experimental data was performed using FlowJo software. To compare fluorescence intensity of the test sample and isotypical control, the results of experimental sample and control were superimposed in the histogram mode.

Preparation of samples for proteomic analysis. HL-60 cells in the growth medium were placed in 75-cm² culture flasks (cell concentration 10⁶/ml, 10 ml medium), and 5 ml growth medium containing ATRA in a concentration of 150 μ M (final concentration 50 μ M) was added, and the flasks were incubated in a CO₂ incubator under standard conditions for 3, 24, or 96 h. After incubation, the cells were washed three times by centrifugation/resuspension in 10 ml PBS and the tubes with cell pellet were frozen in liquid nitrogen. The cells cultured without ATRA were used as the control corresponding to time point 0.

Lysis of cells and isolation of nuclear fraction. Nuclear fraction proteins were isolated by chemical extraction [16]. Tubes with HL-60 cell pellet were thawed, 300 µl cold lysing buffer containing 10 mM HEPES-NaOH (pH 7.9), 1.5 mM MgCl,, 10 mM KCl, 0.5% NP-40, 0.1 mM EDTA, and complete protease inhibitor cocktail (Roche) was added, the tubes were incubated for 15 min on ice and centrifuged for 10 min (6000 rpm) at 4°C. The supernatant containing the cytosolic fraction was collected and stored for further analysis. The obtained pellet containing nuclei was washed twice with lysing buffer without NP-40. For isolation of nuclear fraction, extraction buffer containing 20 mM HEPES-NaOH (pH 7.9), 25% glycerol, 1.5 mM MgCl,, 420 mM NaCl, 0.1 mM EDTA, and protease inhibitor cocktail (Roche) was added, the tubes were incubated for 30 min on ice and centrifuged for 10 min (6000 rpm). The supernatant containing the nuclear fraction was collected and stored for further analysis.

Total protein concentration in samples of each fraction was measured by the colorimetric method with bicinchonic acid (BCA) using commercial Pierce BCA Protein Assay Kit (Pierce) according to manufacturer's recommendations.

Preparation of cytosolic and nuclear fraction proteins for mass spectrometric analysis. Hydrolysis of proteins was carried out according to FASP Protocol (Filter-Aided Sample Preparation) [24]. Protein mixture aliquots (100 μ g) were placed in YM-10 Microcon device concentrating filters (Millipore). The samples were washed by adding 200 µl buffer containing 8 M urea with addition of 100 mM tris HCl (pH 8.5) followed by centrifugation at 11,000g for 15 min at 20°C. The washing procedure was repeated 3 times. The samples were then alkylated. To this end, the material was placed in concentrating filters, 100 µl alkylating solution containing 50 mM iodacetamide was added, the mixture was incubated for 30 min at 25°C with shaking (600 rpm), and then precipitated for 15 min at 20°C. After alkylation, the samples were washed twice with 200 µl buffer followed by centrifugation at 11,000g for 40 min at 20°C. To samples in concentrating filters, 40 µl buffer for trypsinolysis containing 100 mM solution of tetraethylammonium bicarbonate (pH 8.5); then, trypsin solution was added to each sample (total weight of the enzyme/total mass protein weight 1:100 and incubated fovernight at 37°C.

After incubation with the enzyme, peptide samples were centrifuged at 11,000g and 20°C for 15 min and the filtrate was collected. The filters were then washed with 30% formic acid by centrifugation at 11,000g and 20°C for 15 min and the filtrates were also collected. The peptide mixtures obtained for the cytosol and nuclear fractions was lyophilized on a rotary concentrator and dissolved in 100 μ l 0.1% formic acid. The resultant samples were analyzed by mass spectrometry.

Liquid chromatography mass spectrometry. Liquid chromatography mass spectrometry was performed for each experimental time point in 5 technical repeats. The peptide mixture was applied on concentrating Zorbax 300SB-C18 column (5 mm×0.3 mm; particle diameter 5 µ; Agilent Technologies) and mobile phase C for concentration column loading and washout (5% acetonitrile in 0.1 % formic acid and 0.05% trifluoroacetic acid) was supplied at a flow rate of 3 μ l/min over 5 min. The peptides were separated on a Zorbax 300SB-C18 analytical column (3.5 μ , 150 mm \times 75 µ; Agilent Technologies) using mobile phase B gradient (80% acetonitrile in 0.1% formic acid) at a flow rate of 0.3 µl/min. The following parameters of acetonitrile gradient were used: the analytical column was washed with mobile 5% phase B for 5 min, after which the concentration of mobile phase B was linearly increased to 60% over 80 min and to 100% over the next 5 min; then, the analytical column was washed with 100% mobile phase B for 10 min, after which the concentration of mobile phase B was reduced to 5% over 5 min, and during the next 15 min, the analytical column was equilibrated with 5% mobile phase B.

Mass spectrometry was performed on an Orbitrap Velos hybrid mass spectrometer (Thermo Fisher Scientific) with orbitrap mass analyzer. The maximum time of accumulation of 106 ions for MC-scanning with resolution of 30,000 (for m/z=400) in the m/z range of 300-2000 in the positive ionization mode was 50 msec. Five most intense ions recorded in the MS-scan were selected for further fragmentation, if their absolute intensity exceeded 5000 rel. units. HCD fragmentation mode with normalized collision energy of 35% was used. Dynamic exclusion from tandem analysis was applied: the duration of exclusion was 90 sec after the ion was fragmented at least once and MS/ MS-spectrum was acquired over 30 sec. The list of exclusion consisted of 500 ions. The maximum time of accumulation of 5×10⁴ ions for MS/MS-scan acquisition with resolution of 7500 (for m/z=400) in the m/zrange of 300-2000 in the positive ionization mode was 100 msec.

The recorded mass spectrometric data were processed using MaxQuant 1.5.5.0 (Max Planck Institute of Biochemistry).

Protein identification and relative quantitative analysis based on the area under the peak of the parent precursor ion. The proteins were identified using MaxQuant 1.5.5.0 software with Andromeda algorithm, FASTA file containing amino acid sequences of human proteins (29-03-2016), and FASTA file with inverted sequences to calculate the frequency of false positive identification (FDR). Carbamidomethylation of cysteine and oxidation of methionine were used as fixed and variable modifications, respectively. The tolerance for parent and daughter ions was 20 ppm. For proteins and peptides, the threshold FDR was set at 0.01.

The quantitative analysis was carried out on the basis of area under the peak of the parent ion with calculation of LFQ (label-free quantification intensity) using built-in MaxQuant algorithm [5]. Statistical analysis was performed using Perseus 1.6.0.7 software (Max Planck Institute of Biochemistry). Mass spectrometry data for all experimental points (0, 3, 24, and 96 h) were compared. In addition, the data obtained at the experimental points 3, 24, and 96 h were pairwise compared with the control point 0 h. Heat maps reflecting changes in the expression of genes of proteins differentially expressed throughout the differentiation period were constructed.

The functional annotation was performed using GeneOntology Biological Process module and geneXplain platform software. Functional annotation groups containing at least 20 proteins (p<0.005) for the cytosol fraction and 7 proteins (p<0.005) for the nuclear fraction were considered.

RESULTS

Effect of ATRA on cell proliferation. The effect of ATRA on proliferation of HL-60 cells was assessed using MTT test based on the ability of mitochondrial dehydrogenases in live, but not dead cells to convert water-soluble yellow MTT into insoluble purple-blue intracellular crystals of MTT-formazan. As optical density (D) at 540-570 nm of formazan dissolved in DMSO is proportional to the number of viable cells (n), MTT-test can be used to assess viability and proliferation of cell cultures in situ [7].

First, we studied the effect of ATRA on proliferative activity of HL-60 cells (Fig. 1). It was found that the presence of low concentrations of ATRA (1-30 mM) in the medium did not affect cell proliferation. After increasing ATRA concentration above 30 μ M, the number of viable cells decreased and reached minimum at ATRA concentration of 70 µM. ATRA in concentrations of 70 µM produced a pronounced cytotoxic effect; no viable cells were found in these cases. It is known that HL-60 cells lose proliferation capacity after differentiation into granulocytes. Thus, our primary task was to determine the concentration of ATRA that inhibited cell proliferation, but did not produce pronounced cytotoxic effect. Our findings suggest that ATRA in our experimental model was most effective in a concentration of 50 µM, because the number of viable cells in this case remained almost unchanged over 96 h of the experiment.

Changes in the expression of CD11b and CD14 in HL-60 cells under the influence of ATRA. To confirm that ATRA in a concentration of 50 μ M

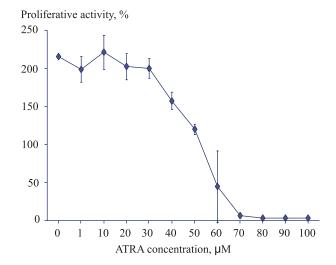
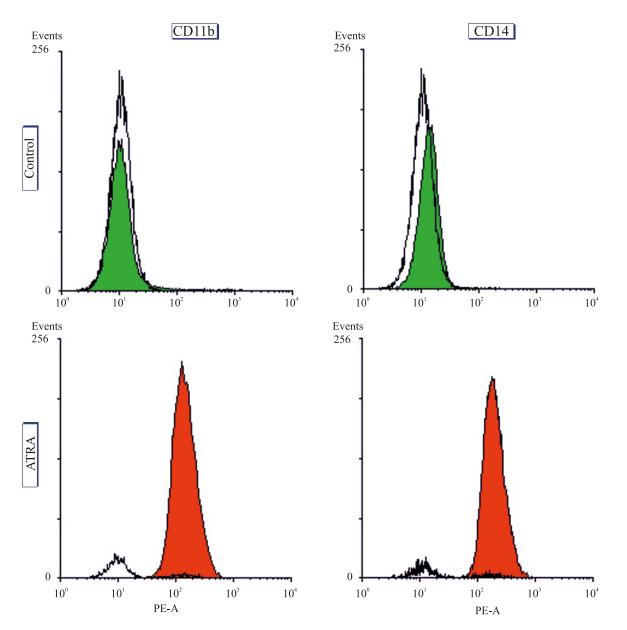


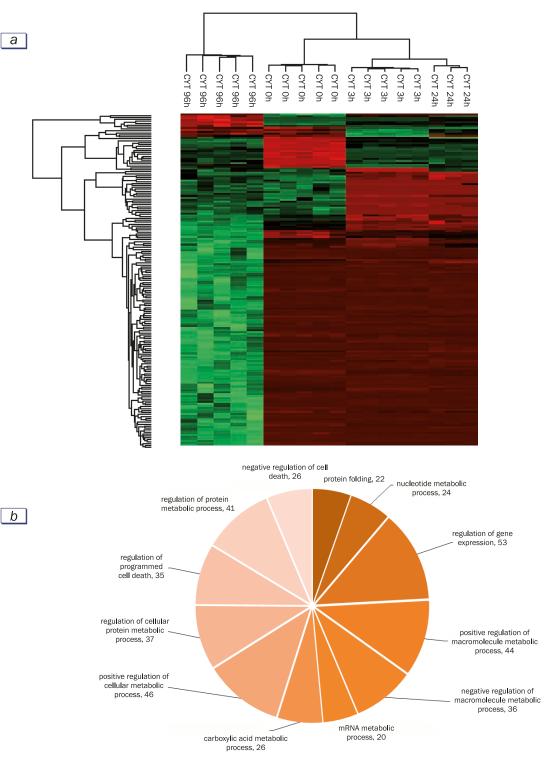
Fig. 1. Effect of different ATRA concentrations on proliferation of HL-60 cells.

does induce differentiation of HL-60 cells, we studied changes in the expression of CD11b and CD14 marker molecules on their surface under the influence of ATRA (Fig. 2). Simultaneous expression of CD11b (complement receptor 3) and CD14 (a component of the receptor complex CD14/TLR4/MD2 recognizing LPS) is a characteristic feature of mature granulocytes. Unlike native cells, cells cultured in a medium with 50 µM ATRA demonstrated high expression of these markers, which indicated their differentiation towards granulocytes [17].

Changes in proteome of HL-60 cells during ATRA-induced differentiation. In the proteomic analysis of HL-60 cells at different stages of granulocytic differentiation, nuclear proteins are particular interest, because this particular compartment functions as a regulatory center of eukaryotic cells. Nuclear proteins include proteins of the nuclear matrix, transport system of the nucleus, and transcription factors. The latter are molecules involved in the regulation of gene expression. They can play a role in the formation of various pathologies, including tumors [22]. In the context of promyelocytic leukemia, the role of nuclear proteins as the key regulators of cell fate suggests that studies of nuclear proteome is a promising field for the search of potential targets for new drugs [25].

We performed comparative liquid chromatography mass spectrometry of nuclear and cytosolic fractions of HL-60 cells at different stages of their ATRA-induced differentiation (0, 3, 24, and 96 h from the start of the experiment). A total of 1162 proteins (at least by two peptides) were identified. The analysis of mass spectrometry data revealed 172 differentially expressed proteins in the cytosolic fraction (FDR<10⁻⁶) and 46 proteins FDR<10⁻⁶) in the nuclear fraction (comparison in all time points). Heat maps reflecting




Fig. 2. Changes in the expression of CD11b and CD14 in HL-60 cells after 96-h culturing in the presence of 50 µM ATRA. Abscissa: fluorescence intensity reflecting the expression of surface marker; ordinate: number of events (cells). Isotypical control is shown by black line.

changes in the gene expression are presented in Figures 3 and 4.

Differentially expressed proteins of nuclear fraction. In the analysis of protein expression in nuclear fractions two main clusters can be isolated in all time points: by 96 h of cell differentiation, expression of 31 proteins increased under the action of ATRA and expression of 5 proteins decreased (Table 1).

Among the proteins whose content increased, special attention deserved SRSF1 (serine/arginine-rich splicing factor 1), SARS protein (serine tRNA-ligase) that interacts with VEGFA promoter in the nucleus preventing its binding to the proto-oncogene c-ICC [14], protein CLIC1 (chloride intracellular channel protein 1) involved in the regulation of the cell cycle [21], and ALOX5AP protein involved in the synthesis of leukotrienes [6]. According to the Uniprot database annotation, these proteins are located in the nucleus or its membrane.

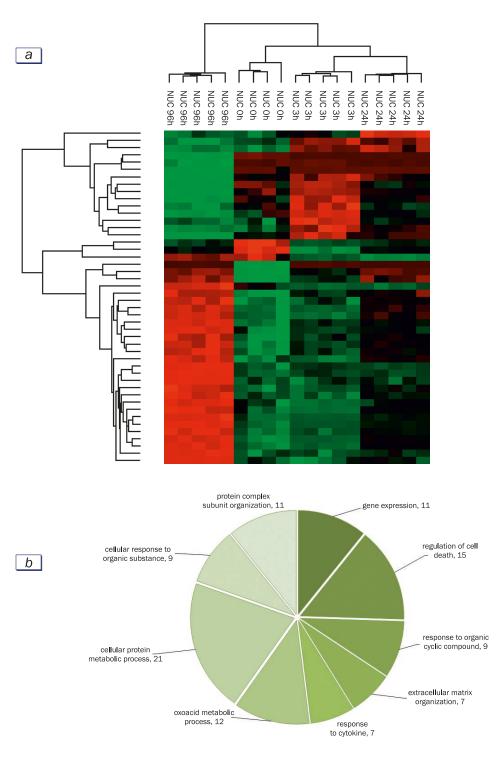

Among proteins whose content, on the contrary, decreased, protymosin alpha (PTMA) involved in the functioning of the immune system, SND1 protein (Staphylococcal nuclease domain-containing protein 1), a phase transcription factor that regulates STAT6, MYB, and EBNA2 [19], and DNA- and RNA-binding protein NONO (Non-POU domain-containing octamer-binding protein) capable of regulating transcription [15] are worthy of note. According to the

Fig. 3. Differentially expressed proteins of cytosolic fraction: 172 proteins (FC>3, multiple-sample tests ANOVA, FDR=0.0002) (*a*), functional classification of differentially expressed proteins of cytosol fraction according to GeneOntology database (Biological processes, minimal hits per group=20, *p*=0.005) (*b*).

Uniprot database, these proteins are located in the nucleus.

Proteins whose content uniquely varies at different stages of differentiation (Fig. 5). The results of pairwise comparison of the data of mass spectrometric analysis of samples obtained at each time point with the control are presented in Table 2. In 3 h after the addition of ATRA, the content of 16 proteins in the nuclear fraction, including regulators of alternative splicing, DNA repair and apoptosis, changed by more

Fig. 4. Differentially expressed proteins of the nuclear fraction: 46 proteins (FC>3, multiple-sample tests ANOVA, FDR=0.0002) (*a*), functional classification of differentially expressed proteins of the nuclear fraction according to GeneOntology database (Biological processes, minimal hits per group=20, p=0.005) (*b*).

than 3 times in comparison with the control. According to the Uniprot 13 database annotation, these proteins were located in the nucleus. Of particular interest is protein UBE2V1 (CROC1) mediating activation of C-Fos proto-oncogene transcription [13]. It is involved in DNA reparation and affects cell cycle and differentiation. This protein is also involved in activation of NF- κ B mediated by IL-1 β , TNF, TRAF6, and TRAF2.

In 24 h after the start of differentiation, 9 unique differentially expressed proteins were revealed in the nucleus, including nucleotide exchange factor (BAG2), deubiquitinylation regulator (SHMT2), and

TABLE 1. Nuclear Fraction Proteins whose Content Differed from the Control at All Time Points of ATRA-Induced Differentiation of HL-60 Cells

Protein	AN Uniprot	Gene	ANOVA p-valu
ncrease in protein content by 96 h		1	1
Staphylococcal nuclease domain-containing protein 1	Q7KZF4	SND1	1.21×10 ⁻⁸
Heat shock protein HSP 90-beta	P08238	HSP90AB1	1.27×10 ⁻⁸
Prothymosin alpha	P06454	PTMA	2.56×10 ⁻⁹
60S ribosomal protein L3	P39023	RPL3	1.10×10 ⁻¹³
Eukaryotic translation initiation factor 3 subunit I	Q13347	EIF3I	3.29×10 ⁻⁹
Eukaryotic translation initiation factor 4 gamma 1	Q04637	EIF4G1	2.59×10 ⁻¹⁰
Non-POU domain-containing octamer-binding protein	Q15233	NONO	5.27×10 ⁻⁹
S-adenosylmethionine synthase isoform type-2	P31153	MAT2A	2.82×10 ⁻⁸
Elongation factor 2	P13639	EEF2	6.04×10 ⁻¹⁰
Multifunctional protein ADE2	P22234	PAICS	6.39×10 ⁻⁹
L-lactate dehydrogenase A chain	P00338	LDHA	2.29×10 ⁻⁸
Polypyrimidine tract-binding protein 1	P26599	PTBP1	4.10×10 ⁻⁹
Glyceraldehyde-3-phosphate dehydrogenase	P04406	GAPDH	1.04×10 ⁻⁸
Elongation factor 1-beta	P24534	EEF1B2	3.92×10 ⁻⁸
Deoxyuridine 5-triphosphate nucleotidohydrolase, mitochondrial	P33316	DUT	5.66×10 ⁻⁹
ecrease in protein content by 96 h	1	_	1
40S ribosomal protein S8	P62241	RPS8	1.39×10-9
Serine/arginine-rich splicing factor 1	Q07955	SRSF1	3.21×10 ⁻¹²
Histone H4	P62805	HIST1H4A	2.22×10 ⁻⁸
Serine — tRNA ligase, cytoplasmic	P49591	SARS	9.42×10 ⁻¹³
Moesin	P26038	MSN	6.50×10 ⁻¹¹
Tyrosine — tRNA ligase	P54577	YARS	8.70×10 ⁻¹⁰
Glutamate dehydrogenase 1	P00367	GLUD1	9.19×10 ⁻¹⁰
Endoplasmin	P14625	HSP90B1	4.68×10 ⁻⁹
Cofilin-1	P23528	CFL1	6.93×10 ⁻⁹
Peptidyl-prolyl cis-trans isomerase B	P23284	PPIB	9.29×10 ⁻¹⁰
Galectin-1	P09382	LGALS1	3.47×10 ⁻¹⁰
Protein disulfide-isomerase	P07237	P4HB	6.63×10 ⁻¹⁰
Annexin A1	P04083	ANXA1	1.94×10 ⁻⁹
Protein disulfide-isomerase A4	P13667	PDIA4	2.13×10 ⁻⁸
Plastin-2	P13796	LCP1	8.18×10 ⁻¹⁰
Chloride intracellular channel protein 1	O00299	CLIC1	1.26×10 ⁻⁸
Coactosin-like protein	Q14019	COTL1	7.51×10 ⁻¹¹
Malate dehydrogenase, mitochondrial	P40926	MDH2	5.64×10 ⁻¹³
NAD-dependent malic enzyme, mitochondrial	P23368	ME2	2.16×10 ⁻¹⁴
Intercellular adhesion molecule 1	P05362	ICAM1	4.50×10 ⁻¹⁰
Synaptic vesicle membrane protein VAT-1 homolog	Q99536	VAT1	4.50×10 ⁻⁹
Phosphoserine aminotransferase	Q9Y617	PSAT1	2.98×10 ⁻¹¹
10 kDa heat shock protein, mitochondrial	P61604	HSPE1	2.39×10 ⁻⁹
Annexin A6	P08133	ANXA6	4.42×10 ⁻¹¹
6-phosphogluconate dehydrogenase, decarboxylating	P52209	PGD	2.08×10 ⁻¹²
78 kDa glucose-regulated protein	P11021	HSPA5	1.33×10 ⁻¹⁴
Annexin A5	P08758	ANXA5	2.25×10 ⁻¹²
Protein disulfide-isomerase A3	P30101	PDIA3	4.15×10 ⁻¹⁴
Cathepsin D	P07339	CTSD	2.67×10 ⁻¹⁴
Metalloproteinase inhibitor 1	P01033	TIMP1	5.75×10 ⁻¹⁰
Arachidonate 5-lipoxygenase-activating protein	P20292	ALOX5AP	8.32×10-9

TABLE 2. Nuclear Fraction Proteins Whose Content Significantly Differed from the Control Only in One Time Point: 3, 24,
or 96 h (Proteins Identified by at Least Two Proteotypic Peptides) (p<0.01)

Protein	AN Uniprot	Gene	FC	Intracellular localization, Uniprot database annotation
3 h vs. 0 h	· ·			
Probable 28S rRNA (cytosine(4447)-C(5))- methyltransferase	P46087	NOP2	0.2	Nucleus
40S ribosomal protein S10	P46783	RPS10	0.3	Nucleus
Eukaryotic translation initiation factor 3 subunit E	P60228	EIF3E	3.3	Nucleus (PML bodies), cytoplasm
Acylamino-acid-releasing enzyme	P13798	APEH	3.3	Cytoplasm
Methylosome subunit pICIn	P54105	CLNS1A	3.9	Nucleus (PML bodies)
N-alpha-acetyltransferase 50	Q9GZZ1	NAA50	3.9	Nucleus
Small nuclear ribonucleoprotein G;	P62308	SNRPG	4.0	Nucleus, cytoplasm
Ubiquitin-conjugating enzyme E2 variant 1	Q13404	UBE2V1	4.4	Nucleus
Protein arginine N-methyltransferase 1	Q99873	PRMT1	5.3	Nucleus, cytoplasm
Myeloblastin	P24158	PRTN3	5.7	Secretory protein
Proteasome subunit beta type-1	P20618	PSMB1	7.3	Nucleus, cytoplasm
Heterogeneous nuclear ribonucleoprotein K	P61978	HNRNPK	7.3	Nucleus, nucleoplasm
Eukaryotic translation initiation factor 3 subunit B	P55884	EIF3B	7.8	Cytoplasm
Superoxide dismutase [Cu-Zn]	P00441	SOD1	8.7	Nucleus, mitochondria, cytoplasm
RNA-binding protein 8A	Q9Y5S9	RBM8A	10.7	Nucleus
Translin	Q15631	TSN	13.7	Nucleus, cytoplasm
24 h vs. 0 h	1 1			
BAG family molecular chaperone regulator 2	O95816	BAG2	0.5	Cytoplasm
Serine hydroxymethyltransferase	P34897	SHMT2	2.2	Nucleus, mitochondria, cytoplasm
Cytosolic non-specific dipeptidase	Q96KP4	CNDP2	2.2	Cytoplasm
GTP-binding protein SAR1a	Q9NR31	SAR1A	2.6	Endoplasmic reticulum, Golgi complex
Eukaryotic translation initiation factor 3 subunit H	015372	EIF3H	3.4	Cytoplasm
Farnesyl pyrophosphate synthase	P14324	FDPS	3.5	Cytoplasm
Eukaryotic translation initiation factor 1	P41567	EIF1	3.5	Nucleus, cytoplasm
Lymphocyte cytosolic protein 2	Q13094	LCP2	4.6	Cytoplasm
UTP — glucose-1-phosphate uridylyltrans- ferase	Q16851	UGP2	5.2	Cytoplasm
96 h vs. 0 h				
60S ribosomal protein L11	P62913	RPL11	0.04	Nucleus
DNA replication licensing factor MCM3	P25205	МСМ3	0.05	Nucleus
DNA replication licensing factor MCM4	P33991	MCM4	0.07	Nucleus
DNA replication licensing factor MCM7	P33993	MCM7	0.07	Nucleus
DNA replication licensing factor MCM5	P33992	MCM5	0.08	Nucleus, cytosol
ATP-dependent RNA helicase DDX18	Q9NVP1	DDX18	0.09	Nucleus, chromosomes
DNA replication licensing factor MCM6	Q14566	МСМ6	0.09	Nucleus

TABLE 2.

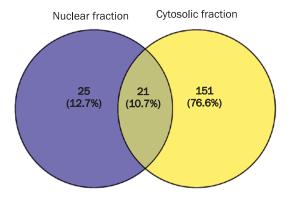

	· · · · · · · · · · · · · · · · · · ·		· · · · · ·	
Protein	AN Uniprot	Gene	FC	Intracellular localization, Uniprot database annotation
60S ribosomal protein L10	P27635	RPL10	0.10	Nucleus, cytosol, endoplasmic reticulum
60S acidic ribosomal protein P1	P05386	RPLP1	0.10	Cytosol, exosomes
RNA-binding protein FUS	P35637	FUS	0.10	Nucleus
Nucleolar and coiled-body phosphoprotein 1	Q14978	NOLC1	0.10	Nucleus
14-3-3 protein eta	Q04917	YWHAH	0.10	Cytosol, exosomes, mitochondria plasma membrane
Peroxisomal multifunctional enzyme type 2	P51659	HSD17B4	0.11	Peroxisomes
Cytochrome c	P99999	CYCS	0.11	Mitochondria
Nucleolar RNA helicase 2	Q9NR30	DDX21	0.12	Nucleus
DNA replication licensing factor MCM2	P49736	MCM2	0.13	Nucleus
Eukaryotic translation initiation factor 3 subunit I	Q13347	EIF3I	0.14	Cytoplasm
Hsc70-interacting protein	P50502	ST13	0.14	Cytoplasm
FACT complex subunit SSRP1	Q08945	SSRP1	0.14	Nucleus, chromosomes
DAZ-associated protein 1	Q96EP5	DAZAP1	0.14	Nucleus
Splicing factor 3A subunit 3	Q12874	SF3A3	0.15	Nucleus (nuclear speckles)
Splicing factor, proline- and glutamine-rich	P23246	SFPQ	0.16	Nucleus, nuclear matrix
60S ribosomal protein L14	P50914	RPL14	0.17	Cytosol, exosomes, plasma membrane
40S ribosomal protein S28	P62857	RPS28	0.17	Cytosol
40S ribosomal protein S27	P42677	RPS27	0.17	Nucleus, cytosol
60S ribosomal protein L19	P84098	RPL19	0.17	Cytosol
Serine/threonine-protein kinase VRK1	Q99986	VRK1	0.18	Nucleus
DNA-dependent protein kinase catalytic subunit	P78527	PRKDC	0.19	Nucleus
Poly [ADP-ribose] polymerase 1	P09874	PARP1	0.19	Nucleus
40S ribosomal protein S17	P08708	RPS17	0.20	Cytosol, extracellular matrix, nucleoplasm
DNA topoisomerase 2-beta	Q02880	TOP2B	0.20	Nucleus
Unconventional myosin-Ig	B0I1T2	MYO1G	0.20	Plasma membrane
Nucleolar transcription factor 1	P17480	UBTF	0.21	Nucleus
Transformer-2 protein homolog beta	P62995	TRA2B	0.21	Nucleus
Heterogeneous nuclear ribonucleoprotein L	P14866	HNRNPL	0.21	Nucleus
RNA-binding protein EWS	Q01844	EWSR1	0.21	Nucleus, cytoplasm, plasma membrane
Beta-adrenergic receptor kinase 1	P25098	ADRBK1	0.22	Cytoplasm, plasma membrane
Eukaryotic translation initiation factor 4B	P23588	EIF4B	0.22	Cytosol
Paraspeckle component 1	Q8WXF1	PSPC1	0.22	Nucleus
Receptor of activated protein C kinase 1	P63244	GNB2L1	0.22	Nucleus, cytoplasm, plasma membrane
Septin-6	Q14141	SEPT6	0.23	Cytoplasm
Mitotic checkpoint protein BUB3	O43684	BUB3	0.24	Nucleus

TABLE 2.

				IADLE	
Protein	AN Uniprot	Gene	FC	Intracellular localization, Uniprot database annotation	
Trifunctional purine biosynthetic protein adenosine-3	P22102	GART	0.25	Cytosol, exosomes	
Endothelial differentiation-related factor 1	O60869	EDF1	0.25	Nucleus	
Eukaryotic translation initiation factor 2 subunit 2	P20042	EIF2S2	0.25	Cytoplasm	
General transcription factor II-I	P78347	GTF2I	0.25	Nucleus	
UPF0568 protein C14orf166	Q9Y224	C14orf166	0.26	Nucleus, cytoplasm	
RNA-binding motif protein, X chromosome	P38159	RBMX	0.26	Nucleus	
Replication protein A 70 kDa DNA-binding subunit	P27694	RPA1	0.27	Nucleus	
Spectrin beta chain, non-erythrocytic 1	Q01082	SPTBN1	0.28	Cytoskeleton	
Nucleoplasmin-3	075607	NPM3	0.29	Nucleus	
40S ribosomal protein S3	P23396	RPS3	0.29	Nucleus, cytoplasm, mitochondri	
Eukaryotic translation initiation factor 4 gamma 1	Q04637	EIF4G1	0.29	Nucleus, cytoplasm	
Heterogeneous nuclear ribonucleoprotein A1	P09651	HNRNPA1	0.29	Nucleus, cytoplasm	
116 kDa U5 small nuclear ribonucleoprotein component	Q15029	EFTUD2	0.29	Nucleus	
40S ribosomal protein S12	P25398	RPS12	0.29	Cytoplasm	
Polyadenylate-binding protein 1	P11940	PABPC1	0.31	Nucleus, cytoplasm	
S-adenosylmethionine synthase isoform type-2	P31153	MAT2A	0.31	Cytoplasm	
Structural maintenance of chromosomes flexible hinge domain-containing protein 1	A6NHR9	SMCHD1	0.32	Nucleus	
AspartatetRNA ligase, mitochondrial	Q6PI48	DARS2	0.32	Mitochondria	
Pre-mRNA-processing-splicing factor 8	Q6P2Q9	PRPF8	0.33	Nucleus	
40S ribosomal protein S5	P46782	RPS5	0.34	Nucleoplasm, cytoplasm, exosom	
10 kDa heat shock protein, mitochondrial	P61604	HSPE1	3.01	Mitochondria	
Asparagine—tRNA ligase, cytoplasmic	O43776	NARS	3.03	Cytoplasm	
Histone H1.5	P16401	HIST1H1B	3.03	Nucleus	
Transaldolase	P37837	TALDO1	3.05	Cytoplasm	
Peroxiredoxin-5, mitochondrial	P30044	PRDX5	3.07	Mitochondria, peroxisomes	
Malate dehydrogenase, mitochondrial; Malate dehydrogenase	P40926	MDH2	3.16	Mitochondria	
Talin-1	Q9Y490	TLN1	3.16	Cytoplasm	
Intercellular adhesion molecule 1	P05362	ICAM1	3.21	Plasma membrane	
Single-stranded DNA-binding protein, mitochondrial	Q04837	SSBP1	3.38	Mitochondria	
NAD-dependent malic enzyme, mitochondrial	P23368	ME2	3.41	Mitochondria	
Protein FAM49B	Q9NUQ9	FAM49B	3.42	Plasma membrane	
Annexin A11	P50995	ANXA11	3.54	Nucleus, cytoplasm	
Protein canopy homolog 2	Q9Y2B0	CNPY2	3.97	Nucleus, cytoplasm	
Protein canopy homolog 2	Q9Y2B0	CNPY2	3.97	Nucleus, cytoplasm	

TABLE 2.

Protein	AN Uniprot	Gene	FC	Intracellular localization, Uniprot database annotation
ERO1-like protein alpha	Q96HE7	ERO1L	4.05	Endoplasmic reticulum
Protein S100-A9	P06702	S100A9	4.11	Nucleus, cytoplasm, microvillus membrane
Annexin A4; Annexin	P09525	ANXA4	4.11	Nucleus, exosomes
V-type proton ATPase subunit B, brain isoform	P21281	ATP6V1B2	4.47	Endosomes
Hexokinase-1	P19367	HK1	4.56	Mitochondria
Pyruvate kinase PKM	P14618	PKM	4.85	Nucleus (translocation in response to apoptotic stimulus), cytoplasm
Fructose-1,6-bisphosphatase 1	P09467	FBP1	5.24	Mitochondria
F-actin-capping protein subunit alpha-2	P47755	CAPZA2	5.39	Cytoskeleton, cytoplasm, exosomes
Protein-tyrosine-phosphatase; receptor-type tyrosine-protein phosphatase C	P08575	PTPRC	5.45	Plasma membrane
Leukocyte elastase inhibitor	P30740	SERPINB1	5.54	Cytoplasm
Protein-glutamine gamma-glutamyltransfer- ase 2	P21980	TGM2	5.58	Cytoplasm, mitochondria
Cytochrome b-c1 complex subunit 1, mito- chondrial	P31930	UQCRC1	5.62	Mitochondria
Tropomyosin alpha-4 chain	P67936	TPM4	5.64	Cytoskeleton
Proteasome subunit beta type-8	P28062	PSMB8	5.72	Nucleus
Core histone macro-H2A.1	075367	H2AFY	6.01	Nucleus
Nicotinamide phosphoribosyltransferase	P43490	NAMPT	6.05	Nucleus
Pleckstrin	P08567	PLEK	6.10	Cytoplasm
Lactoylglutathione lyase	Q04760	GLO1	6.15	Nucleus, cytoplasm
Prostaglandin E synthase 3	Q15185	PTGES3	6.35	Cytoplasm
Dipeptidyl peptidase 3	Q9NY33	DPP3	6.44	Cytoplasm
Interleukin-8	P10145	CXCL8	6.46	Secretory protein
Protein S100-P	P25815	S100P	6.85	Nucleus, cytoplasm, microvillus membrane
Glutathione S-transferase omega-1	P78417	GSTO1	6.92	Cytoplasm
V-type proton ATPase subunit G 1	075348	ATP6V1G1	7.10	Plasma membrane, exosomes
BTB/POZ domain-containing protein KCTD12	Q96CX2	KCTD12	7.27	Plasma membrane
Glucose-6-phosphate 1-dehydrogenase	P11413	G6PD	8.85	Cytoplasm, exosomes
Protein S100-A8	P05109	S100A8	8.89	Plasma membrane, secretory protein, cytoskeleton
Glutathione reductase, mitochondrial	P00390	GSR	9.09	Mitochondria
Arachidonate 5-lipoxygenase-activating protein	P20292	ALOX5AP	9.29	Mitochondria
Histone H1x	Q92522	H1FX	9.90	Nucleus
Tryptophan—tRNA ligase, cytoplasmic; T1-TrpRS;T2-TrpRS	P23381	WARS	9.90	Cytoplasm
Plasminogen activator inhibitor 2	P05120	SERPINB2	9.99	Secretory protein
C-C motif chemokine 2	P13500	CCL2	10.36	Secretory protein
Metalloproteinase inhibitor 1	P01033	TIMP1	20.12	Secretory protein

Fig. 5. Venn's diagram for differentially expressed proteins of nuclear and cytosolic fractions of HL-60 cells. The diagram shows the number of unique and common proteins for both fractions. The intersection between the fractions of differentially expressed proteins includes 21 proteins

MAPK signal pathway activator (CNDP2). The latter was shown to participate in the development of gastric cancer [27].

In 96 h, 110 proteins were uniquely differentially expressed in the nuclear fraction; 17 of them are involved in the functioning of the immune system: S100P, S100A8, SFPQ, S100A9, PKM1, CAPZA2, SERPINB1, CXCL8, ICAM1, CCL2, ANXA1, PRK-DC, PSMB8, MYO1G, RPS17, PSPC1, and PTPRC (GO annotation, categories Biological process; Uniprot database). Thus, the content of CXCL8, a factor involved in neutrophil activation [20], was elevated by more than 6 times (FC=6.46). Proteins SFPQ and PSPC1 form a heterodimer that is a component of the nuclear paraspeckles [29]. We observed parallel reduction in the content of both components of the heterodimer (FC SFPQ=0.16 and FC PSPC1=0.22). Interestingly, the content of proteins involved in DNA replication and repair (MCM3, MCM4, MCM7, MCM5, DDX18, MCM6, FUS, NOLC1, DDX21, MCM2, SSRP1, PRKDC, PARP1, TOP2B, BUB3, and RPA1) was also reduced by more than 5 times. By the end of differentiation, proteins exhibiting activity of transcription factors were detected in the nuclei: UBTF (FC=0.21), EDF1 (FC=0.25), GTF2I (FC=0.25), RBMX (FC=0.25), and FUS (FC=0.1).

Our results confirm the general hypothesis that ATRA-induced differentiation of HL-60 cells is accompanied by significant changes in the content of various proteins involved in the regulation of gene expression in the nucleoplasm of these cells. The use of high-resolution comparative chromatography-mass spectrometry allowed us to identify some proteins that potentially can modulate development of tumors, including OPL. We referred to protein descriptions in Uniprot database, one of the most relevant protein databases. Deciphering of the mechanisms of action of the detected functionally active protein molecules as well as profound study of proteins, whose functions are currently unknown were beyond the scope of our study. Nevertheless, our results are of utmost interest, because they help to narrow the search for potential molecular targets for targeted anti-leukemia therapy.

The study was supported by the Russian Science Foundation (grant No. 17-75-10201) with the use of the Human Proteome Common Use Center (Institute of Biomedical Chemistry) supported by the Ministry of Education and Science of the Russian Federation (unique project identifier RFMEFI62117X0017).

REFERENCES

- Álvarez-Chaver P, De Chiara L, Martínez-Zorzano VS. Proteomic profiling for colorectal cancer biomarker discovery. Methods Mol. Biol. 2018;1765:241-269.
- Birnie GD. The HL60 cell line: a model system for studying human myeloid cell differentiation. Br. J. Cancer Suppl. 1988;9:41-45.
- Concolino A, Olivo E, Tammè L, Fiumara CV, De Angelis MT, Quaresima B, Agosti V, Costanzo FS, Cuda G, Scumaci D. Proteomics analysis to assess the role of mitochondria in BRCA1-mediated breast tumorigenesis. Proteomes. 2018;6(2). pii: E16. doi: 10.3390/proteomes6020016.
- Coombs CC, Tavakkoli M, Tallman MS. Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J. 2015;5:e304. doi: 10.1038/bcj.2015.25.
- Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 2014;13(9):2513-2526.
- Dixon RA, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF, Gillard JW, Miller DK. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature. 1990;343:282-284.
- Hong C, An S, Son M, Hong SS, Lee DH, Lee C. In-vitro cell tests using doxorubicin-loaded polymeric TiO2 nanotubes used for cancer photothermotherapy. Anticancer Drugs. 2012;23(5):553-560.
- Huang H, Qin Y, Xu R, You X, Teng R, Yang L, Xu M, Liu H. Combination therapy with arsenic trioxide, all-trans retinoic acid, and chemotherapy in acute promyelocytic leukemia patients with various relapse risks. Leuk. Res. 2012;36(7):841-845.
- Huang J, Casas Garcia GP, Perugini MA, Fox A, Bond C, Lee M. Crystal structure of a SFPQ/PSPC1 heterodimer provides insights into preferential heterodimerization of human DBHS family proteins. J. Biol. Chem. 2018. Mar 12. pii: jbc. RA117.001451. doi: 10.1074/jbc.RA117.001451.
- 10. Iland HJ, Bradstock K, Supple SG, Catalano A, Collins M, Hertzberg M, Browett P, Grigg A, Firkin F, Hugman A, Reynolds J, Di Iulio J, Tiley C, Taylor K, Filshie R, Seldon M, Taper J, Szer J, Moore J, Bashford J, Seymour JF; Australasian Leukaemia and Lymphoma Group. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood. 2012;120(8):1570-1580; quiz 1752.
- 11. Li T, Ma R, Zhang Y, Mo H, Yang X, Hu S, Wang L, Nova-

kovic VA, Chen H, Kou J, Bi Y, Yu B, Fang S, Wang J, Zhou J, Shi J. Arsenic trioxide promoting ETosis in acute promyelocytic leukemia through mTOR-regulated autophagy. Cell Death Dis. 2018;9(2):75. doi: 10.1038/s41419-017-0018-3.

- Reyes-Sebastian J, Montiel-Cervantes LA, Reyes-Maldonado E, Dominguez-Lopez ML, Ortiz-Butron R, Castillo-Alvarez A, Lezama RA. Cell proliferation and inhibition of apoptosis are related to c-Kit activation in leukaemic lymphoblasts. Hematology. 2018;Mar 1:1-10. doi: 10.1080/10245332.2018.1444564.
- Rothofsky ML, Lin SL. CROC-1 encodes a protein which mediates transcriptional activation of the human FOS promoter. Gene. 1997;195(2):141-149.
- Shi Y, Xu X, Zhang Q, Fu G, Mo Z, Wang GS, Kishi S, Yang XL. tRNA synthetase counteracts c-Myc to develop functional vasculature. Elife. 2014;3:e02349. doi: 10.7554/eLife.02349.
- 15. Sewer MB, Nguyen VQ, Huang CJ, Tucker PW, Kagawa N, Waterman MR. Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54(nrb)/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription. Endocrinology. 2002;143(4):1280-1290.
- 16. Simicevic J, Schmid AW, Gilardoni PA, Zoller B, Raghav SK, Krier I, Gubelmann C, Lisacek F, Naef F, Moniatte M, Deplancke B. Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics. Nat. Methods. 2013;10(6):570-576.
- 17. Takahashi H, Hatta Y, Iriyama N, Hasegawa Y, Uchida H, Nakagawa M, Makishima M, Takeuchi J, Takei M. Induced differentiation of human myeloid leukemia cells into M2 macrophages by combined treatment with retinoic acid and 1alpha,25dihydroxyvitamin D3. PLoS One. 2014;9(11):e113722. doi: 10.1371/journal.pone.0113722.
- Tasseff R, Jensen HA, Congleton J, Dai D, Rogers KV, Sagar A, Bunaciu RP, Yen A, Varner JD. An effective model of the

retinoic acid induced HL-60 differentiation program. Sci. Rep. 2017;7(1):14327. doi: 10.1038/s41598-017-14523-5.

- Tong X, Drapkin R, Yalamanchili R, Mosialos G, Kieff E. The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol. Cell. Biol. 1995;15(9):4735-4744.
- Van Damme J, Rampart M, Conings R, Decock B, Van Osselaer N, Willems J, Billiau A. The neutrophil-activating proteins interleukin 8 and beta-thromboglobulin: in vitro and in vivo comparison of NH2-terminally processed forms. Eur. J. Immunol. 1990;20(9):2113-2118.
- Valenzuela SM, Mazzanti M, Tonini R, Qiu MR, Warton K, Musgrove EA, Campbell TJ, Breit SN. The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. J. Physiol. 2000;529(Pt 3):541-552.
- Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 2009;10(4):252-263.
- 23. Wang ZY, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood. 2008;111(5):2505-2515.
- Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6(5):359-362.
- Yao YL, Yang WM. Nuclear proteins: promising targets for cancer drugs. Curr. Cancer Drug Targets. 2005;5(8):595-610.
- 26. Zhang C, Leng W, Sun C, Lu T, Chen Z, Men X, Wang Y, Wang G, Zhen B, Qin J. Urine proteome profiling predicts lung cancer from control cases and other tumors. EBioMedicine. 2018. Mar 17. pii: S2352-3964(18)30093-8. doi: 10.1016/j. ebiom.2018.03.009.
- 27. Zhang Z, Miao L, Xin X, Zhang J, Yang S, Miao M, Kong X, Jiao B. Underexpressed CNDP2 participates in gastric cancer growth inhibition through activating the MAPK signaling pathway. Mol. Med. 2014;20):17-28.