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Abstract: Hydrogels are biocompatible polymers that are tunable to the system under study, allowing
them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are
used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding
cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and
survival). Emerging evidence suggests that the malignant properties of cancer cells depend on
mechanical cues that arise from changes in their microenvironment. These mechanobiological cues
include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion.
The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest
in and research on the biomedical applications of hydrogels has increased in the past 25 years, there
is still much to learn about the development of biomimetic hydrogels and their potential applications
in biomedical and clinical settings. This review highlights the application of hydrogels in developing
pre-clinical cancer models and their potential for translation to human disease with a focus on
reviewing the utility of such models in studying glioblastoma progression.

Keywords: cancer; glioblastoma; hydrogel; mechanobiology; mechanoreceptor; mechanotransduction

1. Cellular Microenvironment

The cellular microenvironment is characterized by a mixture of extracellular matrix
proteins, soluble signaling factors, neighboring cells, and the physical properties of the
niche that affect cell behavior through direct or indirect biomechanical and biochemical
signals [1,2]. Properties of the microenvironment, such as stiffness and composition, have
been shown to direct cell physiology and lineage [3,4]. Such findings have inspired research
to define the cellular microenvironment and its links to cellular behaviors using in vitro
tissue models that can mimic biomechanical conditions [5,6]. Here, we will discuss the
cellular niche, namely, the biological and mechanical properties of the extracellular matrix
(ECM), how cells sense these properties, and the dysregulation of cell-ECM interactions
in various disease states. How these factors, which are involved in crosstalk with cells,
contribute to cellular activities and overall health, will also be presented through a review
of the various research publications on the topic. This review will provide an in-depth
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overview of what is known and what is unknown about the biomechanics involved in cell-
microenvironment interactions, how the use of biomimetic hydrogel models can fill these
gaps in the knowledge, and the utility of biomimetic hydrogels in biomedical applications.

1.1. Extracellular Matrix

Tissues may be described as having two components: cellular and non-cellular. The
extracellular matrix is the non-cellular component and is composed of proteins, polysac-
charides, growth factors, signaling molecules, proteases, and water [7] (Figure 1). These
components are distributed heterogeneously rather than homogenously, resulting in unique
niche microenvironments for each cell as well as tissue-specific mechanical, physical, and
biochemical properties [7]. These play a large role in regulating and mediating cell behav-
iors. While the ECM is a mixture of many components, a large portion of it is composed
of proteins. These include proteoglycans such as hyaluronan, and fibrous proteins such
as collagens, elastins, fibronectins, and laminins [8]. These proteins function to anchor
cells to the ECM via focal adhesions and aid propagating signals between cells [8]. ECM
composition also affects physical properties such as elasticity, stiffness, porosity, static
architecture, and dynamic deformations of the matrix [9]. For instance, based on their
concentration, assembly, and crosslinking densities, the structural collagens and elastins of
the ECM significantly alter its mechanical properties such as composite strength, elasticity,
and mechanical resistance [10,11]. ECM properties are not static; they undergo dynamic
changes as the ECM is continuously being remodeled through protein degradation, deposi-
tion, or modifications that can be self-contained or caused by cellular activity [10]. In cases
such as tissue repair, the activity of growth factors and cytokines in the ECM cause matrix
metalloproteinases to activate for ECM remodeling [12]. Wound healing and tissue remod-
eling processes activate growth factors through mechanical and biochemical stimuli to
change ECM composition [13]. There are also specialized forms of ECMs that have proven
to be important regulators of tissue and cell behavior. For instance, basement membrane
is important structurally and functionally for blood vessels because of its involvement in
angiogenesis [12]. The ECM has also been shown to mediate or regulate stem cell fate, cell
proliferation, cell differentiation, cell migration, and tissue regeneration [11,14–16].

1.1.1. Cell-ECM Interactions

The cell and its ECM are involved in a dynamic reciprocity, through which cues from
the ECM and cellular activities are in crosstalk to maintain a healthy state [17]. Signaling
processes are one of the ways that the cell-ECM interactions are facilitated. Cell-matrix
adhesion sites, or focal contacts, enable communication between cells and the ECM through
physical connections of cellular integrins and cadherins to ligands in the ECM [15,16].
Focal contacts are important to cellular processes that require physical attachment to the
ECM, such as migration and angiogenesis [18]. Engagement of integrins and cadherins to
certain ligands can activate signaling pathways such as that of the Rho family of GTPases
to stimulate structural changes in the cell or induce other processes, therefore serving as an
important step in biochemical cell-ECM interactions [6,16].

Proteoglycans present in the ECM have functions such as inducing aggregation and
participating in ECM structure by adhering to structural proteins [19]. Some proteoglycans
reside on the surfaces of epithelial cells, where they act similar to cell-adhesion molecules
and bind collagens and fibronectin to anchor cells to the ECM [20,21]. In addition to these
vital functions, proteoglycans are active co-receptors that mediate cellular signaling by
binding soluble ligands in the ECM and encouraging the formation of receptor complexes
on cell surfaces [22,23]. Proteoglycan co-receptors are vital to various developmental
processes, and the loss of co-receptor function or mutation has been implicated in diseases
such as cancer and ischemic heart disease [23]. Therefore, the ECM also plays a crucial
role in mediating cell–cell communication, which will be discussed more thoroughly in
Section 1.2 of this review.
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Figure 1. Extracellular matrix (ECM) and cellular mechanotransduction. ECM components such as 
collagens can alter mechanical properties to induce changes in cellular signaling and gene or protein 
expression via mechanoreceptors and mechanotransduction proteins. Legend on the bottom left 
shows which ECM component is represented by each symbol. (Created with BioRender.com, ac-
cessed on 29 May 2022). 
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Figure 1. Extracellular matrix (ECM) and cellular mechanotransduction. ECM components such
as collagens can alter mechanical properties to induce changes in cellular signaling and gene or
protein expression via mechanoreceptors and mechanotransduction proteins. Legend on the bottom
left shows which ECM component is represented by each symbol. (Created with BioRender.com,
accessed on 29 May 2022).

Mechanobiology of the Cellular Microenvironment

The ECM is involved in mechanical crosstalk with cells [24], which relies on mechan-
otransduction proteins that help to regulate intracellular tensile response to mechanical
forces from the ECM [25]. Mechanical stimuli that cells may receive include shear stress,
membrane tension, force, strain, stiffness, and drag force [25]. These stimuli are listed in
Table 1 with the mechanotransduction proteins identified to be involved in recognizing the
stimuli and eliciting the response in cells. While the extracellular matrix of many cancers,
including colon, breast, and prostate cancer, is stiffer than that of healthy tissues [26,27], cell
deformability or reduced stiffness has been correlated to increased metastatic potential and
invasiveness in cancer. In a study of ovarian cancer cells of varying invasiveness, Xu et al.
found that the more-invasive ovarian cancer cell line was more deformable compared
to the less-invasive cell line [28]. In another study, Hayashi and Iwata confirmed that
cancer cells are softer (i.e., lower Young’s modulus) than normal cells using atomic force
microscopy [29]. Another study reported that cisplatin treatment caused decreased stiffness
and invasiveness of prostate cancer cells [30], suggesting that various cell lines may have
varied mechanical properties in the cancer state. Further controversy exists within the field
of glioblastoma biomechanics. Gliomas are highly variable; therefore, measurements of
tumor stiffness may vary depending on location of measurement [31]. Although some
GBM tissues were stiffer than healthy reference tissues, GBM tissues, on average, were less
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stiff than healthy tissues [31–33]. The controversy regarding GBM tumor stiffness could by
fueled by differences in methods of measurement, as there is currently no standard practice
in the field [34–36].

Mechanical stimuli coming from the extracellular environment can be processed by
cells through mechanotransduction pathways. The proteins of these pathways translate
mechanical cues to induce biochemical and genetic responses. For instance, integrins and
focal adhesion proteins are mechanotransduction proteins that communicate mechanical
forces to the cell cytoskeleton, and there have been some studies that show force-dependent
integrin activation [37–39]. Yes-associated protein (YAP) and other transcription factors
have been shown to translocate to the nucleus in stiffer substrates [40]. Similarly, E-cadherin
is a mechanotranducer of shear stress [41–43]. Many mechanotransduction proteins have
been studied in the context of specific cell types, including platelet endothelial cell adhesion
molecule-1 (PECAM-1) in skeletal muscle cells, G protein-coupled receptors in endothelial
cells, and vascular endothelial growth factor receptor 2 (VEGFR2) in chondrocytes [44–47].
Cell surface receptors also transduce mechanical signals to cells upon recognition of a
ligand that sustained force from the ECM, which can then cause conformational changes in
the mechanoreceptor to activate a protein signaling pathway to alter cellular processes [48].
Such membrane proteins are not the sole propagators of mechanical force; studies have
shown that there are mechanotransduction systems in cells that enable the progression of
force through a long distance [49]. Src and Rac1 have been shown to be activated at distances
from 30-60 µm from the original area the force was applied to, via cytoskeletal mediation
of the force [49,50]. Mechanical signals can also be transmitted throughout the cytoskeleton
to the nucleus via proteins such as linker of nucleo- and cyto-skeleton (LINC) complex 9
to change chromatin structure and cause nuclear stiffening [49,51]. Mechanotransduction
systems translate the numerous mechanical cues from the ECM into biochemical signals
interpreted by the cell that lead to signaling cascades that control transcription, proliferation,
migration, and many other cellular processes [52–55] (Figure 2). For instance, smooth
muscle cells can migrate along gradients of substrate stiffness through durotaxis [56]. ECM
biomechanics is not only vital for cellular processes, but also regulates tissue and organ-
level processes such as tissue differentiation, morphogenesis, and development [57–60].
Therefore, elucidating the interplay of ECM biomechanical and biochemical signals with
mechanotransduction proteins and pathways is critical to understanding diverse aspects of
cellular and tissue health.
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Figure 2. Application of extracellular stress leads to increased intracellular calcium concentrations.
Matthews et al. applied high levels of stress to cells (A) and found that when imaged via Fura-2AM
ratio imaging, it led to a transient increase in calcium concentrations, as shown in pseudocolor images
ranging from blue to yellow (B) that is quantified (C) as a function of time for control and gadolinium
chloride-treated cells. (Figure reprinted/adapted with permission from Ref. [61]. Copyright 2006,
National Academy of Sciences.
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Table 1. Mechanotransducers of various mechanical properties and human cellular responses.

Functional Category Mechano-Transducers Mechanical Signal Examples of Cellular Responses

Cell Mechanical and Physical Properties

Integrins Force RhoA activation leading to increased cell stiffness [62,63]

Focal Adhesions Force Actin polymerization [55]

Yes-associated protein (YAP) Force Oligodendrocyte morphology and maturation [40]

Titin Force Implicated in development of mechanical unloading-induced
diaphragm weakness [64]

Stress Fibers (actin filaments, myosin II, etc.) Force Transmit tension to other proteins, regulate assembly of
filaments [65]

Vinculin Force Transmit tensile force [66]

Myosin II Force Increased cortical tension and cell membrane fusion
promotion [67]

Vasodilator stimulated phosphoprotein
(VASP), zyxin, and Testin LIM domain

protein (TES)
Force Regulate junction dynamics [68]

Neurogenic locus notch homolog
protein 1 (NOTCH1) Shear Stress Altered cell morphology [69]

Piezo1 Force Vascular structure [70]

Lamin A Rigidity Nuclear mechanics [71,72]

Integrins Force Tyrosine Phosphorylation, MAPK signaling [15]

Alters Signaling Pathways

Focal Adhesions Force Integrin convergence [73]

Fibronectin Force Altered integrin binding [74]

T-cell receptor (TCR) Force T-cell calcium and IL-2 secretion [75]

Talin Force Recruitment of vinculin to focal adhesion complexes [76]

Piezo2 Force Serotonin release [77]

Vinculin Force Enhanced PI3K activation [78]

p130Cas Force Activation of Cas signaling pathway [79]

Syndecan-1 Force Activation of pro-inflammatory and growth-stimulating
pathways [80]
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Table 1. Cont.

Functional Category Mechano-Transducers Mechanical Signal Examples of Cellular Responses

Alters Signaling Pathways

Transient Receptor Potential Cation Channel
Subfamily V Member 4

(TRPV4)
Force Reorientation and flow-mediated nitric oxide production [81]

Ion Channels Force Cell signaling [82]

von Willebrand factor—glycoprotein Ib
complex (VWF-GPIb) Shear Stress Enhanced calcium triggering in platelets and T cells [83]

Platelet endothelial cell adhesion molecule-1
(PECAM-1) Shear Stress Tyrosine kinase Src and PI3K signaling activated [84]

G-protein coupled receptor 68 (GPR68) Shear Stress Component in signaling for cardiovascular
pathophysiology [85]

β-catenin Shear Stress Activated expression of FOXC2 transcription factor [86]

Caveolin-1 and β1 Integrin Stiffness FA assembly and turnover [62]

rho-associated, coiled-coil-containing
protein kinase

(ROCK) 1 and 2
Stiffness Regulation of RhoA signaling pathways [87]

YAP Stiffness Altered translocation depending on surrounding
stiffness [88]

Piezo1 Force Ion Permeation and selection [89]

C-X-C motif chemokine receptor (CXCR1/2) Shear Stress Mediates laminar shear-stress-induced endothelial cell
migration [90]

Transforming growth factor beta 1 (TGFβ1) Shear Stress Collagenase-dependent fibroblast migration [91]

Migration

RhoA Force Collective cell migration [92]

Vinculin and metavinculin Force Regulation of cell adhesion and motility [66]

NOTCH1 Shear Stress Decreased proliferation [69]

Caveolin 1 Rigidity Decreased proliferation [93]
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Table 1. Cont.

Functional Category Mechano-Transducers Mechanical Signal Examples of Cellular Responses

Cancer

YAP1 Shear Stress
Stiffness

Cancer cell motility [54]
Nuclear localization of YAP1 [94]

TGFβ1 Shear Stress Human melanoma cell tumor invasiveness [91]

PI3K/Akt pathway Stiffness Overexpression of VEGF in hepatocarcinoma cells [63]

TRPV4 ion channel Stiffness Tumor vascularization through down-regulation of Rho
kinase activity [95]

microRNAs Stiffness Altered expression in different stiffness conditions [96]

Twist1 Stiffness Induction of EMT and tumor metastasis [97]

Myocardin related transcription factor A
(MRTF-A) Stiffness Regulates miRNAs involved in myogenic differentiation [88]

Differentiation

Focal Adhesions Force Osteogenic differentiation [98]
Myofibroblastic differentiation [99]

Transient Receptor Potential Cation Channel
Subfamily M Member 7

(TRPM7)
Shear Stress Osteogenic differentiation of mesenchymal stromal cells [100]
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1.1.2. Cell-ECM Interactions in Cancer

Problems in mechanotransduction can result from changes in ECM mechanical prop-
erties and defects in proteins involved in mechano-sensitivity [101]. Since mechanotrans-
duction is essential for modulating cellular homeostasis, its failure is linked to metastasis
and cancer progression [96]. For instance, there are many proteins implicated in mechan-
otransduction in glioblastoma (GBM). Talin1 inhibition has been observed to decrease cell
spreading and limit cell stiffness changes of glioma cells in response to ECM stiffness,
proving its role as a mechanosensory [76]. Non-muscle myosin II depletion reduced the
effect of matrix confinement on GBM cell motility [102]. Constitutive activation of RhoA
GTPase caused lower sensitivity to matrix stiffness of GBM cells in toxicity assays [55].
Increased matrix stiffness was correlated to Hras, RhoA, and rho-associated, coiled-coil-
containing protein kinase 1 (ROCK1) upregulation, which are mechanosensor proteins that
are implicated in migration and proliferation in cancers in general [61,87]. Integrins are
also particularly important in mechanotransduction by relaying signals from the ECM to
the cell actin cytoskeleton and are essential to cell migration and cell-matrix adhesion in
cancer [103].

Identifying proteins involved in mechanotransduction and their roles in cancer pro-
gression can be an essential part of developing therapeutic strategies to hinder cancer
progression and malignancy. Certain studies have shown the potential effects of targeting
mechanotransduction proteins on cancer cells. Knock-down of CD44 led to decreased
structural microtubule, vimentin, and glial fibrillary acidic protein expression and de-
creased migration and cell stiffness [104]. Targeted inhibition of integrins in the tumor
microenvironment has been shown to reduce angiogenesis and inhibit tumor growth [103].
While these studies show partial inhibition of mechanical sensitivity as decreasing invasive
properties of tumor cells, other studies have shown that tumor initiating cells are mostly
insensitive to mechanical cues from the ECM and that mechanically-insensitive cells have
increased motility and invasiveness in vitro [28,105–109]. A complex approach is needed
to target mechanical sensitivity in cells through mechanotransduction-based therapeutics
for it to become a promising mode of cancer treatment. Therefore, extensive research in
mechanotransduction and cell-ECM crosstalk is essential.

1.2. Neighboring Cells and Secreted Factors

In addition to the ECM components, cells are surrounded by heterogeneous pop-
ulations of neighboring cells that are unique to the tissue and sub-location within the
tissue [110]. How cells communicate and influence one another is crucial to maintaining
homeostasis and coordinating processes that require several cells, such as tissue formation
and regeneration.

Cells can interact through secreted signals that are recognized by membrane-bound
receptors through either paracrine signaling, between cells, or autocrine signaling, which
is from one cell to itself. In fact, cancer cells are often able to “override” signals from
neighboring cells through autocrine pro-survival and proliferation signals. It is crucial to
better understand the specific interactions between cells that promote healthy conditions or
lead to disease states. For instance, Zervantonakis et al. found that fibroblasts in the tumor
microenvironment of HER2 positive breast-cancer cells reduced drug sensitivity through
paracrine signaling that activates mechanistic target of rapamycin (mTOR, anti-autophagic)
and anti-apoptotic signals [111]. In addition to elucidating mechanisms of tumor resistance,
cell–cell interaction dynamics can provide insights to developing self-assembled multicellu-
lar structures in vitro. Mueller et al. demonstrated that by utilizing pulsed light activation
to control engineered photo-switchable cell-cell interactions, they were able to control the
spatial organization of multicellular structures without a scaffold [112]. This highlights the
importance of maintaining cell interactions in efforts to mimic physiological conditions
in vitro.

Cells are also involved in communications through physical contacts with one another.
This is another way that mechanical stimuli may play a role in influencing cellular processes.
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Physical contacts are also involved in collective migration, which has been exhibited by
metastatic and invasive cancer cells [113]. The cytoskeletal tension at cell-cell contacts can
serve as a significant regulator of mechanotransduction pathways, and there is a wide field
of study on the mechano-sensing implications of cell-cell contacts such as focal adhesions
and adherens [114]. One method in particular, physically interacting cell sequencing (PIC-
seq), is a novel sequencing approach that combines cell sorting, RNA-sequencing, and
computational modeling to describe complex cellular interactions in different contexts [115].
However, the heterogeneity and complexity of the interactions between cells and with the
ECM need to be better recapitulated in vitro to provide a more accurate understanding of
cellular communication networks.

1.3. Hydrogels as In Vitro Models of the Cellular Microenvironment

Three-dimensional hydrogel models of the cellular microenvironment have gained
interest in recent years for their improved mimicry of in vivo conditions as opposed to
two-dimensional cell cultures (Table 2). These hydrogel models have been extensively
studied and compared to 2D culture and in vivo conditions. Cells have been shown to have
differing spatio-physical properties in 3D and conventional 2D culture conditions [116–119].
Hsieh and colleagues showed that cells cultured in 2D exhibit greater drug sensitivity
than in vivo, and 3D cultures exhibit chemosensitivities comparable to solid tumors pro-
vided that they have similar cell density [120]. Expanding the cellular environment from
2D to 3D has also been shown to affect proliferation and metabolism [120–122]. Using
3D cultures has led to significant advancements in the understanding of cell migration
strategies as well, since some of these could not be observed in 2D cultures [123–125]. For
instance, fibroblasts have several different migration strategies that are utilized in different
microenvironmental conditions, demonstrating cellular plasticity [125]. Such findings
prompt questions about the mechano- and bio-sensing abilities of cells in relation to their
environments. In this section, we will elaborate on the different methods utilized thus far
to improve cell-microenvironment mimicry in the form of hydrogel models, the cellular
response to such models in contrast with conventional cell-culture methods, and factors to
be considered in crafting a hydrogel model.

Table 2. 2D versus 3D cultures [117–119,123,126–128].

2-Dimensional Culture 3-Dimensional Culture

Advantages Disadvantages Advantages Disadvantages

Simple Does not mimic
in vivo structure

More like in
vivo structure Expensive

Reproducible Fewer interactions
with environment Niches are available Time consuming

Inexpensive

Access to unlimited
amount of nutrients

from media

Access to nutrients is
not unlimited, varies Less reproducible

Less diverse
phenotype and

polarity

Can form organs or
spheroid clusters

of cells

More complex and
difficult to carry out

Altered cell
morphology

Allows study of
cell-cell and

cell-ECM interactions

Fewer interactions
with environment

1.3.1. Mimicking Cellular Microenvironment Biomechanics

There have been many diverse approaches to capturing the complexity of the ECM
and the biomechanical cues directed by it via in vitro hydrogel models. Tissue specificity
is a crucial factor to consider in developing an ECM-mimetic hydrogel-based cell culture
system, since the cells of each tissue produce and degrade matrix constituents, leading to
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variable ECM composition, bioactivity, and mechanics amongst tissues [129] (Figure 3). In
the bone, the ECM is calcified to provide structural support to the tissue, while in tendons
it is structured to provide tensile strength [130,131].

Most natural ECM mimics in vitro have been hydrogels composed of ECM com-
ponents such as collagen, fibronectin, or hyaluronic acid. Such hydrogels have been
significant in studying cellular behavior in 3D environments as well as cell response to
controlled mechanical properties such as stiffness, elasticity, and rigidity [63,132–139].
Photo-crosslinking, chemical crosslinking, changing fiber density, and the development of
‘smart’ hydrogels that are responsive to external stimuli (e.g., changes in pH, temperature,
and light) have all been used to fine-tune hydrogels to mimic the cellular microenvironment
mechanically [140–151]. For example, photo-crosslinking of gelatin methacryloyl (GelMa)
hydrogels alters hydrogel stiffness based on the light intensity, exposure time, and concen-
tration of photo-initiator used in photo-crosslinking [143]. Nanocomposite smart hydrogels
have been produced to change volume, Young’s modulus, and breaking strength based on
applied chemical and physical stimuli [148,150].
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Figure 3. Young’s modulus of hydrogels. The reported Young’s modulus (kPa) values of various
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to choose a hydrogel model that corresponds to the in vivo mechanical properties of tissue that is
relevant to the work. (Created with BioRender.com, accessed on 14 July 2022).

1.3.2. Recapitulating Cellular Microenvironment Heterogeneity

While the above-discussed methods are useful to study the effects of semi-isolated
mechanical conditions on cells, they often disregard the biological complexity of the ECM.
In vivo ECMs can also serve as a medium through which cells communicate with one
another via secreted growth and signaling factors in vitro. Several protocols have been
developed to decellularize ECM isolated from animal or human tissue, or to harvest ECM
secreted by fibroblasts in vitro [152–155]. To better capture the biological complexity of the
ECM, hydrogel models have been developed to incorporate fibroblasts, growth factors, and
more diverse components of the ECMs specific to the cell type being studied. Incorporating
fibroblasts in a co-culturing system with the cell type of interest is a relatively newer
approach, which allows for fine-tuning mechanical properties using a hydrogel model
while adding biological complexity to the culture through the addition of the secreted
matrix from fibroblast cells [156,157]. Lee et al. developed a 3D hydrogel system for co-
culturing human liver-cancer cell spheroids with fibroblasts on a micropatterned fibrous
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scaffold, thereby modeling the three dimensional structure of tumors and the cross-talk
between cancer cells and neighboring fibroblasts [156]. Several groups have also developed
methods of controlled growth factor release into hydrogel-based cell cultures [158–160]. It is
crucial to combine the biochemical components of the ECM with the mechanical properties
to better mimic the cellular microenvironment in vitro.

2. Hydrogels and Their Applications

Hydrogels are defined as hydrophilic polymer networks that form a three-dimensional
structure [161]. A critical property of hydrogels is their ability to swell with water without
dissolving due to hydrophilic functional groups present on the polymers of the hydrogel.
Their high water content makes them flexible and resemble soft tissue, implicating their use
in biomedical studies [162]. There are many polymeric substances that can be classified as
hydrogels, and they are generally composed of one or more natural or synthetic materials
for use in a wide variety of applications. The three-dimensional structure of hydrogels is
preserved despite swelling by chemical and/or physical crosslinks within the polymeric
network. Changes in composition, protein concentration, and crosslinking density lead
to changes in elasticity, polymer density, and biodegradation rate [163]. These and other
tunable properties of hydrogels make them suitable for a wide range of studies on me-
chanical, chemical, and biological conditions in vitro as well as ideal candidates for use in
in vivo clinical applications such as in drug delivery systems [161,162]. Here, we describe
the major classifications of hydrogels based on their composition, the general properties of
hydrogels, and current and potential experimental and clinical applications of hydrogels
with a focus on pre-clinical cancer models.

2.1. Types of Hydrogels

There are several classification methods for hydrogels, such as those based on ionic
charge, biodegradability, physical properties, crosslinking, and preparation. They are most
commonly classified by their source polymer(s): naturally occurring biomaterial, synthetic
bio-mimetic, or a hybrid of these two sources [163]. Synthetic materials are traditionally
used extensively due to low biodegradation rate, ease of manipulation, and greater control
over biochemical interactions [149,164,165]. Natural biomaterials, however, are preferred
due to their ability to biologically mimic the structural and biochemical properties of the
cellular niche in vitro, and are responsive to cellular activities in terms of biochemical
reactivity and degradability [164]. Numerous studies have presented methods for forming
hybrid hydrogels that possess properties of both natural and synthetic biomaterials that
are mechanically and biochemically responsive and tunable by the surrounding environ-
ment [165,166].

2.1.1. Natural Hydrogels

Natural hydrogels are composed of naturally occurring polysaccharides and proteins
such as collagen, Matrigel®, hyaluronan, gelatin, and their derivatives, including alginate
and chitosan [167,168]. While most studies cite hydrogel formation from one ECM protein,
there are several that utilized hydrogels composed of several proteins [167,168]. Either
protein concentration or crosslinking density is altered in the hydrogels in order to change
the Young’s modulus of the gels [167,168]. However, these are not finely tunable or as
well-understood as the mechanical properties of synthetic hydrogels [169]. In contrast, the
biocompatibility of natural hydrogels and their responsiveness to cellular degradation add
an important dimension to biological studies [170].

Many studies incorporate several proteins into biomaterial hydrogels to improve
hydrogel stability and similarity to the in vivo cellular microenvironment. Comparing
cellular properties in vitro in composite hydrogels versus single-material hydrogels can
give more specific information on how cell mechano-sensitivity is influenced by specific
cell-ECM protein interactions. A useful representative investigation of the insight obtained
by studies undertaken with composite hydrogels is a study by Rao et al. [171] (Figure 4).



Gels 2022, 8, 496 12 of 35

They mixed collagens I and III with hyaluronic acid (HA), collagen IV with HA, and
used collagen (I and III) as a standalone in hydrogel formation to determine modulus
values of the different hydrogels and observe changes in cell morphology, spreading, and
migration. Composite hydrogels had much higher elastic modulus values than the collagen
hydrogel, and increased HA content correlated to increased modulus values and greater
cell spreading and migration [171]. Interestingly, cell morphology differed by the type
of collagen used in the hydrogels: cancer cells cultured in collagen IV had a rounder cell
shape, while those in collagen I and III were spindle shaped [171].
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to 0% HA condition. Figure reprinted/adapted with permission from Ref. [171]. Copyright 2013,
American Chemical Society.

Another common composite hydrogel used in several cell mechanics studies is Matrigel®,
a mixture of ECM proteins secreted from mouse sarcoma cells, which is commonly used for
spheroid formation in 3D cultures [172]. Several mechanics studies use Matrigel® for the
formation of spheroids before seeding onto other types of hydrogels or for studies of cell
invasion. For instance, Grundy et al. reported that primary GBM cells that were insensitive
to rigidity were more invasive in spheroid cultures in Matrigel® as opposed to rigidity
sensitive cells [173].

Hydrogels using natural biomaterials are also advantageous, since they allow for the
design of an in vitro extracellular environment that can biologically mimic the in vivo ECM
and various cellular conditions. Natural hydrogels have been used for tissue engineering
and regenerative medicine because they form structures similar to tissue ECM due to the
natural proteins and polysaccharides that they are composed of [168]. While the biological
similarity is closer to in vivo when natural biomaterials are used in hydrogel preparation,
the mechanical properties are not adjustable or robust compared to those of synthetic
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hydrogels. Additionally, natural hydrogels can lead to great variation from batch to
batch due to the components being sourced naturally [168,174]. Recently, however, ‘smart’
hydrogels, which are robust, have localized mechanical properties, and are responsive to
changes in pH, temperature, and light have been developed from natural materials [148].
Smart hydrogels composed of natural materials have many possible applications in tissue
engineering, regenerative medicine, and stem cell and cancer research.

2.1.2. Synthetic Hydrogels

Synthetic hydrogels are composed of synthetic materials such as polyethylene gly-
col (PEG), poly(vinyl alcohol), and poly-2-hydroxy ethyl methacrylate [175,176]. They
offer advantages to natural hydrogels in the sense that they offer greater control over
gel mechanical properties, have higher capacity for water absorption, do not degrade
as rapidly as biomaterial hydrogels, and have great reproducibility [177]. For instance,
PEG-based hydrogels are useful in mechanics studies due to stiffness tunability and ability
to support long culture periods (several weeks) [178]. Synthetic hydrogels have more
utility in studies focused on the effect of isolated mechanical properties on cell behavior
without the additional influences of interactions between cells and biochemically active
biomaterials [179]. Biomimetic polymers have also been synthesized which may contain
a similar component to a natural material, such as a specific amino-acid sequence, which
can add biological activity such as degradability or biochemical signaling to the gel in
a more controlled environment than if a natural biomaterial were used [180]. Therefore,
synthetic hydrogels are extremely customizable and can be synthesized for specific medical
or research applications.

Synthetic hydrogels have been used to study the mechanics of cancer, as reported
in several previous publications. For instance, 2D “films” of poly-methylphenyl siloxane
with increasing stiffness values resulted in increased cell spreading and migration of
glioblastoma cells compared to more compliant films [181]. In developing an in vitro drug-
screening platform for cancer, synthetic HA derivatives, HA-aldehyde and HA-hydrazide,
were crosslinked and formed into a hydrogel where cells were able to form clustered
structures similar to tumors, and had greater drug resistance than in 2D cultures [182]. PEG
hydrogels are often used for hydrogel preparation due to their tunable properties and high
biocompatibility compared to other synthetic materials. They were used in mechanical
studies of lung adenocarcinoma where matrix stiffness alterations resulted in changes in
cellular morphology [183].

While there are several advantages to using synthetic hydrogels, they are limiting in
their ability to mimic the complexity of native ECM. This highlights the importance of efforts
to add biochemical reactivity to synthetic hydrogels for in vitro studies that are aiming to
mimic cellular microenvironments [184]. For instance, Lutolf et al. engineered synthetic
hydrogels that were degradable by matrix metalloproteinases through crosslinking of
synthetic substrates into the hydrogels [164]. Smart synthetic hydrogels have also been
studied to engineer stimuli-responsive synthetic biomaterials that change when faced with
altered temperature, pH, light, and other stimuli [185].

2.1.3. Hybrid Hydrogels

Many hydrogels are composed of synthetic materials that are mixed, conjugated, or
coated with biomaterials to provide researchers with insight into the controlled mechanical
response and specific cell-protein interactions while maintaining the ability to adjust
mechanical properties, and keep a low rate of degradation [186]. In general, a limiting
property of hydrogels is their low stiffness and rigidity, which is the opposite of in vivo
tissue properties. Hybrid hydrogels have been of interest in studies to improve both the
stiffness and rigidity of hydrogels [177,187].

Many types of hybrid hydrogels have been developed for cancer mechanics studies.
Fibronectin-coated PA substrates were used to study the invasiveness of different human
glioma cell lines with a focus on cell structure, migration, and proliferation [188]. Cells
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were rounder and had lower migration and proliferation rates in ECM substrates with
lower rigidity. GBM migration patterns in the brain white matter tract were mimicked
in vitro with electrospun alignment of nanofibers in a mixture of gelatin, poly-ethersulfone,
poly-dimethylsiloxane, HA, and collagen in order to study migration patterns of GBM
cells, and the addition of HA was seen to have a converse effect on migration [189]. The
addition of HA to gelatin and PEG composite hydrogels resulted in dose-dependent glioma
malignancy marker expression changes and cell clustering [190]. Another study combined
PA hydrogels with HA and either laminin or collagen I and found that collagen and laminin
presence was correlated to mechanical response to substrate stiffness [134].

2.2. General Properties of Hydrogels

Hydrogels are defined by their hydrophilicity, which allows them to store water
and swell without dissolving [191]. The bio-responsive properties of hydrogels, such
as biochemical activity and degradability, allow for culture conditions to be dynamic
and receptive to cellular cues. Conversely, since hydrogels are tunable in mechanical
properties such as elasticity, compliance, and stiffness, it is possible to study the responses
of cells to microenvironmental mechanics. While synthetic hydrogels are easier to adjust
mechanically, natural hydrogels are more bioresponsive. In crafting a study, these are
important properties to keep in mind, as they introduce variables to whichever system is
being studied.

Two important descriptors of hydrogels that determine many physical properties are
ionization degree and crosslink density. Crosslinks in a hydrogel are either chemical or
physical, and can be introduced to a gel by methods such as irradiation, sulfur vulcanization,
or chemical reactions aided by temperature and pressure [144]. Swelling and elastic
modulus values are determined by cross-linking degree and charge densities or ionic
strength of the polymers in the hydrogel [192]. Greater concentration of cross-linked
polymers and the number of ionic groups cause higher elastic modulus values and greater
swelling capacity [193]. Similarly, the distribution of proteins or polymers and cross-links
in hydrogels, which are generally non-homogenous, are affected by cross-link density and
degree of ionization [194,195].

There are numerous properties of hydrogels that can be influenced by internal factors,
e.g., composition, protein concentration, and polymer modifications, and by external
factors, e.g., UV radiation and temperature [161]. Chemical and physical reproducibility of
hydrogels depends on controlled conditions and utility in research can be greatly enhanced
by proper knowledge of hydrogel properties and subsequent unique modifications of the
scaffold to better mimic whichever system is being studied [196].

2.3. Research Applications of Hydrogels

Research applications of hydrogels are varied in vitro. They are often used as scaffolds
in 3D cultures for the study of cellular physiology and characteristics, as they interact with
tissue-mimetic hydrogels. While 2D culturing methods have provided valuable informa-
tion on cellular characteristics, recent studies have undertaken a shift toward preference for
3D-culturing methods for more advanced and sensitive studies that imitate native tissues
and cells more closely [126,197]. These 3D platforms provide more physiologically relevant
information on cell-environment interactions biochemically and mechanically, including:
morphology, cell and environmental stiffness, motility, and signaling [117]. Some 3D plat-
forms that have been used for cell culture include microporous and nanofibrous scaffolds
encapsulating cells. However, these either have pore sizes that are too large, which negate
the 3D structure and act as a 2D scaffold, or are too weak for mechanical studies [198,199].
Hydrogels are useful as mechanically and biochemically tunable matrices for 3D cultures,
which simulate soft tissue structure and have potential for translation and clinical applica-
tions [184]. For instance, Jiang et al. found that the formation of a hybrid hydrogel with
ultralong hydroxyapatite nanowires and sodium alginate allows for improved mechanical
properties of the hydrogels and enhanced biocompatibility for in vitro studies [200].
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Drug screening or efficacy assays are prone to showing promising effects in vitro, only
to fail or be substantially less effective in animal models and clinical trials [201]. In the
search for in vitro cell-culture systems that can provide more accurate and relevant results,
3D scaffolds such as hydrogels have been gaining attention, in part due to their potential
to mimic the ECM and inhibit drug delivery [119]. Huber et al. compared the response
of 2D cultures of non-small cell lung cancer cultured to 3D microtissues of the same cell
line to various drugs and found that drug efficacy was significantly different between the
models [127]. Singh et al. developed a hydrogel microarray assay to generate uniform
microtumors and subsequently study tumor response to epidermal growth factor (EGF) and
cetuximab treatments [202]. Such systems increase the chances of success for translation
because they enable studies of treatment response more closely aligned to clinical response.

2.4. Clinical Applications of Hydrogels

A clinical approach to hydrogel scaffolds is found tissue engineering applications,
which have gained traction recently as potential solutions to donor shortage problems for
tissue or organ transplantations [203,204]. These approaches generally combine cells from
a donor with a hydrogel scaffold that is prepared to mimic the extracellular matrix of the
tissue or organ being engineered [203]. Hydrogels are suitable tissue-engineering appli-
cations due to their ability to uptake water, to encapsulate cells, and to be bio-reactive [8].
Various hydrogels have been used as bio-ink for 3D organ or tissue printing applications
in which tissues are built with direct deposition of cells with the bio-ink [205]. Studies
have shown applicability of alginate, collagen, and various composite hydrogels for tissue
printing methods [206–208]. For instance, natural protein and polysaccharide hydrogels
have been used for articular cartilage-tissue engineering applications to promote cartilage
regeneration [209]. Latifi and colleagues demonstrated the potential of an injectable hybrid
hydrogel (collagen I and III) to be applied in soft-tissue engineering, specifically human
vocal fold engineering [210]. A long-standing problem of the tissue engineering field is the
need for in vitro tissue vascularization to be able to transplant or implant larger portions of
tissue into patients. A couple of groups have recently made strides in promoting in vitro
vascularization of hydrogel constructs of bone [211] and soft tissue [212].

Injectable hydrogels have been studied for drug delivery and wound healing or
dressing applications [213]. Hydrogels have been applied in drug delivery applications
due to their ability to give control over the time and/or site of drug delivery for enhanced
treatment [214,215]. The biocompatibility, similarity to native tissues, and high-water
content all contribute to great applicability of hydrogels for controlled drug release and
delivery [216]. Naturally derived injectable hydrogels for the controlled delivery of small
molecules to the central nervous system have also been extensively studied. Wang et al.
have shown that an injectable hyaluronan-methylcellulose hydrogel enhanced delivery
of growth factors [217]. Further, the great tunability of hydrogels has led to development
of thermosensitive, pH-sensitive, and temperature-sensitive hydrogels that can be used
for drug delivery in distinct biological environments [218–220]. Similarly, temperature-
sensitive hydrogels have been developed for various wound-healing applications. A PEG-
PLGA-PEG composite hydrogel has been developed for delivery of a growth factor linked
to tissue repair for diabetic wound healing [221].

Tissue regeneration is another field in which hydrogels are being investigated and have
shown to be promising for translation to the clinic due to their biocompatibility and ability
to be fine-tuned or adapted for specific applications. For instance, Zheng et al. developed a
polyacrylic, acid-alginate-demineralized, bone matrix hybrid double-network hydrogel,
which was shown to promote vascular endothelial growth factor (VEGF) synthesis and basic
fibroblast growth factor (bFGF) and alkaline phosphatase activity of MG63 osteosarcoma
cells to enhance bone regeneration [211]. Stem-cell therapy is a promising solution for
injuries that require tissue regeneration, but it is limiting since uncontrolled differentiation
can lead to the presence of unnecessary cells at the site of injury and lead to stem cell
metastasis and tumorigenesis [43,60,129]. Application of hydrogels can improve stem
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cell therapy by introducing stem cells and differentiation factors to the injury in a site-
specific manner [5]. In a study of spinal cord injury, Mothe et al. investigated a hydrogel-
integrated stem cell therapy by encapsulating neural stem cells and differentiation factors
in a hyaluronan-based hybrid hydrogel and found that treatment enhanced graft survival,
increased oligodendrocytic differentiation, and reduced cavitation in the injury site in
rats [222].

Contact lenses are an example of the clinical application of hydrogels [223,224]. While
hard contact lenses are composed of hydrophobic materials, soft contact lenses are hydrogel-
based [225]. Owing to the wide variety in hydrogel-forming substances, attempts are con-
tinually being made to improve the physical and chemical properties of contact lenses [225].
Hydrogels have also been used clinically in dermatology applications such as wound
healing and skin regeneration [226,227].

3. Cancer and the Tumor Microenvironment

Biomechanical properties of the tumor microenvironment have been shown to be
altered compared to the healthy state in many types of cancer to promote processes crucial to
tumorigenesis, including cellular proliferation and migration. Since changes in extracellular
mechanical properties can induce structural reorganization, morphological changes, and
altered signaling, they can cause cancer cells to exhibit mechanical properties differently
than healthy cells, e.g., stiffness [228]. This, in turn, can further promote invasive or
metastatic phenotypes [229]. For instance, cancer cells also usually have a lower Young’s
modulus compared to healthy cells of the same type, which can influence deformability and
influence migratory ability [230]. Cancer cells also have a more robust ability to respond
to ECM conditions, and can alter cytoplasm viscoelasticity in response to increased ECM
stiffness and collagen I deposition [231].

Breast cancer is a context in which mechanical properties of tissue and cells have been
well described, and many biomechanical contributions to carcinogenesis and metastasis
have been identified [96]. Many of the studies involving cell response to mechanical stimuli
have been conducted with aggressive breast-cancer cells, especially the MDA-MB-231 cell
line, due to their robust response to changes in extracellular mechanics. Clinically, tissue
stiffness has served as an indicator of breast tumors and risk of breast cancer [232,233], and
the biomolecular consequences of this phenotype has been studied rigorously in many types
of 3D hydrogel models in the laboratory, especially in the last decade. Various mechanical
stimuli can cause cellular stress and lead to carcinogenesis or increased invasiveness of can-
cer cells. For instance, several mechanotransduction pathways are linked to carcinogenesis
and invasiveness and upregulated in cancer [95,100,234,235]. Application of mechanical
load was shown to regulate breast-cancer cell proliferation independent of matrix defor-
mations or stiffness [234]. Mechanical stretch, ECM stiffness, and fluid shear-stress all led
to more invasive phenotypes of breast-cancer cells. At the level of response to treatment,
ECM stiffness has been characterized to contribute to chemoresistance of breast-cancer
cells to doxorubicin [235]. Therefore, a potential therapeutic approach may be to introduce
proteinases or drugs that reduce ECM stiffness by degrading certain components to reduce
the number of treatment-resistant cells. Lastly, certain microenvironmental properties
have been correlated to improved prognosis in breast cancer and can be used to identify
diagnostic and prognostic signatures. For instance, the tumor-associated collagen signature
consisting of aligned collagen fibers in biopsied tissues from breast-cancer patients has
been identified as a prognostic signature for survival [236].

The positive contributions that studying biomechanics has made to our overall under-
standing of breast cancer highlight the importance of incorporating a biomechanics-based
approach to cancer biology in vitro studies. Inspired by the benefits of biomechanics studies
on our understanding of breast cancer, we will present the current research in glioblastoma
(GBM), which is a disease that has not been well-defined biomechanically. We believe that
a better understanding of the biomechanical properties of GBM and its microenvironment
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can produce translatable results that may contribute to the development of diagnostic and
therapeutic approaches to improve the prognosis of this invasive cancer.

3.1. Glioblastoma and the Tumor Microenvironment

Biomechanical and biophysical studies can help to glean valuable insight into a wide
variety of diseases, since biomechanics is an integral part of cell proliferative, migration,
and survival signaling, all of which are crucial to carcinogenesis and tumorigenesis. GBM
is the most common and lethal form of primary brain cancer in adults [237], but there are
only two clinically approved chemotherapies targeting it. It is an example of a disease
that has not been traditionally studied in terms of biomechanics until approximately
the last ten years but is one that may greatly benefit from such studies. Here, we will
present an overview of the biomechanical properties known about GBM, the methods and
contributions of available 3D culture and mechanotransduction studies of GBM, and the
potential translational impact of those studies on the clinic and patient survival.

3.1.1. The Blood-Brain Barrier

The blood-brain barrier (BBB) is also an essential part of the brain microenvironment
that is altered in the cancer state. The BBB is formed by vascular endothelial cells lining
microvessels in the brain and is essential in regulating brain extracellular conditions to
ensure neuronal signaling [238]. The endothelial cells of the BBB limit transcellular and
paracellular transit into, and thereby protect, the brain by regulating permeability through
tight junctions, adherens junctions, charged moieties, pericytes, etc. [239,240]. In tumor
microvessels, however, loss of claudin-1 and claudin-3 and down-regulation of claudin-5
was observed, which correlated to increased permeability [241,242].

3.1.2. Extracellular Matrix of the Brain

The ECM of the brain (Figure 5) is altered when tumorigenesis occurs. Several ECM
components, including HA, tenascin-C, and vitronectin, are upregulated in the tumor mi-
croenvironment [243]. Studies show that proteins of the tumor niche also tend to be different
than healthy brain tissue and that tumor invasion alters ECM composition [244]. Basement
membrane components such as laminin, fibronectin, and collagen type IV are more highly
secreted by glioma cells and, in turn, alter composition of the local ECM [245,246]. Tumor-
associated mesenchymal stem-like cells induce HA synthase 2 activity and lead to greater
HA abundance in the tumor niche [247]. In addition to a distinct microenvironment, the
GBM tumor has a hypoxic and necrotic core that aids in the cancer cell-induced blood vessel
formation by increasing expression of pro-angiogenic VEGF, VEGFR2, and angiopoietin 2,
which results in the disorganized network of blood vessels observed in GBM [243,248–250].

Many cellular properties are altered in the cancer state. For instance, cell proliferation,
migration, and deformability is increased in the GBM state when compared to healthy
cells [67,138,251–254]. The impact of the extracellular niche on these cellular properties
and the biology behind the changes have been elucidated by various in vitro and in vivo
studies focusing on mechanical cell-ECM interactions [17,101,255–257].

3.1.3. Overview of Microenvironment and Biomechanics of Glioblastoma

A large body of research has been dedicated to studying the differences between
the microenvironments, or niche, of tumor and healthy cells. These include studies on
overall tissue stiffness, ECM composition, cellular signaling, and the presence/activation
of mechanotransducers. There is a general consensus that while cancer cells are less
stiff and more deformable than healthy cells [28,105,106,255,256], tumor tissue tends to
be stiffer by variable magnitude compared to non-tumor tissues, a trend that has been
shown in thyroid, breast, prostate, bladder, and kidney tissues [107–109]. The tumor
niche is also characterized by altered ECM composition, which may lead to increased
invasiveness and metastatic properties of cancer cells [257]. Characterization of the ECM,
both biologically and mechanically, in GBM has not reached the depth of understanding
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that has been achieved for several other types of cancer, such as prostate and breast cancer.
However, there are certain differences that have been noted between healthy and cancerous
tissue microenvironments, which can lay the groundwork for future studies of GBM
microenvironment and mechanics.
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Figure 5. Extracellular matrix (ECM) of the brain. The ECM of the brain has a unique composition,
including hyaluronic acid, collagen IV, and other ECM components along with glial cells, neurons, and
astrocytes. The blood-brain barrier (BBB) is a neurovascular unit composed of vascular endothelial
cells with surface charge modifications, tight junction proteins, pericytes, astrocytes, and other
components. The BBB is selectively permeable and can block solutes in the systemic blood from
entering the environment of the central nervous system (Created with BioRender.com, accessed on
14 July 2022).

Biomechanics of the Glioblastoma Extracellular Matrix

The mechanical properties of the tumor niche in GBM are different than those of
the healthy brain ECM due to the altered composition, protein-protein, cell-protein, and
cell-cell interactions. Even within the GBM tumor, there are distinct mechanical regions
for necrotic and non-necrotic portions [250]. In general, GBM tissue has been found to
be stiffer than healthy ECM, with increasing stiffness generally correlating to increased
malignancy [109,147]. From a set of human brain biopsies, one study showed that increas-
ing malignancy of tumors gave higher Young’s modulus values, with primary GBMs
exhibiting stiffness values varying from 70 to 13,500 Pa [258]. Stewart et al. showed that
brain tumors had elastic moduli ranging from 170 to 16,060 Pa using a custom-built inden-
ter [259]. Another study correlated increased ECM stiffness to decreased survival of human
patients [260]. Altered stiffness results in changed mechanical cues that are relayed to the
cell, which then impact cellular gene expression so significantly that the overall behavior of
the cell can be drastically changed [9] (Table 1). Several studies have been published that
note differences in cellular morphology, deformability, motility, proliferation, and signaling
in response to changes in environmental stiffness [104,134].

Modification of the Extracellular Matrix in the Brain by Glioblastoma Cells

The tumor also modifies the local ECM through protein degradation. Some of the
most studied cell-secreted proteins to be up-regulated in the cancer state are matrix metal-
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loproteinases (MMPs), which are proteases that remodel the ECM by degrading certain
component proteins [261]. The hypoxic core of GBMs has been shown to be a significant
contributor to the increased MMP activity [262]. Various MMPs that are up-regulated in
GBMs have also been shown to aid in glioma cell invasion [263]. Plasminogen activation by
the urokinase pathway, which includes urokinase (uPA), urokinase receptor (uPAR), and
plasminogen, is also prominent in GBMs. The urokinase pathway aids in ECM degradation
and remodeling by converting plasminogen into active plasmin, which is a serine kinase
that degrades certain ECM proteins, and activates MMP-2 and MMP-9 [264]. MMP-2 is
a type IV collagenase that has been implicated in invasion and metastasis of GBMs [263].
Lastly, various cathepsins, which are lysosomal cysteine proteases that can be secreted
into the ECM, are also up-regulated in GBMs and have been linked to tumorigenesis and
invasion [265–267].

3.1.4. Glioblastoma Migration, Invasion, and Mechanotransduction

Some hallmarks of GBM are enhanced cellular migration and aggressive invasive-
ness [268]. These properties are achieved through complex mechano-chemical signaling
mechanisms that enable crosstalk between the tumor cells and the tumor microenvironment.
The proteins that sense and translate mechanical cues from the ECM or microenvironment
and relay them to the cell are called mechanotransducers [54]. Interestingly, one study found
that keeping the mechanotransducer RhoA GTPase constitutively active in vitro in U87
cells caused similar toxic responses in 3D environments with varying stiffness, indicating
the importance of mechanotransduction in cell response to environmental conditions [133].
Another study found that by altering mechanotransducers in GBM tumor-initiating cells,
they were able to alter cell motility and invasion in 3D cultures [67]. Knock-down of CD44,
a transmembrane glycoprotein receptor for HA and other ECM components, resulted in de-
creased microtubule and vimentin expression, hampered migration, and decreased nuclear
stiffness compared to control cells [104]. Integrins are well-studied mechanotransducers
that are linked to malignancy and are primary communicators in cell-ECM adhesion and
signal transduction [134,245,263]. Clinical nuclear medicine studies have evaluated the role
of various positron emission tomography (PET) radiotracers (e.g., [18F]Galacto-RGD [269],
[68Ga]PRGD2 [270], and [18F]FPPRGD2 [271]) to enable molecular imaging of integrin avb3,
a member a class of adhesion molecules that mediate cell–cell and cell-ECM interactions,
and which plays an important role in cancer metastasis and angiogenesis [272]. These stud-
ies reveal the importance of understanding how mechanotransducers process mechanical
cues from the ECM to influence cancer-cell properties [93,94].

Cellular structure and cytoskeletal alterations are under the direct influence of ECM
mechanical cues and cellular mechanotransducers [93]. Pathak and Kumar found that
culturing cells in narrow versus wide channels of various extracellular stiffnesses led
to altered cell morphology, migration, and myosin alignment (Figure 6), underlining
the importance of extracellular culture conditions in determining cell behavior. Various
integrins serve to form attachments to proteins of the ECM. Once an integrin is bound to
an extracellular ligand, focal adhesion clusters form at the surface of the integrin receptor
within the cell, which link to the cytoskeleton and function in cell motility by recruiting
proteases for ECM degradation and activating signaling pathways that induce cytoskeletal
rearrangement [55]. Cytoskeletal rearrangement as orchestrated by cell-ECM interactions
are vital to increasing cell deformability and, in turn, enhancing migration.
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Figure 6. Cell migration, cell area, actin alignment, and myosin alignment when exposed to different
channel widths and hydrogel stiffnesses. (A–C, left panel) Migration speed was quantified for cells
cultured in narrow or wide channels with varying stiffness. With increased stiffness but decreased
channel width, cell migration speed was higher. * p < 0.05. (A–D, right panel) Cell area, actin
alignment, and myosin alignment were quantified from cells imaged after culture in wide or narrow
channels with varying stiffness. Cells cultured in stiffer conditions with narrow channels exhibited
increased actin and myosin alignment but lower cell spreading than those in narrow channels. Figure
reprinted/adapted with permission from Ref. [102]. Copyright 2012, National Academy of Sciences.

3.1.5. In Vitro Studies of Mechanotransduction in Glioblastoma

Studies of GBM cell-ECM interactions and mechanics rely on in vitro matrix-mimetics
that are composed of either biologically occurring proteins or synthetic materials. In 2D cul-
tures, this is accomplished by coating glass or polystyrene with bio- or synthetic materials
and culturing cells on top of the coating. In 3D cultures, hydrogels, defined as crosslinked
polymer networks that can retain water, are composed of one or several synthetic or
biomaterials to mimic the cell microenvironment. Changes in composition, component
concentration, and crosslinking density lead to changes in rheological properties such as
elasticity and stiffness [177]. Cell migration, morphology, cytoskeletal structure, invasive-
ness, and signaling are some of the properties characterized in gels of varying stiffness.

It is common practice in the study of GBM mechanics to use various naturally occur-
ring proteins of the brain ECM to construct hydrogels in which cells are seeded. While
most studies cite hydrogel formation from one ECM protein, there are several that utilize
hydrogels mixed with several proteins, which are discussed in the next sections. Either
protein concentration or crosslinking density is altered in the hydrogels to change Young’s
modulus of the gels and study the effect of elasticity or stiffness in the microenvironment
on the cells. The use of biomaterials in hydrogels offers the additional variable of gel
degradation by cells or over time in incubation, which adds an important dimension to
understanding tumor-cell function in remodeling the ECM.

3.1.6. Hydrogel Culture Methods
Collagen

Despite collagen type I not being an abundant protein in the GBM and healthy brain
ECM, it is often used in mechanics studies of these cells, due to its ability to easily form a gel.
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Even though collagen IV is upregulated and more abundant in the GBM microenvironment,
there is a limited amount of studies in which collagen IV is used for hydrogel formation to
investigate GBM mechanics [171]. There are commercially available pre-coated glass slides
that make mechanics studies using collagen I simpler. In studies where glioma cells were
seeded onto collagen I-coated substrates (glass or polystyrene), there was a trend of cells
spreading more extensively in stiffer ECMs [76,273]. One group observed a nearly linear
80 µm extension called an “invadopodia” that stretched from one cell to another, which they
hypothesized was a significant factor in cell signaling [273]. The drawback of studies using
collagen-coated glass or polystyrene is that it forms a 2D culture, which does not accurately
mimic the 3D environment that cells are exposed to in vivo. It was shown that GBM cells
exhibited chemoresistance to sunitinib, a kinase inhibitor, in vitro in a 3D collagen-based
environment, but not on plastic or collagen-coated surfaces [136]. Additionally, 2D cell
migration does not require MMP activity, while 3D culture does, so MMP expression can
be studied extensively in relation to mechanics only in 3D culture [274]. For greater insight
into in vivo characteristics, it is more useful to employ 3D rather than 2D cultures.

Collagen fiber density or concentration is an important factor to consider in experi-
mental design. A study confirmed that varying the collagen I concentration resulted in
varying elastic modulus of hydrogels, but that the difference is not significant with collagen
concentrations from 1.5 to 2.5 mg/mL [275]. They also found that a higher concentration of
collagen inhibited growth of the GBM in vitro. Decreasing collagen gel stiffness was shown
to increase migration distance and velocity of GBM cells [124]. Another study investigated
the effects of gelation temperature on collagen I gel pore size and how this impacted glioma
invasion. Gelation temperature caused variations in pore size for hydrogels composed
of 1 mg/mL collagen and was a significant factor in determining speed of invasion of
glioma cells with smaller pore sizes (5-12 µm) hindering cell motility [276]. A study by
Hwang et al. showed that actin filamentation of migrating cells in collagen gels is dynamic
and undergoes rapid changes, and produces of stress fibers and lamellipodia [277]. This
study also drew attention to the migratory patterns of glioma cells, which was shown to
mostly be composed of double-nucleated cells that migrated in clusters and had extensive
interactions, through actin filament extensions, to collagen in the surrounding gel and
nearby cells [277]. Distinct cell shapes, in terms of elongation and roundness, have been
observed in different collagen gels [278]. Collagen gels were also used to study the effect of
the microenvironment on gene expression and the effects of depletion or overexpression of
certain genes on cell ability to retain mechano-responsiveness [278–280].

Three-dimensional culturing methods are being modified with novel technologies
to model more than just a homogenous tumor microenvironment; they are being used to
form models of interacting systems. In a study by Chonan et al., the tumor niche including
ECM and blood vessels was mimicked in a microfluidic device using collagen I and human
umbilical vein endothelial cells (HUVECs) [281]. Further studies with collagens are required
for a more thorough understanding of the effect of these proteins on GBM cells.

Hyaluronan

There is extensive research on the production of hyaluronan (HA)-based gels for
studies of GBM mechanics. HA hydrogels have been used clinically as implants for neural
regeneration and reduction of scar formation [282,283]. In in vitro studies, HA gels are
generally functionalized with peptides or other ECM proteins, such as laminin, RGD
(Arg-Gly-Asp peptides), poly-D-lysine, and poly-L-lysine, which allow for cell adhesion
to the gel, since HA alone does not attach to the cells [283,284]. In a study with short
Arg-Gly-Asp (RGD) peptides incorporated to HA gels, it was noted that glioma cells’
actin stress fiber assembly and cell spreading was greater in stiffer gels [147]. Various HA
crosslinkers can also be used to increase gel stiffness. Divinyl sulfone, for example, was used
to crosslink HA carboxyl groups to varying degrees when different concentrations were
used [285]. Chitosan-HA scaffolds, when compared to 2D surfaces, increased invasiveness
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and chemotherapeutic resistance and were proposed as possible in vitro mimics of the
tumor microenvironment for pre-clinical drug effectiveness studies [286].

Other Proteins

Proteins such as fibronectin, laminin, and gelatin on their own are not commonly used
for hydrogel formation. Rather, they are more frequently used to coat glass or polystyrene
for two-dimensional cell-protein interaction studies. In the formation of hydrogels, they
are generally used in combination with synthetic materials. These were also discussed
previously in the synthetic hydrogels section of this review.

Methacrylated gelatin (GelMA) has been used on its own as a scaffold for glioma cells
in a study of gel biophysical properties and their effect on cell morphology, proliferation,
motility, and gene expression. Pedron et al. observed that GelMA biophysical properties
could be varied by the methacrylation degree and bulk density. Cell morphology, motility
and expression of hypoxia markers (VEGF, MMP-2, MMP-9, and HIF-1) and the ECM
protein fibronectin were affected by the environmental properties [287]. Ramamoorthi et al.
used an alginate hydrogel with varying stiffness values and observed greater cell sensitivity
to toxins in less stiff gels [133].

Composite Biomaterial Hydrogels

There is a paucity of research involving composite hydrogels in the study of GBM
mechanics. Researchers developed a composite matrix of HA and collagen oligomers with
the addition of Matrigel-coated microfibers with tunable stiffness by varying component
protein concentrations [124]. While low stiffness correlated to lower migration velocity
and distance, collagen source and concentration was shown to affect these parameters
variably. They also reported that in the HA hydrogel, cells exhibited collective migration
while in collagen, they relied on single-cell migration [124]. These studies outline some of
the different cellular responses to each of the ECM components and serve to emphasize
the importance of studying specific cell-ECM interactions when attempting to describe
GBM mechanics.

Synthetic Hydrogels

There are several types of synthetic polymers that have been used in the study of GBM
mechanics. In 2D culture, “poly-methylphenyl-siloxane film” with greater stiffness values
resulted in increased cell spreading and migration compared to more compliant films [181].
Wan et al. developed nanotextured polydimethylsiloxane (PDMS) surfaces with aptamers
overexpressing epidermal growth factor receptor (EGFR) to isolate human GBM cells from
a mix with fibroblast cells [288]. PA hydrogels are commonly used in GBM mechanics
studies. In a novel study of cell mechano-sensitivity to matrix confinement, cells that were
seeded onto PA hydrogels in more narrow channels exhibited greater migration speeds
when compared to cells seeded on PA hydrogels in wider channels or directly onto 2D
surfaces. This effect was abrogated by the inhibition of non-muscle myosin II, implicating
this protein as a mechanosensory [102]. In a study investigating patient-derived primary
GBM cell sensitivity to gel stiffness or rigidity, cells were seeded onto PA gels with different
rigidity measures and the migration rate was correlated to rigidity-sensitivity [173]. Human
glioma cell lines U373 and U118 cultured on polyacrylamide gels of normal brain stiffness
(1 kPa) and GBM tumor stiffness (12 kPa), had greater proliferation rates in the stiffer
substrate [289]. Umesh et al. studied the effect of PA gel stiffness on expression of proteins
related to the cell cycle and dependency on EGFR signaling in human GBM cells, and saw
that increased stiffness caused increased expression and phosphorylation of EGFR and Akt.
Conversely, loss of EGFR, Akt, or phosphoinositide 3-kinase (PI3K) function resulted in
decreased stiffness-sensitivity of the cells [252].
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4. Challenges and Future Directions

We have endeavored to provide a thorough explanation of the various hydrogel-
based methods that are employed for biomechanical studies and an overview of how
studying cell-ECM interactions can lead to significant advancements in understanding the
pathology of cancers, with a focus on GBM. It is abundantly clear from the state of the
field that cellular response to biomechanical cues is a key player in maintaining health and
homeostasis. To incorporate biomechanical effects into our current understanding of cell
biology, hydrogel-based three-dimensional models of cell culture must become more widely
used. The number of publications mentioning hydrogels has increased exponentially over
the past 25 years (Figure 7). Furthermore, publications mentioning both hydrogels and
cancer are making up a greater proportion of the hydrogel-related manuscripts published
each year since 2012, indicating a growing interest in the development and use of hydrogels
in the study of cancer. However, a major drawback of these approaches is that any one
hydrogel model is not universally applicable due to the unique ECM composition and
mechanical properties of the suite of cellular states that may be studied. Additionally,
differences in hydrogel composition (and lot-to-lot variability of commercially available
hydrogels), cell passage number, cell seeding density, hydrogel crosslinking density, time
between cell seeding and microscopy, and other factors make it difficult to obtain consistent
results [290,291]. It is worthy of note that ECM composition still has not been characterized
based on the abundance of each component and elastic modulus for many tissues and
conditions. Protocols unique to the disease model (cell type, microenvironment, perfusion,
etc.) need to be established to enable wider adoption of hydrogel-based cell culture studies
as an improved biomimetic replacement for conventional two-dimensional cell culture.
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The use of hydrogels as model systems for studying cell response to biomechanical
stimuli has been discussed in this review, with a focus on GBM as a case study for what
has been achieved versus what has yet to be understood in the field. Breast cancer is an
exemplar of the impact that biomechanical studies can have on diagnostic, prognostic, and
therapeutic approaches to a disease. Therefore, we believe that future studies to understand
how cells respond and adjust to mechanical stimuli, and how these responses may be
dysregulated in various pathologies, are of utmost importance to craft a more systematic
understanding of diseases that have been difficult to treat and cure, such as GBM. An
improved understanding of tissue and cellular mechanics would facilitate the development
of mechanotherapies for regenerative rehabilitation [292–295]. Not only will such studies
further our understanding of the disease, but they may also provide clues for how to take
advantage of mechanical stimuli to treat them. Hydrogels are used in contact lenses and as
vehicles for drug delivery; they also have the potential to be used as therapeutic agents in
cases where mechanical cues such as stiffness or stress can influence therapeutic resistance
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in certain cancers. For example, hydrogels with low stiffness may be implanted after tumor
removal in patients with invasive cancers to reduce the ability of cancer cells to migrate.
Such innovative uses for hydrogels and applications of knowledge that can be gained by
biomechanical studies would improve our understanding and treatment of cancer.
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Abbreviations

Arg-Gly-Asp peptides RGD
basic fibroblast growth factor bFGF
blood-brain barrier BBB
C-X-C motif chemokine receptor CXCR
epidermal growth factor EGF
epidermal growth factor receptor EGFR
extracellular matrix ECM
G-protein coupled receptor 68 GPR68
gelatin methacryloyl GelMa
glioblastoma GBM
human umbilical vein endothelial cells HUVECs
hyaluronic acid HA
linker of nucleo- and cyto-skeleton LINC
matrix metalloproteinase MMP
Myocardin related transcription factor A MRTF-A
Neurogenic locus notch homolog protein 1 NOTCH1
phosphoinositide 3-kinase PI3K
physically interacting cell sequencing PIC-seq
platelet endothelial cell adhesion molecule-1 PECAM-1
polydimethylsiloxane PDMS
polyethylene glycol PEG
positron emission tomography PET
rho-associated, coiled-coil-containing protein kinase ROCK
T-cell receptor TCR
Testin LIM domain protein TES
Three-dimensional 3D
Transforming growth factor beta 1 TGF b1
Transient Receptor Potential Cation Channel Subfamily M Member 7 TRPM7
Transient Receptor Potential Cation Channel Subfamily V Member 4 TRPV4
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Two-dimensional 2D
urokinase uPA
urokinase receptor uPAR
vascular endothelial growth factor VEGF
vascular endothelial growth factor receptor VEGFR
Vasodilator stimulated phosphoprotein VASP
von Willebrand factor—glycoprotein Ib complex VWF-GPIb
Yes-associated protein YAP
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