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Abstract

The purpose of this study was to investigate the effects of 17-b-estradiol (E2)-induced reactive oxygen species (ROS) on the
induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2),
a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with
malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the
xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2
induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal
transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT
phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited
by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in
vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control
the expression of these genes – nuclear respiratory factor-1 (NRF-1) was significantly up-regulated during the 4-OH-E2-
mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as
well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in
part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2,
PRC1 and PCNA, and the transcription factor – NRF-1. In summary, our study has demonstrated that: (i) 4-OH-E2 is one of the
main estrogen metabolites that induce mammary tumorigenesis and (ii) ROS-mediated signaling leading to the activation of
PI3K/AKT pathway plays an important role in the generation of 4-OH-E2-induced malignant phenotype of breast epithelial
cells. In conclusion, ROS are important signaling molecules in the development of estrogen-induced malignant breast
lesions.
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Introduction

Elevated lifetime estrogen exposure is a well-known major risk

factor for breast cancer. A large body of epidemiological and

experimental evidence points to a role for estrogen in the etiology

of human breast cancer [1–9]. In experimental models, estrogens

are complete breast carcinogens, as they are capable of initiating

and triggering growth and selection to generate palpable

malignancy [8–14]. However, the signaling mechanisms by which

estrogen contributes in the initiation of breast cancer remain the

subject of a long-standing controversy. This is due, in part, to the

inability to resolve whether estrogen or estrogen metabolites are

procarcinogenic. 17b-estradiol (E2) is metabolized to 2- and 4-

hydroxy-estradiols by cytochrome p450s. We have previously

shown that E2-induced renal tumor formation is decreased in

animals exposed to inhibitors of estrogen metabolism or to

hormonally potent estrogens undergoing reduced metabolic

conversion to catechol metabolites compared to E2 [10–12,15].

The research laboratory of Dr. Jose Russo has shown that E2 or 4-

OH-E2 transform normal ERa negative breast epithelial MCF-

10F cells [16–20] to neoplastic cells. 17b-estradiol-induced

transformed MCF10F cells form tumors in SCID mice. 4-OH-

E2 is twice as capable of producing anchorage-independent

growth in MCF10F cells when compared to E2 [18,20]. In

contrast, neither 2-OH-E2 nor 2-OH-E1 are carcinogenic in vitro

or in vivo [15]. Similarly, 17 beta-estradiol and equilenin catechol

metabolite, 4-hydroxyequilenin treatment to normal ERa negative

breast epithelial MCF-10A cells induced anchorage independent

growth in these cells or foci formation [21–23]. Recently, Parks

et al (2009) demonstrated that MCF10A cells exposed to 4-OHE2

showed anchorage-independent growth [24]. However, these

studies in MCF-10A cells failed to show in vivo tumorigenicity,

invasiveness or display other salient neoplastic properties after

estrogen treatment. In the present study, we have conducted

comprehensive analyses to show that repeated exposures of 4-OH-
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E2 to MCF-10A produced neoplastic transformation in vitro and

transformed cells were found to be tumorigenic in vivo.

Induction of estrogen receptor (ER) upon estrogen exposure is

not sufficient for the development of breast cancer. Recent studies

indicate that mammary tumors can develop in the absence of a

functional ERa [25]. Although tamoxifen and other antiestrogens

are thought to prevent cancer through their actions at the ER,

other mechanisms cannot be ruled out as these compounds also

block metabolism and redox cycling of estrogen and are free

radical scavengers [26]. 4-OH-E2 induces an estrogenic response

in the uterus of ERa null mice, and this response is not inhibited

by the antiestrogen ICI182780 [27]. These findings suggest that

estrogen-dependent growth of cells is regulated not only by nuclear

ER-mediated genomic signaling pathways, but also by non-ER

pathway(s). We believe that genomic and non-genomic actions of

estrogen produce complementary effects that are required for

cellular transformation. Physiologically achievable concentrations

of estrogen or estrogen metabolites directly acting on mitochon-

dria of mammary epithelial or immune cells generate reactive

oxygen species (ROS) [28]. We previously showed that 17-b-

estradiol (E2)-induced DNA synthesis in MCF-7 breast cancer cells

depends on mitochondrial oxidant signaling [29]. In this study, we

have extended our efforts on understanding how an E2 metabolite,

4-OH-E2 produces malignant phenotype through ROS signaling.

We investigated whether the susceptibility of normal breast

epithelial MCF-10A cells to neoplastic transformation by estrogens

depends on ROS-mediated redox signaling. We present here for

the first time that oxidants induced by E2 and 4-OH-E2, but not

2-OH-E2 exposures mediated in vitro transformation of MCF-10A

cells. 4-OH-E2 transformed cells are not only tumorigenic in mice

but also display invasive properties as well as proliferation

independent of growth factors. Co-treatments of 4-OH-E2

transformed cells with biological or chemical ROS scavengers,

or silencing of AKT1 prevented tumorigenic conversion of MCF-

Figure 1. Exposure of MCF-10A cells to 7 b-estradiol (E2) and its hydroxy metabolites produces a rapid increase in ROS levels. ROS
production was measured by 10 uM H2DCFDA oxidation on a 96 well plate reader (A&C) and confocal microscopy (B) as previously described by us
(28) are shown. A. Briefly, H2DCFDA-labeled MCF-10A cells were plated at 36105 per well of a 96-well plate, and the fluorescence signal obtained
was recorded for 5 min. Data represented as mean + S.D. of six independent experiments showing the production of ROS by stimulation of MCF-10A
cells with 0.1, 10 and 100 ng/ml of E2 and its hydroxy metabolites, 2-hydroxyestradiol (2-OH-E2) and 4-hydroxyestradiol (4-OH-E2). DMSO (vehicle)
was used as a control. Scale bars 20 mm. B. Representative confocal images of DCF-DA-loaded MCF-10A cells show that E2 and its hydroxy
metabolites trigger release of ROS as detected by a significant increase of DCF-DA fluorescence. C. Inhibition of estrogen-induced ROS production by
overexpression of catalase or treatment with Ebselen (40 uM) or NAC (1.0 mM). Antioxidants were pre-loaded onto cells for 2–4 hrs before ROS
measurement commences. D. For overexpression of ROS detoxifying enzymes, cells were infected with adenoviral vectors encoding catalase (Ad-
catalase) or MnSOD (Ad-MnSOD) or empty vector (Ad-CMV) as a control at 100 MOI in serum free media. Cells were infected with Ad-catalase or
MnSOD of 100 MOI for 48 h. Overexpression of catalase or MnSOD was confirmed by Western blot analysis using antibodies against catalase or
MnSOD. b-Actin was processed in parallel as an internal control for protein loading.The cellular protease activities were measured to rule out the
possibility that the differential ROS levels were not as a result of differential cell densities or viability. Data represented as mean + S.D. of six
independent experiments showing inhibition of estrogen-induced ROS generation by ROS modifiers. DMSO (vehicle) was used as a control. *P,0.05,
significantly different from control. **P,0.05 indicates significantly different from 4-OHE2, (P,0.05).
doi:10.1371/journal.pone.0054206.g001
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10A cells. It appears that oxidant-mediated activation of redox

sensitive PI3K/AKT signaling may be involved in the tumorigenic

conversion of normal breast epithelial cells by estrogen.

Materials and Methods

Ethics Statement
All experimental procedures for the use of animals were

approved by the institutional animal care and use committee

(IACUC) at the Florida International University (protocol #09–

034), and all of the experiments were conducted in accordance

with the Guide for the Care and Use of Laboratory Animals

published by the US National Institutes of Health.

Chemicals and Reagents
17b-Estradiol (E2), 2-hydroxyestradiol (2-OH-E2), 4-hydroxyes-

tradiol (4-OH-E2), Ebselen, N-acetyl-cysteine (NAC), and Di-

methylsulfoxide (DMSO) were all purchased from Sigma (St

Louis, MO, USA). All antibodies; PI3K (p110), phospho PI3K

(p85), phospho-AKT (ser 473) and total AKT antibodies were

purchased from Cell Signaling Technology Inc. (Boston, MA). All

tissue cultures reagents were purchased from Invitrogen Corpo-

ration (CA) unless otherwise specified.

Culture of MCF-10A cells and Adenovirus gene transfer
Human mammary epithelial cells (MCF-10A) were obtained

from American Type Culture Collection (ATCC) and were

routinely cultured in phenol red-free DMEM-F12 media (1:1)

supplemented with 5% horse serum, hydrocortisone (0.5 mg/ml),

insulin (10 mg/ml), epidermal growth factor (20 ng/ml), 100 ng/

ml cholera toxin and penicillin-streptomycin (100 mg/ml each)

and incubated at 37uC in a humidified atmosphere containing 5%

CO2. The cell culture media, serum, antibiotics, and growth

supplements except cholera toxin (Calbiochem, La Jolla, CA) were

purchased from Invitrogen Corp, CA. For experimental purposes,

culture media were changed to starvation media (serum free media

+ antibiotics) and allowed to incubate for 48 hrs prior to

commencement of most experiments, unless otherwise indicated.

Serum deprivation synchronizes cells in the G0/G1 phase of the

cell cycle.

The Adenovirus-CMV (empty vector), Adenovirus-MnSOD

(AdCMVMnSOD), and Adenovirus-Catalase (AdCMVCat) con-

structs were purchased from ViraQuest, Inc. (North Liberty, IA,

USA). The adenovirus constructs used were replication-defective,

E1- and E3-deleted recombinant adenovirus [30]. Inserted into

the E1 region of the adenovirus genome was either the human

MnSOD or catalase gene, both of which are driven by a

cytomegalovirus promoter. Cells were seeded in plates at 15%–

70% confluence. The following day, cells were infected with

adenoviruses over-expressing MnSOD or catalase or vector at 100

MOI in serum free media. Control cells were treated with 100

MOI of the adenovirus-CMV construct. This viral load was

determined to achieve greater than 50% growth arrests of MCF-

10A cells without significant cell death for the duration of the

experiment. Infected cells were cultured for 48 hrs after which

cells were used for experiments.

Akt1 RNAi transfections
Pre-designed and verified human shRNA for Akt1 and

corresponding null vectors were purchased from OriGene

(OriGene Technologies, Inc. Rockville, MD). Transfections of

cells were carried out in a sub-confluent cell population using

FuGENE 6 (Roche) transfection reagents according to the

manufacturer’s protocol. Briefly, MCF10A cells were seeded in 6

well plates with growth factor supplemented media (SM)

overnight. Post seeding, cells were transfected with 2 ml of

Fugene-6 (Roche) preincubated for 20 min at room temperature

with 0.5 mg plasmid RNAi or its null controls (sham). Forty eight

hours post transfection, media were changed to serum-free media

and incubated for an additional 48 hrs, after which cells were used

for various experiments. Transfection efficiencies ranged between

60–80% as quantified by decreased protein expression levels.

Cell viability assay
CellTiter-FluorTM Cell Viability kit was purchased from the

Promega Corporation and used according to manufacturer’s

instructions. Briefly, cells were seeded in 96 well plates at a density

of 1.06104 cells/well, serum starved for 48 hrs and treated with

estrogens or ROS modifiers. At the end of treatment procedure,

substrate reagents (GF-AFC) were mixed with substrate buffer and

dispensed into wells. This assay measures protease activity in live

cells as opposed to MTT or MTS assay kits that measure

formation of formazon crystals by mitochondrial enzymes. Plates

were read on a fluorescence plate reader at 380–400 nm excitation

and 505 nm emission and data is expressed as mean of three

experiments +/2 SD.

Figure 2. Exposure of MCF-10A cells to E2 and its hydroxy
metabolites induced dose-dependent AIG positive colony
formation (2A) and ROS modifiers inhibited estrogen-induced
colony formation (2B). The cell transformation was carried out by a
modified protocol of Russo’s group (18). Briefly, MCF-10A cells were
seeded at 30% density in a 10 cm dish. After 24 hrs of seeding, cells
were exposed to E2 or its hydroxy metabolites. A treatment cycle
includes a 48 hr starvation period, 48 hr treatment period (100 ng/ml of
E2, 2-OH-E2, or 4-OH-E2), and 48 hr recovery period in DMEM-F12
media containing 10% horse serum (HS) and no growth supplements.
Benzo(a)pyrene (BaP) was used as a positive control to show AIG
positive colony formation. For inhibition of 4-OH-E2-induced cell
transformation by ROS modifiers, MCF-10A cells were transfected with
50 MOI adenovirus expressing catalase or MnSOD or treated with an
antioxidant Ebselen (40 uM). Cells overexpressing catalase or MnSOD or
treated with Ebselen were exposed to a carcinogenic regimen of
estrogen as described above. Anchorage independent growth, an
indicator of neoplastic transformation of cells, was assessed in soft agar
as previously described by Zhang et al (31) after 21 days. Images were
acquired by using an Olympus C-5060 digital camera attached to the
Nikon TE2000U inverted microscope with a 4x objective (bottom panel
shows representative pictures of colonies in soft agar in both 2A and
2B). Colony efficiency was determined by a count of the number of
colonies .63 um in diameter and data expressed as mean of five wells
+/2 S.D.
doi:10.1371/journal.pone.0054206.g002
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Cell transformation
The cell transformation was carried out by a modified protocol

of Dr. Jose Russo’s group [18]. Briefly, MCF-10A cells were

seeded at 30% density in a 10 cm dish. After 24 hrs of seeding,

media were replaced with stavation media and allowed to culture

for 48 hrs, and then cells were subjected to two treatment cycles

with E2 or its catechol metabolites. A treatment cycle includes a

48 hr starvation period, 48 hr treatment period (100 ng/ml of

either E2, 2-OHE2, and 4-OHE2), and 48 hr recovery period in

growth media containing 10% horse serum (HS) and no growth

supplements. At the end of two treatment cycles, cells that would

be used for immunoprecipitation and Western blot analysis were

treated for an additional 30 mins with estrogens, lysed with RIPA

buffer, immunoprecipitated and processed for western analysis.

For anchorage independent growth assay 5000 cells/well were

used for colony formation assays in soft agar.

Anchorage independent growth
Anchorage independent growth, an indicator of neoplastic

transformation of cells, was assessed as previously described by

Zhang et al [31]. Briefly, base support agar were made fresh by

diluting 1.0% molten agarose mixed with 1:1 2x culture media (2x

DMEM/F12 media, 20% HS, 2x Penicillin- Streptomycin and

200 pg/ml estrogens) to a final 0.5%. Molten agar was left at 42uC
in a water bath until dispensed at 200 ul/well in 48 well plates,

then allowed to solidify for 4 hrs at room temperature. Top

agarose overlay was made fresh by mixing 0.7% molten agarose

with 2x culture media containing 5000 cells/well, and then gently

overlaid over base agar. Cells were incubated for a minimum of

21 days in a 37uC incubator with 5% CO2. Cells were fed every

week with top agar layer and colony formation was assumed when

cell masses were 100 micron or greater as measured on a Nikon

TE2000U inverted microscope (Nikon Corp., USA) with Meta-

morph software (Universal Imaging, USA). Images were acquired

by using an Olympus C-5060 digital camera attached to the Nikon

TE2000U inverted microscope with a 4x objective. Four wells

were enumerated for each group and data expressed as mean of

five wells +/2 SD.

Invasion and ductulogenic assays
In order to determine invasiveness of transformed cells, several

colonies were aseptically picked, dissociated with trypsin and

cultured for 20–30 passages in a low growth factor media (DMEM

F12, 5% FCS, 4 ng/ml EGF, 2.0 ng/ml insulin, 100 ng/ml

hydrocortisone, 1x Penicillin-Streptomycin) and eventually

DMEM/F12 with 5% HS media, and 1x Penicillin-Streptomycin.

Cells (5.06103 cells/ml) for invasion assays were seeded over 8 mm

pore transwell filter insert (Transwell, Coastar Cambridge, MA)

precoated with Matrigel (Collaborative Research, Bedford, MA).

Chemo-attractants used were reduced growth factor supplemented

media or media with 10% FBS media positive control cells MDA

MB 231. Matrix invasion was allowed for 16 hrs at 37uC in a CO2

incubator. The non-invaded cells inside chambers were wiped off

with a cotton swab, and the filters were fixed, stained by Diff

Quick (Sigma, St. Louis, MO), cut out and mounted onto glass

slides. The total number of cells that crossed the membrane were

counted under a light microscope, enumerated and expressed as

fold increase compared to parent cell line. The experiments were

repeated five times and results are expressed as the mean 6 SD.

For ductulogenesis, 1.06103 cells/ml of transformed cells (p121

and screened from 3x Matrigel), MDA MB 231 and parental

MCF-10A cells were mixed with collagen (Collagen Co., Palo

Alto, CA, USA) and seeded in chamber slides precoated also with

collagen. Cells were incubated for three weeks with bi-weekly

feeding with 5% HS media. To confirm spheroid formation from

collagen matrix, we diluted HuBiogel, a human matrix mimetic

(VIVO Biosciences Inc.), 1:3 with media and coated 0.22 micron

pore transwell filter inserts for 6 hrs at 37uC incubator. Cells

(1.06103) were seeded into each insert and chemoattractant media

(DMEM/F12, 5% HS, 1x Penicillin-Streptomycin) were added at

bottom of insert. Cells were cultured for 14 days with media

changed twice weekly. Images were acquired with an Olympus C-

5060 digital camera under an inverted microscope with a 4x

objective as described above.

Chemical antioxidant treatments
The treatment procedure for Ebselen (a glutathione peroxidase

mimetic which also removes both H2O2 and peroxynitrite) or

NAC (a precursor of glutathione and scavenger of ROS) [32,33]

varies according to the experiments design. For all experiments,

40 mM Ebselen and 1.0 mM NAC were used for cell treatments.

For example, in DCF assays, antioxidants were pre-loaded onto

cells for 2–4 hrs before ROS measurement commences. For BrdU

assays, cells were cultured with the chemical antioxidants

throughout the experimental procedure. For transformation

regimen, antioxidants were applied to cells each time cells were

treated with estrogens. For anchorage independent growth assays,

antioxidants were added to soft agar matrix media and during

weekly feeding of colonies.

Measurement of reactive oxygen species (ROS)
Cellular ROS were measured on a 96 well plate reader and

confocal fluorescence microscopy as previously described by Felty

et al [28]. Briefly MCF-10A cells were seeded at a concentration

of 1.06104 cells per well in black 96-well flat bottom plates

(Thermo Fisher Scientific Inc. USA) and allowed to adhere

overnight. Post seeding, cells were serum starved for 48 hrs after

which they were pretreated for 4 hrs with chemical antioxidants

Ebselen or NAC (Sigma USA) diluted in Hank’s balanced salt

solution (HBSS) followed by incubation with 10 mM 29,79-

dichlorofluorescin diacetate (DCFH-DA) (Invitrogen Corp) for

20 min. Cells were rinsed with HBSS followed by various estrogen

treatments as described in the figure legends. DCFH-DA is a non-

fluorescent cell-permeable compound, which is acted upon by

endogenous esterase that removes the acetate groups generating

DCFH. In the presence of intracellular ROS, DCFH is rapidly

oxidized to the highly fluorescent 29,79-dichlorofluorescein (DCF).

The oxidative products were measured with a Tecan Genios 96

well microplate reader using 485 and 535 nm as excitation and

Table 1. The frequency of in vitro cell transformation by
estrogens.

Dosage (ng/ml) E2 4-OH-E2 2-OH-E2

0 0 0 0

0.1 0.0860.03 0.1860.038 0.0660.04

10 0.260.06 0.2660.03 0.05660.03

100 0.4260.04 0.6460.02 0.0460.015

Anchorage independent growth, an indicator of neoplastic transformation of
cells, was assessed as previously described by Zhang et al (31). Briefly, 5000
untreated and estrogen treated cells were seeded in each well and were grown
for a minimum of 21 days over agar layer. The frequency of cell transformation
was determined by counting the number of colonies that formed in the
presence of E2, 4-OH-E2 or 2-OH-E2: (number of colonies formed/the total
number of seeded cells) x 100.
doi:10.1371/journal.pone.0054206.t001
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emission filters respectively or fluorescence images were acquired

on a Nikon TE2000U inverted fluorescence microscope equipped

with a Nikon D-Eclipse C1 laser scanning confocal microscope

system (Nikon Corp., USA). The built-in Nikon EZ-C1 software

was used for confocal image acquisition and analyses. DCFH-DA

stock solutions were diluted at a 1:1 ratio with Pluronic F-127

(20% w/v). Data are expressed as mean of three experiments +/2

SD.

Immunoprecipitation and Western Blot Analysis
After the respective treatments, cells were rinsed twice with ice

cold phosphate buffered saline (PBS), harvested with lysis buffer

(150 mM NaCl, 0.5% deoxycholate, 0.1% Nonidet P-40, 0.1%

SDS, 50 mM Tris) containing protease and phosphatase inhibitors

(Roche). Samples were diluted to 500 mg of protein in 1 ml of lysis

buffer, and pre-cleared for 1 hr at 4uC with 10 ml of 1:1 slurry of

protein A-agarose beads (Invitrogen Corp) in lysis buffer. After a

brief centrifugation to remove pre-cleared beads, 2 mg of desired

capture antibodies were added to each supernatant and incubated

on a rocking platform at 4uC overnight and captured proteins

were precipitated with 40 ml of protein A-agarose beads for 2 hrs.

The beads were washed five times with lysis buffer and

resuspended in 40 mL sample loading buffer, subjected to

electrophoresis and electro-blotted onto a PVDF nylon mem-

brane. Primary antibodies used for Western blots were diluted

1:1000 in phosphate buffered saline Tween-20, PBST and

horseradish peroxidase-conjugated secondary antibodies were

diluted 1:50,000 in PBST. Blots were treated with ECL reagents

(Amersham Biotech), and proteins were detected by autoradiog-

raphy. Band intensity was quantified with Bio-Rad Gel Doc

Imaging System.

Immunofluorescence labeling
MCF-10A cells were seeded and treated in chamber slides as

indicated in legends to the figures. Post treatment, cells were fixed

with ice cold methanol for 15 mins, and permeabilized with 0.5%

Triton X-100 for 30 minutes. Cells were blocked with 1% normal

goat sera for 1 hr after which they were probed with antibodies

diluted 1:500 for AKT and 1:500 for phospho AKT. Alexa Fluor

labeled secondary antibody directed against AKT antibody was

diluted 1:1000. The confocal fluorescence images were scanned on

a Nikon TE2000U inverted fluorescence microscope equipped

with a Nikon D-Eclipse C1 laser scanning confocal microscope

system (Nikon Corp., USA). The z-series scanning was done at

every 1 mm up to a z-depth of 10 mm by using a Nikon 40 x 1.30

NA DIC H/N2 Plan Fluor oil immersion objective. The built-in

Nikon EZ-C1 software was used for confocal image acquisition

and analyses.
Real-Time PCR analysis. The RNA templates (500 ng)

were reverse transcribed into cDNA using reverse transcription

reagents with random hexamer primers (Applied Biosystems,

Foster City, CA, USA). The cDNA was then used as template for

real-time PCR with gene specific primers. The TaqMan primers

and probe recognizing PCNA, NRF-1, PRC1, CDC2 and 18S

were used in this study. Quantitative gene expression analysis was

performed by TaqMan-based QRT2PCR on ABI 7700 (PE

Applied Biosystems, Foster City, CA, USA). The fold change in

gene expression was calculated using the {Delta} Ct method with

18S rRNA as the internal control.

In vivo xenograft growth and histopathology
All protocols involving mice were evaluated and approved by

Florida International University’s (FIU) Institutional Animal Care

and Use Committee and performed under veterinary supervision.

Transformed cells (p156) and a corresponding WT control (p178)

used for xenograft assay were first screened 3x on Matrigel

invasion assay for aggressive phenotype enrichment. Cells that had

invaded the matrix at the end of 72 hrs and formed a monolayer

at bottom well were cultured and re-verified on colony assay for

anchorage independent growth. Upon verification, cells were

suspended in 5 mg/ml Matrigel such that each injection of 100 ml

bolus contained 56106 cells. Cell suspensions were injected

subcutaneously into 6 week old NCr homozygous nude mice

(NCI, Frederick, MD). Tumor growth was monitored by

palpation, and the onset when tumors were detectable was noted.

Tumor size was measured with calipers, and tumor volume was

calculated assuming the shape as ellipsoid. Tumors were removed

33 days post inoculation, weighted and fixed in 10% neutral-

buffered formalin for immunohistochemical analysis.

Histopathology and Ki67 immunocytochemical analyses
Tissues fixed in formalin were embedded in paraffin, cut at

5 mm thickness, mounted on positively charged glass slides, and

stained with hematoxylin and eosin for histopathological analysis.

For Ki67 fluorescence immunocytochemical analysis, tissue

sections were deparaffinized, rehydrated and immuno-labeled as

follows. Antigen retrieval was done by first boiling antigen retrieval

buffer (10 mM Sodium citrate, 0.05% Tween 20, pH 6.0) in a

microwave. Slides were then placed inside the hot buffer for

30 min. Tissue sections were then incubated in diluted normal

blocking serum for 20 min. Excess serum was blotted from the

slides and the sections were incubated with anti-human Ki67

antibody (DakoCytomation Colorado Inc., Fort Collins, CO,

USA). After incubation for 3 hrs, sections were washed in buffer

and incubated in Alexa Fluor conjugated secondary antibody for

1 hr. The confocal fluorescence images were scanned on a Nikon

Figure 3. Clonogenic expansion and invasiveness of 4-OH-E2
transformed MCF-10A cells. Several 4-OH-E2 transformed MCF-10A
colonies from each soft agar were picked up at the end of 21 days and
were further cultured in media with 10% FBS (designated as a regular
media -RM). Clones that survived up to the 21st passage were assessed
for determining whether these cells have retained anchorage indepen-
dent growth properties. Cells were fed twice per week and cultured for
21 days. Clones that were highly clonogenic (P21) were selected and
the invasive property of this clone (MCF-10AT15) was analyzed by
invasion assay in BD BioCoatTM MatrigelTM Invasion Chambers in the
presence of either growth supplemented media ( SM) or media with
only 10% FBS (RM) (Upper Panel). We also seeded these cells (Lower
Panel) in a glass chamber because MCF-10A cells do not attach very
well to glass in the first 16–24 hrs.
doi:10.1371/journal.pone.0054206.g003
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TE2000U inverted fluorescence microscope equipped with a

Nikon D-Eclipse C1 laser scanning confocal microscope system as

described above (Nikon Corp., USA).

Results

Exposure of MCF-10A cells to 17b-estradiol (E2) and its
metabolites produces a rapid increase in ROS levels

Before carrying out cell transformation, we characterized

normal human mammary epithelial cells for their ability to

produce ROS in response to 17 beta-estradiol (E2) exposure.

These cells respond to E2 in terms of producing ROS very similar

to breast cancer cells. ROS production by E2 and its metabolites,

2-OH-E2 and 4-OH-E2 in normal human mammary epithelial

MCF-10A cells was dose-dependent (Fig. 1 A,B). 4-OH-E2

induced significantly more ROS in these cells compared to E2

and 2-OHE2. The abilities of these estrogens to produce ROS

were inhibited by overexpression of catalase or treatment with

Ebselen or NAC (Fig. 1C). When MnSOD were over-expressed in

these cells, ROS levels increased significantly compared to cells

treated with estrogen alone (Fig. 1C). We also measured the

cellular protease activities to rule out the possibility that the

differential ROS levels were not as a result of differential cell

densities or viability. Our results indicate that 4-OH-E2 is the most

effective in generating intracellular ROS in MCF-10A cells.

Mitochondria may be the major source of estrogen induced

intracellular ROS, because overexpression of MnSOD, a mito-

chondria superoxide dismutase that converts superoxide to

hydrogen peroxide, increased the ROS content maximally.

Exposure of MCF-10A cells to 17b-estradiol (E2) and its
catechol metabolites induced dose-dependent colony
formation

We used the anchorage independent growth (AIG) assay to

examine cell transforming ability of E2 by detecting AIG positive

colony formation. E2 exposure to ERa negative normal human

breast epithelial MCF-10A cells produced dose dependent increase

in the frequency of colony formation (Fig. 2 and Table 1). At

21 days, we did not detect any colony formation of cell masses of

100 micron or greater in vehicle (DMSO) treated wild type MCF-

10A cells. The colonies detected in the first week of DMSO

(vehicle) treated MCF-10A cells did not survive for 21 days. We

found that repeated treatments of MCF-10A cells with various

doses of E2 or its catechol metabolites induced in vitro transfor-

mation of MCF-10A cells in a dose dependent manner (Fig. 2 and

Table 1). 4-OH-E2 is more potent in transforming normal

mammary epithelial cells compared to E2, while 2-OHE2 is a

Figure 4. Spheriod Formation in Collagen and HuBiogel. A. Single colony from anchorage independent growth assay on agarose was
aseptically picked at the end of 21st day of culture. Clones were grown in growth factor reduced media (DMEM F12, 5% FCS, 4 ng/ml EGF, 2.0 ng/ml
insulin, 100 ng/ml hydrocortisone, 1x penstrep) for 40–60 generations, then in growth factor depleted media (DMEM F12, 5% FCS, 1x penstrep)
onward. Clones were assessed on collagen and HuBiogel for phenotypic evolutions. p0 indicates transformed cells prior to colony assay, p44-p200 are
phenotypes of clone over several passages. Images were acquired with a hand held Nikon digital camera over an inverted microscope with 20x
objective. B. MCF-10AT15 cells were infected with adenoviral vectors encoding catalase (Ad-catalase) or empty vector (Ad-CMV) as a control at 100
MOI in serum free media for 48 h. Wild type and catalase overexpressing MCF-10AT15 cells were mixed with 3D HuBiogelTM matrix containing
DMEM-F12, seeded into a NASA engineered 55 ml rotating-wall vessel bioreactor systems, and incubated at 37uC for 16 days to further assess the
colonogenic ability of 4-OH-E2 transformed MCF-10AT clone. Cell viability was checked with the Vibrant kit. All spheroids showing the green
fluorophore indicated that cells in tumor spheroids were viable. C. Overexpression of catalase was confirmed by Western blot analysis using
antibodies against catalase. b-Actin was processed in parallel as an internal control for protein loading.
doi:10.1371/journal.pone.0054206.g004
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weakly transforming metabolite of MCF-10A cells (Fig. 2 and

Table 1).

Clonogenic expansion and invasiveness of 4-OH-E2
transformed MCF-10A cells

Since 4-OH-E2 induced the highest transforming frequency, we

further examined whether 4-OH-E2 induced colonies are

clonogenic. We picked several colonies from each soft agar at

the end of 21 days and cultured them in media with 10% FBS

(designated as a regular media -RM). Several of these clones did

not survive beyond the 10th passage in RM. However, of the 5

that survived up to the 21st passage, one of the clones was highly

clonogenic (P21) and responsive to E2. We labeled this clone as

MCF-10T15. The invasive property of this clone (MCF-10AT15)

was analyzed by invasion assay. We also seeded these cells in glass

chamber as we previously found that MCF-10A cells don’t attach

very well to glass in the first 16–24 hrs. For the invasion assay, the

chemotractant was either growth supplemented media (SM) or

media with only 10% FBS (RM). Analysis of the invasive property

of this clone MCF-10T15 by invasion assay showed that it is highly

invasive (Fig. 3).

3-D Spheroid formation of 4-OH-E2 transformed

clone. To assess whether 4-OHE2 transformed MCF-10A cells

are neoplastic, we picked a few colonies from the anchorage

independent growth assay and cultured them repeatedly in growth

factor reduced media, then assessed cells periodically for their

ability to form spheroid structures in collagen coated 0.22 mm

transwell inserts, or in a rotary vessel using HuBiogel, a mimetic of

human stromal matrix. We found that over progressive passages,

the clones in collagen matrix assumed a more heterogeneous

Figure 5. Phenotypic assessment of transformed cells. Clones
from p21 cells were assessed for ductulogenesis (A), invasiveness (B)
and seeding phenotypes (C). A) Ductulogenic assay was conducted on
the collagen matrix. B) Invasive characteristic of clone was compared to
MDA-MB 231 cells using invasion assay in BD BioCoatTM MatrigelTM

Invasion Chambers. Histogram of invaded cells expressed as mean
invaded cells per field. C) Phenotype of transformed clone (MCF-10AT)
and wild type MCF-10A cells were captured through acquiring images
of these cells after 3hrs and 24 hrs of seeding in a monlayer culture
using an Olympus C-5060 digital camera attached to the Nikon
TE2000U inverted microscope with 20x and 40x objectives.
doi:10.1371/journal.pone.0054206.g005

Table 2. The estrogen antagonist ICI 182780 does not inhibit
the in vitro transformation of MCF-10A cell by E2 and 4-OH-
E2.

ICI 182780 E2 (100 ng/ml) 4-OH-E2 (100 ng/ml)

0 17.062.8 40.068.0

100 ng/ml 21.064.0 44.067.07

Anchorage independent growth of 5000 untreated and E2 or 4-OH-E2 (100 ng/
ml) treated MCF-10A cells in the presence or absence of an equal concentration
of ICI 182780 was monitored by growing these cells for a minimum of 21 days
over agar layer. The number of colony formed in each well was determined by a
count of the number of colonies .63aum in diameter and data expressed as
mean of the number of colonies formed in the four wells +/2 S.D.
doi:10.1371/journal.pone.0054206.t002

Figure 6. ROS modifiers inhibited estrogen-induced colony
formation. For investigating inhibition of 4-OH-E2-induced cell
transformation by ROS modifiers, MCF-10A cells were transfected with
100 MOI adenovirus expressing catalase or MnSOD or treated with an
antioxidant Ebselen (40 uM). Cells overexpressing catalase or MnSOD or
treated with Ebselen were exposed to a carcinogenic regimen of
estrogen as described in the legend of figure 2. Anchorage
independent growth was assessed in soft agar after 21 days. Images
were acquired by using an Olympus C-5060 digital camera attached to
the Nikon TE2000U inverted microscope with a 4x objective (bottom
panel shows representative pictures of colonies in soft agar in both 2A
and 2B). Colony efficiency was determined by a count of the number of
colonies .63 um in diameter and data expressed as mean of five wells
+/2 S.D. *P,0.05, significantly different from 4-OH-E2 treatment.
**P,0.05 indicates significantly different from control.
doi:10.1371/journal.pone.0054206.g006
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population with small masses (p0) as opposed to homogenous

population with aggressive phenotype (p200) (Fig. 4A).

The tumorigenic conversion ability of 4-OH-E2-transformed

MCF-10A cells was further investigated by 3-D culture using

HuBiogelTM. For 3-D culture, anchorage-independent MCF-10A

human mammary gland epithelial cells transformed by 4-OH-E2

treatment were mixed with 3D HuBiogelTM matrix containing

DMEM-F12, seeded into 55 ml rotating-wall vessels and incubat-

ed at 37uC for 16 days. These conditions allow for the

spontaneous formation of 3-D tissue-like spheroids of 4-OH-E2-

transformed MCF-10A cells (Fig 4B). We found that overexpres-

sion of catalase inhibited tumor spheroid formation 4-OH-E2-

transformed MCF-10A cells. Cells were labeled with CFSE using

the Vybrant kit for checking viability. All spheroids showing the

green fluorophore (Fig. 4B) indicate that cells in tumor spheroids

are alive.

Loss of ductulogenicity in 4-OH-E2 transformed

cells. The ability to form ductile structures is characteristic of

normal mammary epithelial in a collagen matrix. Loss of this

ability is a hallmark of transformed cells. Assessment of

transformed cells in a collagen matrix indicates that these cells

have indeed lost their ability to form ductile structures upon

repeated treatment with 4-OHE2 (Fig. 5A). This phenotypic

change was evident right from p0 cell population and continued

even at p121.

Aggressive phenotype enrichment
Initial invasion assessment of fifteen colonies from soft agar

assay indicates that three colonies have acquired the ability to

invade Matrigel matrix. These clones were subsequently cultured

in growth factor reduced media over several generations and

assessed periodically for invasive phenotype. We observed that

successive passage of these clones increased their ability to invade

Matrigel matrix. One of the clones termed clone c (MCF-10ATc)

had actually acquired invasion capability that is about 30% that of

MDA MB 231 cell line at passage (Fig. 5B). The other clones had

lesser invasive abilities compared to MCF-10ATc (data not

shown).

4-OH-E2 treatment causes epithelial to non-epithelial

transition in MCF10A cells. We found that the 4-OH-E2

transformed clones looked very different from WT both in

morphology, size and time it takes to form a sheet upon seeding.

Figure 5C shows that transformed clones were bigger than their

WT counterpart in monolayer culture just after seeding (3 hrs). In

addition, transformed cells displayed an abnormal differentiation

pattern and loss of cell polarity, all phenotypes of cancer cells

(Fig. 5C). The majority of clones exhibited morphological changes

that resembled epithelial to non-epithelial transition. MCF10A

cells showed highly organized cell-cell adhesion and cell contact,

whereas 4-OH-E2 transformed-MCF10A cells had an elongated

and refractive appearance with cell scattering and loss of cell-cell

contacts. The cobblestone-like morphology of MCF10A cells at

confluency was replaced in 4-OH-E2 transformed-MCF10A cells

by a spindle-like fibroblastic morphology.

Inhibition of 4-OH-E2-induced cell transformation by ROS
modifiers

We used vehicle treated WT-MCF-10A cells as controls for all

experiments, except adenovirus infection experiments. In adeno-

virus experiments, we used MCF-10A cells infected with empty

adenovirus-CMV vector as controls. There was no difference in

the number of colonies formed in WT-MCF-10A cells and MCF-

10A cells infected with empty adenovirus-CMV vector as controls

(background levels). Therefore, we have used the same controls as

a representation for both adenovirus and non-adenovirus exper-

iments.

First, we examined the effect of the pure antiestrogen ICI

182780 on cell transformation by treating MCF-10A cells with E2

or 4-OH-E2 (100 ng/ml) that produced the maximum-anchorage-

independent growth in the presence of an equal concentration of

ICI 182780. It has been shown previously that the pure

antiestrogen ICI 182780 exerts dose-dependent growth inhibition

on prostate cancer cells by an ER-beta-mediated pathway [34,35].

The antiestrogen ICI 182780 did not prevent the anchorage

independent growth of E2 or 4-OH-E2-treated MCF-10A cells

(Table 2). This finding is in agreement with the report on normal

ERa negative breast epithelial MCF-10F cells by Russo’s research

group showing that ICI 182780 does not abrogate E2 or 4-OH-

E2-induced transformation of MCF-10F cells to neoplastic cells

[19]. Our findings suggest that estrogen antagonist ICI-182-780

does not inhibit the in vitro transformation of MCF-10 A cell by

E2 and 4-OH-E2.

Figure 7. The growth of 4-OH-E2 transformed MCF-10AT clone was stimulated by 17 beta-estradiol (E2) and inhibited by both
antioxidants, Ebselen and N-acetyl cysteine. Cells were grown in 96-well plates for 2 days in 10% FBS DMEM/F12 and serum starved 2 days
prior to addition of E2 (100 pg/ml) for 18 h-48 h unless specified otherwise. Bromodeoxy uridine (BrdU) incorporation assay was used to measure
DNA synthesis in transformed cells. Antioxidants ebselen, NAC, and catalase were pretreated for 2 h prior to the addition of E2. Colorimetric BrdUrd
incorporation was measured at 450 nm with a plate reader. ROS production was measured by 10 uM H2DCFDA oxidation on a 96 well plate reader.
Results are expressed as mean 6 SD of three separate experiments with control set as 100%. *P,0.05, significantly different from control. **P,0.05
indicates significantly different from E2, (P,0.05).
doi:10.1371/journal.pone.0054206.g007
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In cells overexpressed with adenovirus construct containing

catalase and MnSOD that lowers oxidant production as well as in

mtTFA silenced cells, E2 produced fewer colonies compared to E2

alone (Fig. 6). Treatment of cells with chemical ROS scavenger

(Ebselen or NAC) significantly inhibited the abilities of E2 or 4-

OHE2 to induce neoplastic transformation of MCF-10A cells as

assessed by inability to form colonies and grow in soft agar assays

(Fig. 6). This implies that oxidants induced by E2 and 4-OHE2 are

necessary for tumorigenic transformation of MCF-10A cells and

when oxidant levels were scavenged by biological and chemical

antioxidants, estrogen induced transformation of mammary cells

was inhibited.

The growth of the E2-induced transformed clone was highly

responsive to E2 and was inhibited by Ebselen and N-acetyl

cysteine. Antioxidants reduce E2-induced DNA synthesis and

ROS formation in MCF-10AT transformed cells (Fig. 7). These

cells respond to E2 in terms of producing ROS very similar to

breast cancer cells.

Inhibition of xenograft growth of adenocarcinoma in
nude mice subcutaneously injected with 4-OH-E2
transformed breast epithelial cells by overexpression of
catalase as well as co-treatment with Ebselen

Previous studies had failed to show xenograft growth of

estrogen-transformed MCF-10A cells in mice [21,22,24]. We first

selected highly invasive and migratory phenotypic enriched cells

from 4-OH-E2 transformed cells using Matrigel invasion assay.

For enrichment of highly invasive 4-OH-E2-transformed MCF-

10AT cells, transformed cells that had invaded the matrix at the

end of 72 hrs and formed a monolayer at the bottom well were

cultured and re-verified on colony assay for anchorage indepen-

dent growth. The cells from colonies were again subjected to

migrate through the membrane and cultured and verified for

colony formation. This process was repeated three times. Upon

verification of colony growth, invasively enriched cells were

suspended in 5 mg/ml Matrigel so that each injection of 100 ml

contained 56106 cells. Cell suspensions were injected subcutane-

ously into 6 week old nude mice. In contrast to previous studies

[21,22,24], invasively selected 4-OH-E2-transformed MCF10AT

cells formed a palpable mass within 18–20 days (4/4 with

Matrigel) (Fig. 8 and Table 3). After 28 days, xenografts injected

with Matrigel had reached a mass of 260 mg. The average tumor

weight at day 28 post injection was 260.0 mg/mice. However, the

xenografts of MCF-10AT clone overexpressing catalase or co-

treated with 20 uM Ebselen did not form palpable tumor.

Similarly, normal MCF10A cells injected into nude mice were

unable to form a palpable mass when injected with Matrigel (0/4).

The xenografts with 4-OH-E2-transformed MCF10AT cell

infected with empty adenovirus-CMV vector produced a palpable

tumor of 210+/2 8.0 mg weight. Histologic analysis of the tumors

by H&E staining revealed them to be poorly differentiated

adenocarcinomas. The immunohistochemical assessment of the

nuclear antigen Ki-67 showed the presence of Ki-67 positivity in

tumors indicating that they are proliferative in nature. Taken

together these data indicate that ROS modifiers, such as

overexpression of catalase that converts hydrogen peroxide to

water or a glutathione peroxidase mimic-Ebselen that modulates

oxidative stress by enhancing thioredoxin reductase activity in 4-

OH-E2-transformed MCF10AT cells is sufficient to inhibit

xenograft growth of adenocarcinoma.

4-OHE2 induced ROS activates PI3K/KT signaling
pathway

Consequences of elevated ROS in cells are apoptotic cell death,

quiescence or cell transformation and neoplastic growth [36,37]

The signaling pathway associated with survival of cells under

oxidative stress is attributed in part to activation of PI3K and AKT

Figure 8. Inhibition of xenograft growth of malignant tumor in
vivo by ROS modifiers. We selected 4-OH-E2 transformed AT cells
thrice using the Matrigel invasion assay for aggressive phenotype
enrichment. Cells that had invaded the matrix at the end of 72 hrs were
cultured and re-verified by colony assay. These invasive cells were
transfected with adenvovirus CMV vector or ad catalase or treated with
20 uM Ebselen. Mice were dorsally injected subcutaneously with 100 ul
of Matrigel suspension of 5x105 WT, vector or catalase overexpressing
MCF-10AT clone cells. Mice were injected daily with 17b-estradiol
(0.125 mg/mouse). After 28 days, all mice were sacrificed, tumor from
the injection site was dissected and tumors were weighed with portions
of each fixed in neutral buffered formalin and embedded in paraffin for
histological examination. A) Photograph of tumors from mice. Tumors
from mouse, (B) Representative images of 10x of H&E stained section of
tumor, (C) Representative images of 10x of Ki67 immuno-reactivity of
tumor section detected by immunofluorescence confocal microscopy
using Alexafluor 488, and (D) Representative images of 40x of H&E
stained section of tumor.
doi:10.1371/journal.pone.0054206.g008

Table 3. Suppression of xenograft growth of 4-OH-E2 transformed MCF-10AT cells (i) by treatment with ROS scavengers – Ebselen
and overexpression of antioxidant enzyme – catalase.

Experimental Groups # of Mice # of Mice with Tumors (%) Tumor Weight (gm) Duration (Days)

MCF-10A 4 0/4 (0%) ND 28

MCF-10AT 4 4/4 (100%) 0.2660.08 28

MCF-10AT/Vector 4 4/4 (100%) 0.2160.04 28

MCF-10AT/Catalaseovx 4 0/4 (0%) ND 28

MCF-10AT/Ebselen 4 0/4 (0%) ND 28

ND = Not detected.
doi:10.1371/journal.pone.0054206.t003
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signaling pathways [37–39]. Therefore, we determined whether

estrogen induced oxidants in normal mammary epithelial cells

activate PI3K and AKT signaling pathways during neoplastic

transformations of MCF-10A. We found that repeated treatments

of MCF-10A cells with E2 and 4-OHE2 increased phosphoryla-

tion of both PI3K and AKT in cells treated with regimen of

estrogen which produced cell transformation (Fig. 9). The

activation of PI3K and AKT phosphorylation by 4-OHE2 were

about 30% and 120% higher than E2 or 2-OHE2 respectively

(Fig. 9). Phosphorylation of both PI3K and AKT was attenuated

by co-treatment with either biological (Fig. 10) or chemical ROS

modifiers (Fig. 11). Interestingly, we also observed that silencing of

AKT1 (Fig 12A&B), significantly diminished 4-OHE2 induced

neoplastic transformations of MCF-10A cells (Fig. 12). These data

support that intracellular ROS induced by 4-OHE2 may activate

AKT signaling pathway which favors survival and proliferation of

cells, both required for malignant transformation.

4-OH-E2-induced ROS through redox signaling
modulates cell cycle genes

We investigated whether 4-OH-E2-induced ROS signaling is

involved in the modulation of cell cycle genes during the

conversion of normal breast epithelial cells to malignant cells.

Using a normal cell line (MCF-10A) that develop transformed

clones in response to 4-OH-E2, the expression of cell cycle genes,

cdc2, PRC1 and PCNA and one of transcription factors that

control the expression of these genes – nuclear respiratory factor-1

(NRF-1) was measured by real time RT-PCR [13]. After exposure

of 8 h following two 48 h treatments with 4-OH-E2 (the treatment

regimen that produces neoplastic cell transformation); we observed

a significant increase in the mRNA expression of PRC1, Cdc2,

NRF-1 and PCNA (Fig. 13). We then determined whether 4-OH-

E2-induced expression of cell cycle genes was modulated by

oxidants. MCF-10AT transformed cells were pretreated for 2 h

with the antioxidants ebselen (20 mM) and NAC (10 mM) followed

by a 8 h 4-OH-E2 treatment. As shown below in Fig. 13, real-time

PCR analysis showed that overexpression of MnSOD and catalase

as well as co-treatment with Ebselen and NAC markedly inhibited

4-OH-E2 induced PCNA expression (Fig. 13A) when compared to

4-OH-E2 treatment alone. Similarly, overexpression of catalase

that detoxifies hydrogen peroxide significantly inhibited 4-OH-E2-

induced expression of Cdc2, PRC1 and NRF1(Fig. 13B). Next, we

evaluated whether the oxidant-dependent expression of cell cyclin

genes was a function of AKT dependent signaling. We found that

silencing of AKT1 significantly inhibited 4-OHE2 induced

expression of the cell cycle gene, PCNA (Fig. 13A).

Discussion

We present evidence here for the first time that reactive oxygen

species (ROS) – induced by repeated exposures to 4-hydroxy-

estradiol, a predominant catechol metabolite of 17 b-estradiol,

caused malignant transformation of immortalized human mam-

Figure 9. 17 b-Estradiol (E2) and its metabolites differentially
activate PI3K/AKT signaling pathway during mammary trans-
formation. A. Estrogen-induced PI3K phosphotylation. B. Estrogen-
induced AKT phosphotylation. MCF-10A cells were exposed to a
carcinogenic regimen of E2 and its metabolites – 2-OH-E2 or 4-OH-E2 as
described in the legend of figure 2. At the end of transformation
process, cells were treated for additional 30 minutes with E2, 2-OH-E2
or 4-OH-E2, respectively. The cellular extracts from treated and controls
cells were immuno-precipitated with PI3K or AKT specific monoclonal
antibodies and followed by Western detection of PI3K or AKT
phosphorylation using phosphor-threonine antibody. Results are
expressed as mean fold change of three separate experiments.
*P,0.05, significantly different from contol. **P,0.001 indicates
significantly different from control.
doi:10.1371/journal.pone.0054206.g009

Figure 10. Inhibition of 4-OH-E2-induced phosphorylation of
PI3K (A) and AKT (B) by biological ROS modifiers. A. Inhibition of
4-OH-E2-induced PI3K phosphotylation by overexpression of MnSOD
and catalase. B. Inhibition of 4-OH-E2-induced AKT phosphotylation by
overexpression of MnSOD and catalase. For investigating inhibition of
4-OH-E2-induced cell transformation by ROS modifiers, MCF-10A cells
were transfected with 50 MOI adenovirus expressing catalase or
MnSOD. Cells overexpressing catalase or MnSOD were exposed to a
carcinogenic regimen of 4-OH-E2 as described in the legend of figure 2.
At the end of transformation process, cells were treated for additional
30 minutes with 100 ng/ml 4-OHE2. The cellular extracts from treated
and controls cells were immuno-precipitated with PI3K or AKT specific
monoclonal antibodies and followed by Western detection of PI3K or
AKT phosphorylation using phosphor-threonine antibody. Results are
expressed as mean 6 SD of three separate experiments with control set
as 100%. *P,0.05 indicates significantly different from E2, (P,0.05).
**P,0.05, significantly different from control.
doi:10.1371/journal.pone.0054206.g010
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mary epithelial MCF-10A cells. 4-OH-E2 transformed cells are

not only tumorigenic in mice but also display invasive properties as

well as proliferation independent of growth factors. Co-treatments

of 4-OH-E2 transformed cells with biological or chemical ROS

scavengers prevented tumorigenic conversion of MCF-10A cells.

This was further evident from inhibition of estrogen-induced

breast tumor formation in the xenograft model by overexpression

of the antioxidant enzyme, catalase or by co-treatment with a

chemical antioxidant, Ebselen. These findings strongly support the

idea that 4-OH-E2-induced ROS are required for estrogen-

induced breast tumor formation. 4-OH-E2-induced malignant cell

transformation may be mediated, in part, by redox-sensitive signal

transduction pathways.

The mechanism by which estrogen is involved in the

development of malignant breast lesions is not clear. Recent

studies indicate that mammary tumors can develop in the absence

of a functional ERa [25]. Although tamoxifen and other

antiestrogens are thought to prevent cancer through their actions

at the ER, other mechanisms cannot be ruled out as these

compounds also block metabolism and redox cycling of estrogen

and are free radical scavengers [26]. 4-OH-E2 induces an

estrogenic response in the uterus of ERa null mice, and this

response is not inhibited by the antiestrogen ICI182780 [27].

These findings suggest that estrogen-dependent growth of cells is

regulated not only by nuclear ER-mediated genomic signaling

pathways, but also by non-genomic pathway(s). Genomic and non-

genomic actions of estrogen may produce complementary effects

that are required for cellular transformation. Estrogen is genotox-

ic, as seen by the presence of DNA adducts in mammary tissues

from ERKO/Wnt-1 mice [40,41]. Although the formation of

DNA adducts may lead to gene mutation, this type of DNA

damage appears to be a late event arising from E2 metabolism. We

and others have shown that mitochondria are significant targets of

estrogen [28,42]. Recently, we reported that physiological

concentrations of E2 stimulate a rapid production of intracellular

ROS in epithelial cells which depends on cell adhesion, the

cytoskeleton, and integrins [28,42]. These events occur earlier

than ER-mediated genomic actions. E2-induced ROS production

does not depend on the presence of ER on breast cancer cells as

ER-cell lines MDA-MB 468 produced ROS equal to or more than

that of ER+ MCF7, T47D, and ZR75cell lines [28].

4-OH-E2 has been implicated in transforming MCF-10A cells

via ROS formation based on inhibition of anchorage independent

growth of MCF-10A cells [24]. This study did not show in vivo

tumor formation of transformed cells. The main difference

between of our work and previous reports is that our transformed

clones are tumorigenic in mice. The overexpression of catalase

that converts hydrogen peroxide to water and Ebselen, a

glutathione peroxidase mimic inhibited cell transformation and

tumor formation. This is important because MCF-10A cells are

easily transformed in an in vitro system, even by mild stress such as

reduced growth factor media or hypoxic conditions [23]. Both E2

and 4-OH-E2 treatment of MCF-10A cells, increased the

formation of ROS as compared to untreated cells, whereas 2-

OHE2 induced the minimum increase in ROS formation in

MCF-10A cells. Over-expression of biological ROS modifiers and

chemical scavengers of ROS prevented 4-OH-E2-induced an-

chorage independent growth of MCF-10A cells. We observed

similar results with 3-D culture of transformed cells using

HuBiogel and xenograft tumor growth. These findings suggest

that ROS induced by repeated exposures to 4-OH-E2, a

predominant catechol metabolite of E2, cause transformation of

immortalized human mammary epithelial cells with malignant

growth in nude mice. Since 4-OH-E2 induces more ROS

formation compared to E2 in MCF10A cells, the accumulation

of 4-OH-E2 in the breast is expected to augment ROS formation

here as well. 4-OH-E2 strongly binds to ER [43–46] and it takes

longer to dissociate from the ER than E2 [45,46]. The greater

ROS production, ER action, and breast tissue accumulation of 4-

OH-E2 compared to E2 may account for its greater carcinoge-

nicity in MCF-10A cells.

It has been wrongly concluded by Parks et al [24] that redox

cycling of catechol estrogen is the source of ROS. Catechol

estrogens, particularly 4-OH-E2, via nonenzymatic auto-oxida-

tion, may undergo redox cycling to produce reactive semiquinone

and quinone intermediates with concomitant production of ROS

[10–12]. However, this redox reaction of catechol estrogens is

enhanced in the presence of Cu2+ or Fe3+ ions and by enzymatic

catalysis by cytochrome P450 oxidases or peroxidases, which is

accompanied with an increased generation of ROS. Furthermore,

Parks et al [24] implied the contribution of redox cycling of

catechol estrogen generating ROS based on indirect evidence

using a non-specific inhibitor of cytochromes P450, SKF525A and

dicumarol, an inhibitor of quinine reductase [47]. Dicumarol can

also inhibit mitochondrial diaphorase, which is involved in

reduction of Coenzyme Q10 in the mitochondria [48]. Similarly,

SKF-525A inhibits mitochondrial oxidative metabolism in intact

cells and isolated mitochondria [49]. Lower ROS formation

observed in the presence of SKF525A and dicumarol may be as a

Figure 11. Inhibition of 4-OH-E2-induced phosphorylation of
PI3K (A) and AKT (B) by Chemical ROS modifiers. A. Inhibition of
4-OH-E2-induced PI3K phosphotylation by co-treatment with Ebselen
and N-acetylcysteine (NAC). B. Inhibition of 4-OH-E2-induced AKT
phosphotylation by by co-treatment with Ebselen and NAC. For
investigating inhibition of 4-OH-E2-induced cell transformation by
ROS modifiers, MCF-10A cells pretreated for 2 hrs with 40 uM Ebselen
or 10 mM NAC and were exposed to a carcinogenic regimen of 4-OH-E2
as described in the legend of figure 2. At the end of transformation
process, cells were treated for additional 30 minutes with 100 ng/ml 4-
OHE2. The cellular extracts from treated and controls cells were
immuno-precipitated with PI3K or AKT specific monoclonal antibodies
and followed by Western detection of PI3K or AKT phosphorylation
using phosphor-threonine antibody. Results are expressed as mean 6
SD of three separate experiments with control set as 100%. *P,0.05
indicates significantly different from E2, (P,0.05). **P,0.05, significant-
ly different from control.
doi:10.1371/journal.pone.0054206.g011
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result of inhibition of the mitochondrial electron transport chain.

Increased ROS formation is observed within 30 seconds of E2

treatment [42]. Due to the speed of ROS production as observed

in our study, it is unlikely that redox cycling of 4-OHE2 is the

source of these oxidants. Furthermore, in our studies of E2-

induced ROS generation in MCF-7 and other cells, hydroxylated

estrogen metabolites or adducts immediately after addition of E2

were not detected which also rules out the possibility of ROS

generation by redox cycling of hydroxylated estrogens.

Little is known about the potential direct involvement of

estrogen-induced ROS in the development of breast cancer. We

now know that the delicate intracellular interplay between

oxidizing and reducing equivalents allows ROS to function as

second messengers in signaling pathways controlling cellular

proliferation and transformation [50,51]. Recent studies implicate

a role for ROS in cell transformation and several lines of indirect

evidence support a role for ROS in the development of breast

cancer [52,53], We have previously reported that, in Syrian

hamsters, estradiol-induced kidney tumor formation was reduced

by the antioxidants N-acetylcysteine, vitamin C, sodium 2-

mercaptoethanesulfonate (cytoprotective thiol-containing agent),

and Ebselen (a substance with glutathione peroxidase-like activity)

[54,55]. Consistent with this finding, estrogen-induced testicular

and uterine cancers are prevented by pentoxifylline, a compound

with antioxidant effects stemming from its ability to block synthesis

of the inflammatory mediators, IL-1b and TNFa [52]. Overex-

pression of manganese superoxide dismutase (MnSOD), the

mitochondrial enzyme responsible for superoxide detoxification,

blocks the appearance of malignant phenotypes [56], and the loss

of this enzyme partly contributes to malignant phenotypes [57,58].

Not surprisingly, MnSOD knockout mice exhibit increased

oxidative DNA damage [59]. MnSOD expression is less frequently

found in tumor cells of invasive breast carcinomas than in non-

neoplastic breast epithelial cells [60]. Several epidemiological

studies have shown that MnSOD polymorphic populations have

an increased risk of breast cancer [61–63]. The recent findings

that 4-OH-E2 accumulates in the breast tissue of cancer subjects

[64–66] and predominant 4-hydroxylation of E2 occurs in the

target organs of cancers [67–69] suggest that the target organ of

cancer would be particularly sensitive to 4-OH-E2-induced ROS

formation. In our studies, overexpression of catalase and

antioxidant (Ebselen) prevented 4-OH-E2-induced anchorage

independent growth of MCF-10A cells as well as xenograft tumor

growth. These results provide support to the concept that that 4-

OH-E2-induced ROS are required for estrogen-induced breast

tumor formation.

How estrogen-induced ROS signaling is involved in breast

carcinogenesis is not clear? While higher doses of ROS induce

oxidative damage in the genome of cells leading to cell apoptosis,

exposure of low levels of ROS produce genomic instability as well

as transduce signals for cell growth, cell transformation and cell

invasion. This view is consistent with our findings that estrogen-

induced ROS can lead to increased phosphorylation of kinases,

such as AKT. Several investigators have concluded that estrogen-

induced AKT activation is promoted by membrane bound ERa or

ERb [70,71]. There are no known functional motifs within the

structure of the ER that can promote second messenger signaling.

There are reports which show no correlation between ERa/b
expression patterns and the activation of AKT-1/-2 in estrogen

treated breast cancer cell lines. 17a-estradiol, through an ER

independent mechanism, activates PI3K-AKT signaling [72].

Recently, Lee et.al. [70] reported that up-regulation of PI3K/

AKT signaling by E2 is mediated through activation of ERa, but

not ERb. In ovarian cancer cells, 4-OH-E2 induces AKT

phosphorylation while 2-OH-E2 did not [73]. Our study showed

that 4-OH-E2 increased AKT phosphorylation in ERa lacking

MCF-10 cells, while 2-OH-E2 did not increase AKT phosphor-

ylation. The PI3K inhibitor, LY294002, and ROS modifiers

blocked 4-OH-E2-induced AKT phosphorylation. AKT activity

depends on its phosphorylation, which is positively regulated by

PI3K and negatively regulated by a class of protein phosphatases

(PPs) [74]. AKT can be activated by both E2 and H2O2 [70–76].

ROS reversibly regulate cysteine-based phosphatases [50]. The

ability of 4-OH-E2 and H2O2 to activate AKT may be

attributable to inactivation of cysteine-based phosphatases by

ROS [50,70–76]. The reversible inactivation of phosphatases,

such CDC25A and PTEN, by estrogen-induced ROS may be a

key component of AKT activation [50,75]. Thus, some of the

Figure 12. 4-OH-E2-induced cell transformation is inhibited by AKT1 silencing. Inhibition of AKT expression by its silencing detected by
Western Bloting (A) and confocal microscopy (B). (C) Detection of inhibition of 4-OH-E2-induced cell transformation by AKT1 silencing by anchorage-
independent growth assay. The MCF-10A cells were transfected with pre-designed and verified human shRNA for AKT1 and control shRNA plasmid
consisting of scrambled shRNA sequence that does not lead to the specific degradation of AKT1 (OriGene Technologies, Inc. Rockville, MD). These
cells were exposed to a carcinogenic dose of 4-OH-E2 (10 ng/ml) as described in Fig. 2. The cellular extracts from treated and controls cells were
separated on SDS-PAGE, transferred to the membrane, and followed by Western detection of AKT. Images of 40x of AKT immuno-reactivity of 4-OH-
E2 treated wild type and Akt silenced MCF-10A cells were acquired by immunofluorescence confocal microscopy using Alexafluor 488. Anchorage
independent growth, an indicator of neoplastic transformation of cells, was assessed in soft agar. Images were acquired by using an Olympus C-5060
digital camera attached to the Nikon TE2000U inverted microscope with a 4x objective. Colony efficiency was determined by a count of the number
of colonies .63 um in diameter and data expressed as mean of five wells +/2 S.D.
doi:10.1371/journal.pone.0054206.g012
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nongenomic pathways by which estrogen activates AKT pathways

can be explained based on estrogen-induced ROS transducing

signal to the respective specific phosphatse.

We and others have recently discovered that estrogen-induced

oxidative bursts occur exclusively in perinuclear regions. This

surge in ROS production may target inducible promoters,

signaling transcription-initiation complex assembly and subse-

quently, driving estrogen-induced gene expression [29]. While

studying mitochondrial regulators of cell cycle progression, we

discovered that E2-induced G1 to S phase transition is associated

with an increase in intracellular ROS levels [29]. These findings

strongly support the idea that both E2-induced ROS and ER

activity are required for breast cancer cell proliferation [29]. AKT

by phosphorylating some of the transcription factors controls their

transcriptional activity in a redox sensitive manner. The

transcription factors AP-1, NRF-1, E2F, NFkB and CREB are

responsive to both oxidants and estrogen. It is possible that

estrogen-induced ROS transduce signals to the nucleus for the

activation of transcription factors such as AP-1, CREB, E2F, NF-

kB, and NRF-1 to regulate their downstream target genes involved

in cell transformation, cell cycle, migration and invasion [29,50].

In this study we found that the expression of cell cycle genes, cdc2,

PRC1 and PCNA and one of transcription factors that control the

expression of these genes – nuclear respiratory factor-1 (NRF-1)

was significantly up-regulated during the 4-OH-E2-mediated

malignant transformation process. The increased expression of

these genes was inhibited by ROS modifiers as well as by silencing

of AKT expression. Our findings suggest that 4-OH-E2-generated

ROS activate AKT, which could then presumably directly

phosphorylate and activate NRF-1 transcription factor controlling

cell cycle, cell migration or cell invasion genes. Findings of this

study provide support to the concept that up-regulation of NRF-1

mediated cell cycle genes through redox-sensitive AKT signal

transduction pathway may contribute in 4-OH-E2-induced

neoplastic growth of cells (Fig 14).

The PI3K/AKT signaling pathway seems ubiquitous to

carcinogenic conversions [77–79]. Oxidant mediated hyperactiva-

tion of AKT can phosphorylate and inhibit pro-apoptotic proteins

such as BAD and caspase 9 while phosphorylating and activating

pro-growth transcription factors such as ASK1 and GSK3. The

outcome of this hyperactivation could therefore be cells surviving

and proliferating in a high oxidative state. If these cells have been

initiated by acquisition of pre-tumorigenic lesions by 4-OHE2

metabolism, oxidant mediated growth of these cells could be the

basis for malignant transformation of mammary cells. The loss of

PTEN activity, hyperactivation of PI3K/AKT signaling pathway,

excess estrogen exposure and oxidative stress have been implicated

in breast carcinogenesis [50]. In this study, we also observed that

PI3K/AKT signaling proteins were hyperactivated in MCF-10A

cells treated repeatedly with estradiol and 4-OHE2 though the

activations of 4-OHE2 were more than those of E2 and 2-OHE2

respectively. Importantly, chemical and biological antioxidant

mitigated PI3K/AKT activations and inhibited estrogen induced

mammary tumorigenesis. To rule out the possibility that

antioxidant regulation of PI3K/AKT activations are not related

to estrogen induced mammary tumorigenesis, we silenced AKT1

expression, the AKT isoform implicated in survival, growth and

tumorigenesis of cells including mammary cells [77–79]. We found

that silencing of this gene prevented estrogen’s ability to transform

MCF-10A cells. These data indicate that estrogen induced redox

activation of PI3K/AKT signaling pathway is essential for

mammary tumorigenesis.

A substantial number of experimental and epidemiological

studies support an important role for AKT in tumorigenesis. PI3-

kinase and AKT act as oncogenic determinants in several human

cancers. AKT genes are amplified or overexpressed in gastric,

ovarian, breast, pancreatic, and prostate cancers [80,81]. AKT1

levels are higher in a panel of human breast carcinoma cell lines

than in breast epithelial cells, particularly those with higher HER2

expression. AKT1 activity is increased by either E2 or IGF-I in

Figure 13. Up-regulation of cell cycle genes during 4-OHE2 induced neoplastic transformation of mammary cells and their
expressions are inhibited by ROS modulators. A) Fold change of PCNA transcripts in 4-OHE2 transformed cells treated with ROS modulators, or
transformed cells transfected with Akt1 RNAi. B) Fold change of cell cycle genes in 4-OHE2 transformed cells overexpressing catalase. MCF-10A cells
were seeded for transformation as described in the legend of Fig. 2. At the end of transformation period, cells were treated for additional 18 hours
with vehicles or 4-OH-E2 (100 ng/ml). For inhibition of 4-OH-E2-induced cell transformation by ROS modifiers, MCF-10A cells were transfected with 50
MOI adenovirus expressing catalase or MnSOD or treated with an antioxidant Ebselen (40 uM) or 10 mM NAC. Cells were first washed with cold PBS
containing protease inhibitors, detached with trypsin, and RNA was isolated from 2.06106 cells. The TaqMan primers and probe recognizing PCNA,
NRF1, PRC1, CDC2 and 18S were used in this study. Quantitative gene expression analysis was performed by TaqMan-based QRT2PCR on ABI 7700
(PE Applied Biosystems, Foster City, CA, USA). The fold change in gene expression was calculated using the {Delta} Ct method with 18S rRNA as the
internal control. Results are expressed as mean 6 SD of three separate experiments with control set as 100%. *P,0.05, significantly different from
control. **P,0.05 indicates significantly different from 4-OH-E2, (P,0.05).
doi:10.1371/journal.pone.0054206.g013

Estrogen-Induced Malignancy via Redox Signaling

PLOS ONE | www.plosone.org 13 February 2013 | Volume 8 | Issue 2 | e54206



estrogen-dependent MCF-7 cells, and both factors act synergisti-

cally to increase AKT1 activity and promote cell proliferation

[82]. Transgenic mice expressing AIB1 (ER co-activator) in the

mammary gland develop mammary hyperplasia and mammary

carcinomas. Increased activation of the PI3K/AKT pathway is

implicated in the development of mammary carcinoma in AIBI

mice [83]. AKT activation amplifies the proliferation induced by

cyclin D1 or HPV E7 during morphogenesis and cooperates with

these oncoproteins to promote proliferation and morphogenesis in

the absence of growth factors [82]. H-ras transformation of MCF-

10A cells results in upregulation of MAP kinase and PI3-kinase

signals [84,85]. Similarly benzo(a)pyrene quinone is reported to

induce anchorage-independent growth of MCF-10A cells which

depends on the activation of PI3K/AKT activation [86]. Chronic

activation of AKT2 leads to an increase of the events associated

with tumorigenesis [87]. Most importantly, AKT activation

disrupts mammary acinar architecture and enhances proliferation

in an mTOR-dependent manner [83]. Our study showed that the

exposure of 4-OH-E2 or E2 to normal human breast epithelial

MCF-10A cells produced transformed phenotypes. These cells

show increased AKT and increased cell number in the absence of

EGF or insulin. The 4-OH-E2-induced expression of genes

involved in proliferation was attenuated by the antioxidants.

Overexpression of catalase and MnSOD also reduced the extent of

4-OH-E2-dependent anchorage-independent growth of MCF-10A

cells and AKT activation. Taken together, these data indicate that

4-OH-E2-induced ROS activates the AKT pathway in MCF-10A

cells and the generation 4-OH-E2-induced malignant phenotype

of MCF-10A cell depends on the activation of PI3K/AKT

pathway.

In summary, the major novel finding which emerged from this

study is that ROS through the redox signaling pathway regulate

estrogen-induced breast tumor formation. Estrogen-induced ROS

can lead to increased phosphorylation of kinases, such as AKT,

with this effect being attributed to the redox regulation of redox-

sensitive phosphatse – PTEN. Inhibition of the increased

expression of cell cycle genes, cdc2, PRC1 and PCNA and one

of transcription factors that control the expression of these genes –

nuclear respiratory factor-1 (NRF-1) by ROS modifiers as well as

by silencing of AKT expression indicate that 4-OH-E2-induced

cell transformation may be mediated, in part, by up-regulating

NRF-1 mediated cell cycle genes through redox-sensitive AKT

signal transduction pathway. Whether there is a convergence of

both E2/ER mediated signaling (beta receptor and/or binding

proteins) and E2 induced ROS signaling effects on the transcrip-

tion factors which possibly act in synergy and contribute to the

growth and cancer progression is under investigation in our

laboratory. Findings of our study have major implications in

understanding the role of estrogen in initiation and progression of

breast cancer cells. Findings of this study not only provide a new

paradigm in understanding the mechanism of estrogen-induced

malignant cell transformation; it also provides important informa-

tion for the design of new antioxidant-based drugs or new

antioxidant gene therapy targeted for the prevention and

treatment of estrogen-dependent breast cancer.
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Figure 14. A scheme showing estrogen-induced ROS transduce signals to the nucleus for the activation of transcription factor NRF-
1 to regulate their downstream target genes involved in cell transformation and cell cycle presumably through a redox-sensitive
AKT pathway.
doi:10.1371/journal.pone.0054206.g014
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