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Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the cardinal features of tremor, 
bradykinesia, rigidity, and postural instability, in addition to other non-motor symptoms. Pathologically, PD is attributed to 
the loss of dopaminergic neurons in the substantia nigra pars compacta, with the hallmark of the presence of intracellular 
protein aggregates of α-synuclein in the form of Lewy bodies. The pathogenesis of PD is still yet to be fully elucidated due 
to the multifactorial nature of the disease. However, a myriad of studies has indicated several intracellular events in trigger-
ing apoptotic neuronal cell death in PD. These include oxidative stress, mitochondria dysfunction, endoplasmic reticulum 
stress, alteration in dopamine catabolism, inactivation of tyrosine hydroxylase, and decreased levels of neurotrophic factors. 
Laboratory studies using the herbicide paraquat in different in vitro and in vivo models have demonstrated the induction of 
many PD pathological features. The selective neurotoxicity induced by paraquat has brought a new dawn in our perspectives 
about the pathophysiology of PD. Epidemiological data have suggested an increased risk of developing PD in the human 
population exposed to paraquat for a long term. This model has opened new frontiers in the quest for new therapeutic targets 
for PD. The purpose of this review is to synthesize the relationship between the exposure of paraquat and the pathogenesis 
of PD in in vitro and in vivo models.
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Introduction

PD is the second most common and progressive neurodegen-
erative disease after Alzheimer’s disease, affecting approxi-
mately six million people over the age of 60, worldwide [1]. 
The cardinal features of PD include tremor, bradykinesia, 
rigor, and postural instability [2]. These motor symptoms 
are due to the selective degeneration of the dopaminergic 
neuronal cells located in the substantia nigra pars compacta 
(SNpc), in addition to increased dopamine deficit in the 
striatal axonal projection area. However, PD is also often 
associated with other non-motor symptoms that commonly 

manifest in the gastrointestinal tract, such as gastric reflux, 
constipation, and swallowing difficulties, in addition to cog-
nitive impairment and neuropsychiatric symptoms, such as 
depression, anxiety, sleep behaviors, and olfactory dysfunc-
tion [3]. These non-motor signs and symptoms are effects 
of deficits in other neurotransmitters implicated by differ-
ent brain regions, such as the olfactory bulb, basal ganglia, 
and frontal cortex, and can occur before the appearance of 
motor symptoms [3]. Pathologically, the presence of neu-
ronal inclusions known as Lewy bodies in many dopamin-
ergic cells of the SNpc has been seen in many post-mortem 
findings in patients with PD.

Due to the pathogenesis of PD being multifactorial and 
the fact that the cause of PD remains unclear, the currently 
available treatments include pharmacological therapy 
such as using medications to increase dopamine levels in 
the brain, deep brain stimulation, and physiotherapy [4]. 
Although these treatments can reduce the motor symptoms 
and improve the quality of life of PD patients, there is an 
urgent need for new therapeutic strategies to prevent, slow, 
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or halt the progression of the disease. Current diagnostic 
modalities of PD are circumscribed by the fact that there are 
no specific tests to diagnose PD other than identifying the 
motor symptoms that the PD patients developed [5]. How-
ever, it is estimated that motor symptoms begin to appear 
when > 30% of dopaminergic neurons have been degenerated 
[6]. Thus, early diagnosis of PD was always thought to have 
crucial implications for disease-modifying strategies. For 
the development of such strategies, the use of appropriate 
in vitro and in vivo models becomes inevitably valuable to 
obtain a greater insight into its cause and pathogenesis of 
PD, in addition to reproducing all clinical and pathological 
characteristics of PD.

Current in vitro and in vivo PD models can be broadly 
categorized into genetic and neurotoxin models. Genetic 
models are used by manipulating genes that have been caus-
ally linked to the development of familial PD. However, 
the neuropathological and behavioral changes evocative 
to human PD cannot be fully recapitulated in this sophisti-
cated model [7]. On the other hand, neurotoxin models are 
the most widely used classical PD model, due to their low 
cost, easy handling, and rapid development in the progres-
sion of PD [7]. Various neurotoxin-based models exhibit-
ing degeneration of dopaminergic cells in the SNpc and 
inducing PD-like phenotypes have been reported by using 
6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), in addition to other her-
bicides, such as maneb, rotenone, and paraquat. The use of 
pesticides and herbicides to model PD has become increas-
ingly important in recent years with the goal of developing 
neuroprotective agents to halt the progression of PD. This 
is because exposure to pesticides and herbicides by living 
in rural areas, farming, or well-water consumption has been 
implicated with increased risk and incidence for the develop-
ment of PD [8, 9].

Paraquat is an important member of the bipyridylium 
family of broad-spectrum, a nonselective fast-acting herbi-
cide that disrupts the intracellular electron transfer system 
in plants, resulting in the disruption of the plant organelles 
and ultimately leading to cell death [10]. It is widely used 
worldwide in many agricultural and non-agricultural settings 
to control broad-leaved weeds and grasses in many crops, 
such as cotton, soybeans, sugar cane, and corn. Paraquat 
has been reported to cause acute poisoning and death due to 
its toxicity. The common exposure routes of paraquat that 
would lead to poisoning, either accidentally or intentionally, 
are ingestion, skin exposure, and inhalation. Paraquat has 
been used in experimental studies focusing on its patho-
logical effects on the brain, heart, lungs, kidneys, liver, and 
muscle due to the systemic toxicity and fatality after acute 
exposure. The interest in using paraquat as a neurotoxin to 
model PD started since its discovery due to its similarity 
in terms of its molecular structure and biochemistry with 

1-methyl-4-phenylpyridinium  (MPP+), the active metabo-
lite of MPTP, a neurotoxin that can induce PD-like features 
in animal models and humans [11]. For many years, stud-
ies have demonstrated that individuals exposed to paraquat 
had a higher risk of developing PD [12–14]. In this article, 
we will collate evidence of paraquat exposure in relation to 
PD and discuss paraquat-induced alterations at both cellular 
and molecular levels. We will first conceptualize paraquat-
induced alterations around different pathogenic mechanisms 
of PD, which can potentially lead to the activation of the 
apoptotic cell death machinery.

Paraquat‑Induced α‑Synuclein Pathology

Neuronal inclusions known as Lewy bodies are present in 
many dopaminergic cells of the SNpc in many post-mortem 
findings in patients with PD [15]. The major component 
of a Lewy body consists of an aggregated intracytoplas-
mic protein known as α-synuclein [16]. α-Synuclein is an 
intrinsically disordered and highly dynamic protein that can 
exist in either soluble monomers or an α-helical multim-
eric conformation [17]. However, α-synuclein may have the 
ability to convert from the monomeric form to different oli-
gomeric and aggregated configurations, including spherical 
and fibrils that are built by recruiting additional α-synuclein 
monomeric subunits [18]. α-Synuclein is expressed abun-
dantly throughout the brain with a higher concentration in 
the SNpc [19]. The exact function of α-synuclein is still 
inconclusive. However, the protein might be involved in 
synaptic plasticity and neurotransmitter release since it is 
mainly located in the presynaptic terminal of neurons [20]. 
At the cellular level, α-synuclein is expressed primarily in 
the presynaptic terminal of neurons, mitochondria, endo-
plasmic reticulum (ER), Golgi apparatus, and in the endo-
lysosomal system [21]. The exact physiological function of 
α-synuclein at each subcellular compartment is still poorly 
understood. However, α-synuclein has been demonstrated 
to interact strongly with synphilin-1, an adaptor molecule 
that anchors α-synuclein to cytoplasmic proteins involved in 
vesicular transport and cytoskeletal function [22].

Cumulative studies suggested the accumulation and 
aggregation of α-synuclein affect the functional integrity of 
neurons and can contribute to neurotoxicity [23]. This can 
be seen in a study by Powers et al. [19], where overexpres-
sion of α-synuclein in N27 dopaminergic cells potentiated 
the paraquat-induced toxicity and metabolic dysfunction 
compared to normal cells. The role of α-synuclein in con-
tributing to cell vulnerability arises from the misfolding and 
accumulation of the protein into a membrane-bound pore-
like structure resulting in membrane leakage and altered 
intracellular ionic balance [24]. In addition, α-synuclein 
interacts with complex I of the electron transport chain 
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(ETC), resulting in higher production of reactive oxygen 
species (ROS), which in turn alters the expression of mito-
chondrial genome-encoded genes and induces mitochondrial 
fragmentation [25].

In recent years, a great deal of evidence has suggested the 
interaction of α-synuclein with environmental toxicants such 
as paraquat, resulting in the increased α-synuclein propen-
sity to oligomerize and accumulate. In vitro studies using 
paraquat were reported to induce a conformational change 
in α-synuclein and significantly accelerated the α-synuclein 
fibrillation rate in a dose-dependent manner [26, 27]. In 
addition, Chorfa et al. [28] reported that paraquat increased 
the intracellular concentration of α-synuclein in SH-SY5Y 
cells when compared to other pesticides, such as maneb and 
rotenone. However, only α-synuclein monomers, as opposed 
to high molecular mass oligomers or fibrils, were detected 
[28]. Nevertheless, the protein expression of α-synuclein was 
upregulated (~ 1.5-fold increase) in the mouse frontal cortex 
and ventral mesencephalon after 48 h of paraquat (10 mg/
kg, i.p., once weekly for 3 weeks) post-treatment; however, 
the expression returned to baseline levels within a week 
[27]. A 2.1-fold increase in the α-synuclein protein expres-
sion level in the striata was also observed in mice treated 
with paraquat (10 mg/kg, i.p., twice weekly for 4 weeks) 
[29]. Fernagut et al. [30] demonstrated the administration of 
paraquat (10 mg/kg, i.p., once weekly for 3 weeks) caused 
a 1.9-fold increase in the number of α-synuclein aggregates 
in the SNpc of mice overexpressing human α-synuclein. 
However, the α-synuclein aggregates were not detected in 
saline- and paraquat-treated wild-type mice [30]. In that 
study, the histological sections of the SNpc had been pre-
treated with proteinase K to selectively visualize insoluble 
α-synuclein aggregates [30]. Nonetheless, the findings sug-
gest that α-synuclein over-expression can act synergistically 
with paraquat to elevate the aggregation of α-synuclein.

Although the underlying initiating mechanism of 
α-synuclein oligomerization has not been completely 
deciphered, studies have indicated that the formation of 
α-synuclein radicals might be a key mechanism. Paraquat 
has been demonstrated to form α-synuclein radicals in 
the mid-brain of mice through two distinct mechanisms; 
(1) the activation of NADPH oxidase and induced nitric 
oxide synthase (iNOS) in microglia to produce peroxyni-
trite  (ONOO−) and (2) leakage of cytochrome C out from 
the mitochondria into the cytosol to activate the peroxidase 
activity [31, 32].

There has been a lot of debate over whether the aggre-
gation of α-synuclein is a key feature that contributes to 
the dysregulation of various cellular processes and cel-
lular toxicity. Manning-Bog et al. [33] demonstrated that 
mice overexpressing human wild-type or mutated A53T 
α-synuclein can resist dopaminergic cell degeneration 
against paraquat and is attributed to the increased expression 

of heat-shock-protein 70 (Hsp70). This is also consistent 
with another study where nigral degeneration was not found 
in mice expressing human wild-type or A53T α-synuclein 
administered with paraquat (10 mg/kg, i.p., twice weekly 
for 3 weeks) when compared to their non-transgenic lit-
termates [34]. Moreover, another study demonstrated that 
MN9D dopaminergic cells overexpressing human wild-
type α-synuclein treated with paraquat alone did not exhibit 
cytotoxicity or compromised membrane integrity [35]. Thus, 
more studies are required to establish the role of α-synuclein 
in paraquat-induced neurodegeneration.

Paraquat‑Induced Oxidative Stress

Increased Lipid Peroxidation

Oxidative stress plays a crucial role in the progressive dete-
rioration of dopaminergic neurons in PD. Efforts have been 
made to study the oxidative stress markers present in PD 
patients compared to healthy controls. Recent advancement 
in diagnostic testing has provided a new approach to analyze 
biomarkers that are involved in oxidative stress in the blood 
and cerebrospinal fluid (CSF). Oxidative stress can trigger 
lipid peroxidation, which can damage cellular membranes, 
lipoproteins, and other molecules that contain lipids. The 
brain is particularly susceptible to lipid peroxidation due 
to its high unsaturated fatty acid levels. A meta-analysis 
reported by Wei et al. [36] concluded that malondialdehyde 
(MDA), an end product of lipid peroxidation, was increased 
in the blood of PD patients. The presence of other end prod-
ucts of lipid peroxidation, such as 4-hydroxynonenal (HNE) 
and Nε-(carboxymethyl)lysine, were also found in the Lewy 
bodies of post-mortem PD brain tissues [37]. In addition, it 
has been shown that MDA levels were doubled in SK-N-SH 
cells treated with paraquat (14 μM, 24 h) [38]. MDA levels 
were also increased in the brain of paraquat-treated Dros-
ophila flies [39, 40]. Since MDA is a well-known biomarker 
of lipid peroxidation [41], the results above suggest that 
paraquat may induce oxidative stress leading to increased 
lipid peroxidation in the brain.

Increased Intracellular ROS Levels

Oxidative stress defines a disequilibrium between the gen-
eration and accumulation of ROS in the cells and tissues, 
and the ability of the biological system to detoxify them 
through the production of antioxidants. Enhanced ROS pro-
duction has been implicated in the development of many 
pathologies, including neurodegenerative diseases such 
as PD [42]. Accumulating evidence has shown that tox-
ins such as paraquat have been linked to increased oxida-
tive stress. For instance, Alural et al. [43] demonstrated a 
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1.5-fold increase in ROS levels in SH-SY5Y cells treated 
with paraquat (500 μM, 24 h). In accordance, Ravi et al. 
[38] showed a 2-fold increase in ROS generation in SK-N-
SH cells treated with paraquat (14 μM, 24 h). Niso-Santano 
et al. [44] also reported a dramatic increase in the superoxide 
anion  (O2

•−) radicals when SH-SY5Y cells were treated with 
paraquat (100 µM, 4 h). An in vivo study using Drosophila 
flies treated with paraquat (20 mM, p.o., 24 h) indicated a 
3.7-fold increase of  O2

•− radical in the brain [39]. ROS such 
as hydrogen peroxide was also doubled in the brain of Dros-
ophila flies when treated with paraquat (20 mM, p.o., 48 h) 
[40]. The data show that paraquat causes neurodegeneration 
by increasing intracellular ROS levels.

Impaired Antioxidant Defense

Glutathione (GSH) is a natural antioxidant found in the 
body, which plays a significant role in protecting the cells 
against ROS and reactive nitrogen species (RNS) [45]. A 
decrease in GSH level in the SNpc of the post-mortem brain 
of PD patients has been documented [46–50]. GSH level in 
the blood was also lower in patients with PD [36]. Never-
theless, the deficiency in GSH has been reported to impair 
the cellular antioxidant defense mechanism. Re-exposure to 
paraquat (5 mg/kg, i.p., twice weekly for 12 weeks) during 
adulthood caused a 45% decrease of GSH content in the 
nigrostriatal tissue of rats that had been previously exposed 
to paraquat, postnatally [51]. Depletion of GSH in the brain 
of PD patients may be due to the decrease in the synthesis 
of GSH. It would be foreseen that the activity of glutamate-
cysteine ligase (GCL), the rate-limiting enzyme in GSH 
synthesis [52], decreases in the brain of PD patients if the 
alteration in the synthesis of GSH was the cause of GSH 
depletion. Indeed, the activity of GCL was found to be lower 
throughout the brain as a result of the aging process [53]. 
Liang et al. [54] reported a 60% reduction in GSH level in 
the striatum of GCL knockout mice. Lam, Ko [55] reported 
a 30% reduction in the GCL activity in differentiated PC12 
cells treated with paraquat (150 μM, 24 h). GSH deple-
tion may be contributed by increased efflux of glutathione 
disulfide (GSSG) mainly out of glial cells [56]. Intracellu-
lar glutathione levels are maintained at a redox equilibrium 
between GSSG and GSH [57]. However, oxidative stress 
will occur if the equilibrium is disrupted and altered toward 
GSSG [58]. This was seen in a study by Djukic et al. [59], 
where the authors reported a significantly higher GSSG and 
GSSG/GSH ratio in the bilateral cortex of adult Wistar rats 
treated with paraquat (2.5 μg/10 μL, 24 h), intrastriatally.

Other antioxidant enzymes, such as catalase (CAT), 
superoxide dismutase (SOD), and glutathione peroxidase 
(GPx), play a prominent role in antioxidant defense [60]. 
Kish et al. [61] concluded a slight but significant decrease in 
GPx activity in several post-mortem brain regions, including 

SNpc of PD patients. The results were consistent with other 
animal models resembling PD, such as in Tang et al. [62], 
where the authors signified a reduction in GPx activity in 
the midbrain of Sprague–Dawley rats treated with paraquat 
(10 mg/kg, i.p., once weekly for 4 weeks). Similar to the 
peroxidase activity, the activity of CAT was also decreased 
in the SNpc of PD patients [63]. CAT level in the blood 
was also reduced in patients with PD [36]. Shukla et al. 
[39] reported that paraquat (20 mM, p.o., 24 h) induced a 
significant decrease in SOD activity by ~ 50% in the brain 
of the Drosophila flies. These findings indicate that para-
quat causes oxidative damage by lowering the antioxidant 
defense.

In contrast, Srivastav et al. [40] showed a 2.2-fold upregu-
lation in SOD activity in the head of the Drosophila flies 
when the flies were treated with paraquat (20 mM, p.o., 
48 h). CAT activity in the brain of paraquat-treated flies was 
also higher (~ 1.6-fold) [40]. The increase in SOD and CAT 
activities may be a protective response to elevated levels of 
free radicals in paraquat-treated flies [39, 40]. In accordance, 
several studies showed that SOD activity was also higher in 
the SNpc and erythrocytes of PD patients [64–66].

Downregulated Nrf2‑Keap1‑ARE Signaling Pathway

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an 
essential transcription factor that regulates a wide range of 
antioxidant defense pathways, leading to the production of 
various antioxidant enzymes [67]. Under normal conditions, 
the abundance of intracellular Nrf2 present in the cytoplasm 
is consistently low due to the rapid degradation of Nrf2 via 
the ubiquitin-proteasomal pathway [68]. The degradation 
of Nrf2 occurs when Nrf2 is bound to Kelch-like ECH-
associated protein 1 (Keap1) located in the cytoplasm [68]. 
In response to oxidative stress, Keap1-mediated degrada-
tion of Nrf2 is inhibited, resulting in the translocation and 
accumulation of Nrf2 in the nucleus [69]. Nrf2 then binds 
to antioxidant response element (ARE), activating many 
antioxidant and cytoprotective genes, such as GSH, SOD, 
CAT, glutathione-S-transferase (GST), NAD(P)H dehydro-
genase (quinone) 1 (NQO1), and heme oxygenase-1 (HO-1) 
[68]. Petrillo et al. [70] demonstrated a significant increase 
in Nrf2 mRNA and protein expression in leukocytes of PD 
patients compared to healthy individuals. In autopsy brain 
tissue obtained from PD patients, nuclear translocation of 
Nrf2 was found to be more abundant in the dopaminergic 
neurons in the SNpc, but this response may not be sufficient 
to protect neurons from cell death [71]. An in vivo study 
using Drosophila flies showed that treatment with paraquat 
(20 mM, p.o., 48 h) resulted in the upregulation of Nrf2 
mRNA expression by 1.6-fold [40]. Also, HO-1 cDNA 
expression by immunoblotting was found to be upregulated 
(~ 4-fold higher) in SH4741 dopaminergic neuronal cell 
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line treated with paraquat (800 μM, 20 h) [72]. Paraquat 
(500 μM, 24 h) caused more cell death in Nrf2 knockdown 
SH-SY5Y cells than control cells [43], suggesting that Nrf2 
plays an essential role in neuroprotection. Alural et al. [43] 
reported a reduction in the expression of NQO1 and HO-1 
mRNAs in Nrf2 knockdown SH-SY5Y cells. These studies 
indicated that paraquat-induced oxidative stress could trigger 
the Nrf2-Keap1-ARE pathway to initiate the downstream 
antioxidant responsive elements, including NQO1 and HO-1 
mRNA expression, to prevent oxidative injury.

Paraquat‑Induced Nitrosative Stress

More evidence has suggested that RNS is involved in mediat-
ing nitrosative stress. RNS is generated by the rapid reaction 
between  O2

•− radicals and nitric oxide, which results in the 
production of  ONOO− [73]. The instability of  ONOO− stabi-
lizes itself by donating the -NO2 functional group to Tyr res-
idues of proteins that form the neuronal cytoskeleton, result-
ing in the formation of 3-nitrotyrosine [74]. This results in 
structural alteration of proteins, which ultimately leads to 
the death of dopaminergic neurons [75]. 3-Nitrotyrosine 
has been well known as a potential biomarker of oxidative 
and nitrosative stress associated with numerous pathologi-
cal conditions and disorders of the central nervous system, 
including PD [74]. Fernández et al. [76] reported elevated 
levels of free 3-nitrotyrosine and nitroalbumin in the serum 
and CSF of patients with early PD. In addition, the authors 
reported the presence of nitro-α-synuclein in serum but not 
in CSF. Paraquat (10 mg/kg, s.c., twice weekly for 3 weeks) 
induced a higher magnitude of increase in 3-nitrotyrosine 
level in GCL knockout mice compared to their wild-type 
counterpart [54]. In addition, paraquat (20 mM, p.o., 24 h) 
has also been shown to cause a 2.6-fold increase in the con-
centration of ONOO- in the brain of Drosophila flies [39]. 
Thus, oxidative and nitrosative stress plays a crucial role in 
paraquat-induced neurodegeneration.

Paraquat‑Induced Impairment of Dopamine 
Catabolism

Several lines of evidence have suggested that biochemical 
defect in dopamine catabolism is implicated in patients with 
PD. The concentration of dopamine in the SNpc is strictly 
regulated. Increased dopamine levels, dopamine oxidation, 
and its reactive catabolites have been suggested as the major 
oxidative stressor resulting in neuronal death in PD [77]. 
Dopamine catabolism starts a reaction known as oxidative 
deamination catalyzed by monoamine oxidase, producing 
hydrogen peroxide, ammonia, and 3,4-dihydroxyphenylac-
etaldehyde (DOPAL) [78]. DOPAL is further metabolized 

to 3,4-dihydroxyphenylacetic acid (DOPAC) or 3,4-dihy-
droxyphenylethanol (DOPET) by aldehyde dehydrogenase 
[78]. A post-mortem examination on the brain of sporadic 
PD patients revealed a decrease in dopamine, DOPAL, and 
DOPAC levels in the putamen, caudate, and cortex [79]. 
Other studies also reported elevated DOPAL:DOPAC ratio, 
in addition to decreased aldehyde dehydrogenase activity in 
the putamen [80]. Furthermore, a reduced level of DOPAC 
was also seen in the CSF of PD patients [81]. Although 
DOPAL is a physiological intermediate in dopamine catabo-
lism, it can also act as a potent neurotoxin. DOPAL injection 
into the SNpc resulted in a more prominent loss of dopa-
minergic neurons when compared to dopamine, DOPAC, 
or DOPET [82].

Apoptosis of the dopaminergic neurons is associated 
with reducing dopamine and increasing DOPAC levels 
[83]. Drosophila flies treated with paraquat (20 mM, p.o., 
24 h) showed a decrease in dopamine level by 63% and a 
2.9-fold increase in DOPAC level in the brain [39]. In addi-
tion, a concentration-dependent decrease in the number of 
dopaminergic neurons was seen at 24 h and 48 h. Tyrosine 
hydroxylase (TH) is a rate-limiting enzyme in the synthe-
sis of dopamine and TH expression is decreased when the 
dopaminergic neuronal loss occurred [77]. Exposure to para-
quat, for example, can generate  ONOO−, which leads to the 
nitration of the tyrosine residue in TH, resulting in the loss 
of its enzymatic activity and subsequently permanent loss 
of TH-positive neurons [84, 85]. Dwyer et al. [86] showed 
that the loss of TH-positive neurons persisted throughout 
the 6 months after the last paraquat injection (10 mg/kg, 
i.p., every other day for 2 weeks) on C57Bl6 mice. The data 
above suggest that paraquat-induced dopaminergic cell death 
may be linked to the alteration of dopamine catabolism.

Paraquat‑Induced Reduction 
of Brain‑Derived Neurotrophic Factor

Among the proteins putatively involved in the pathogenesis 
of PD, neurotrophic factors play an important role in the dif-
ferentiation, maturation, maintenance, and survival of mam-
malian neurons [87]. These factors have also been shown to 
have neurogenic and neuroprotective effects under adverse 
conditions, such as cerebral ischemia [88], neurotoxicity 
[89], glutamatergic stimulation [90], and neurodegenerative 
diseases [90]. One of the well-studied neurotrophic factors is 
brain-derived neurotrophic factor (BDNF), a member of the 
neurotrophin family, identified in most brain regions, includ-
ing the ventral midbrain, ventral tegmental area, and SNpc 
[91]. The biosynthesis of BDNF involves the precursor pro-
tein pre-pro-BDNF in the ER to be processed to pro-BDNF 
upon the cleavage of the signal peptide [92]. Pro-BDNF 
is transported to the Golgi apparatus to be packaged into 
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secretory vesicles and is released from the neurons, either 
constitutively or in an activity-dependent manner. It may 
also be converted into mature BDNF by members of the sub-
tilisin/kexin family of endoproteases such as furin, or by the 
action of plasmin through tissue plasminogen activator (tPA) 
catalysis [93]. Mature BDNF has been known to augment 
neuronal synaptogenesis and dendritogenesis and to improve 
synaptic plasticity upon binding with TrkB receptors, result-
ing in neuronal development and survival [94]. On the con-
trary, pro-BDNF acts through the p75 neurotrophin receptor 
 (p75NTR), and the activation of the receptor can oppose those 
effects elicited by the mature BDNF/TrkB signaling, such 
as cell death, retraction of the neuronal growth cone, and 
pruning of axonal processes [95]. For many years, evidence 
has suggested the importance of BDNF as one of the critical 
factors in establishing the proper number and function of 
dopaminergic neurons in the SNpc [96].

Downregulation of BDNF mRNA and protein specifi-
cally in the SNpc of patients with PD might participate 
in the death of the nigral dopaminergic neurons [97–99]. 
Alural et al. [43] demonstrated that BDNF mRNA expres-
sion and secreted protein levels were decreased by > 60% 
in SH-SY5Y cells treated with paraquat (500 μM, 24 h). 
The study also showed a decrease in the neurite number 
and length by 50% and 15%, respectively, which indicates 
the importance of BDNF in promoting neuron survival and 
growth [43]. Moreover, paraquat has been reported to down-
regulate BDNF protein expression in the hippocampus [100, 
101] and mRNA expression in the striatum of C57BL/6 male 
mice after repeated administration for a total duration of 
3 weeks [102]. Regardless, the action of paraquat on pro-
BDNF and mature BDNF was not specified from the studies 
above. Moyano et al. [103], however, reported a concentra-
tion-dependent decrease in the protein concentration of both 
pro-BDNF and mature BDNF, in addition to TrkB and tPA 
in primary hippocampal cells treated with paraquat. Moreo-
ver, upregulation of the protein expression of p75NTR can 
be observed in the study [103].

Nonetheless, there are conflicting reports on the cir-
culating level of BDNF in patients with PD [98, 99]. The 
discrepancy could be due to the vast clinical heterogene-
ity in PD, particularly the variability in disease severity, 
subtypes, and duration. Moreover, many factors, includ-
ing gender, exposure to various medications, and indi-
vidual cognitive performances, have been documented to 
affect circulating BDNF levels in PD patients [100–102]. 
In accordance, hippocampal BDNF protein expression was 
increased by > 65% in female C57BL/6 mice treated with 
paraquat (10 mg/kg, i.p., 3 times a week for 3 consecutive 
weeks) [104]. However, there was no significant difference 
in the protein expression of CREB, the primary mediator of 
BNDF transcriptional regulation [104]. Thus, it is tempt-
ing to speculate that sexual dimorphism may play a role in 

paraquat-associated BDNF expression occurring in the hip-
pocampus and potentially in other areas of the mouse brain. 
The female sex hormone estrogen has been well documented 
to upregulate transcription of BDNF by interacting with the 
estrogen response element in the BDNF gene [105]. The 
mRNA expression of BNDF was upregulated at 48 h and 
72 h after exposure of U118 astroglia to paraquat (250 μM) 
[106, 107]. However, paraquat also upregulates the expres-
sion of other pro-inflammatory astrocytic factors such as 
interleukin (IL)-1β and IL-6 resulting in cell cycle arrest, 
indicating the increase in the expression of neurotrophic fac-
tors could be a compensatory mechanism to neuronal insult 
[106]. Moreover, upregulation of BDNF as a compensatory 
mechanism against neuronal damage has also been reported 
in other neurodegenerative diseases. In Alzheimer’s disease, 
for instance, the compensatory increase of BDNF occurs at 
the early stage and is then followed by a drop as the disease 
progresses to the advanced stage [108].

Paraquat‑Induced ER Stress

The ER is the largest membrane-closed cellular organelle 
in all eukaryotes, which plays a crucial role in the synthesis 
of protein and lipid, as well as functioning as a free calcium 
reservoir [109]. Initial protein maturation steps occur in the 
ER where the synthesized proteins in the secretory pathways 
are precisely folded. However, under certain circumstances, 
physiological stresses such as glucose starvation, hypoxia, 
oxidative stress, and disruption of calcium homeostasis 
can disrupt the protein folding at the ER, leading to the 
accumulation of unfolded and misfolded proteins, a cellu-
lar condition termed as ER stress [110]. The accumulation 
of misfolded protein in the ER that cannot be effectively 
removed by the protein degradation mechanism such as 
ubiquitin–proteasome system can ultimately result in neu-
ronal death [111]. Paraquat has been demonstrated to impair 
the activity of the proteasomal system, which is a late event 
in the progression of cell death [112, 113].

Upon ER stress, cells can activate a cascade of mech-
anisms to cope with protein folding alterations, which is 
termed the unfolded protein response (UPR). Activation of 
the UPR transduce information about the status of protein 
folding in the ER lumen to other organelles, such as the 
nucleus and cytosol, to mitigate any further accumulation of 
unfolded protein load [114]. The consequences of activating 
the UPR are the enervation in the rate of protein synthe-
sis, upregulation of genes encoding chaperones and other 
proteins involved in the protein degradation or prevention 
of protein aggregation, participation of protein folding and 
stabilization, and lastly, translocation of proteins to other 
cellular compartments [115]. The UPR is mainly controlled 
by three major transmembrane stress sensors, namely protein 
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kinase RNA-like endoplasmic reticulum kinase (PERK) or 
eIF2α kinase, activating transcriptional factor 6 (ATF6), and 
inositol-requiring transmembrane kinase/endoribonuclease 
1 (IRE1), which orientate with their luminal domain in the 
ER lumen and their signal transduction domain toward their 
cytoplasm [116].

Under physiological conditions, an ER-resident chaper-
one known as glucose-regulated protein of 78 kDa (GRP78) 
binds to the luminal domains of PERK, which keeps the 
kinase in an inactive state [117]. However, when unfolded 
and misfolded proteins accumulate in the ER, GRP78 
dissociates from PERK and allows the dimerization and 
autophosphorylation of PERK, thus activating it [117]. 
The activation of PERK phosphorylates the α subunit of 
the eIF2α, consequently resulting in the induction of signal 
transduction events that activate downstream UPR target 
genes, such as GRP78 and activating transcriptional factor 
4 (ATF4) [110]. On the contrary, the ATF6 sensor protein is 
triggered due to the accumulation of misfolded proteins and 
UPR activation. This results in the translocation of the pro-
tein to the Golgi apparatus, where it undergoes proteolysis 
producing a free cytosolic domain that triggers transcrip-
tional regulation of ER chaperone proteins, such as GRP78 
and growth arrest- and DNA damage-inducible gene 153 
(GADD153)/C/EBP-homologous protein (CHOP) [118, 
119]. Nonetheless, IRE1 also monitors ER homeostasis and 
activates its intrinsic RNase activity upon ER stress through 
conformational change, homodimerization, and autophos-
phorylation [120]. The activation of the RNAse activity of 
IRE1 results in the generation of an active spliced isoform 
of the transcription factor, X-box-binding protein 1 (XBP-
1) [121]. Subsequently, XBP-1 translocates to the nucleus 
and modulates gene expression of molecular chaperones and 
proteins, attributing to ER-associated degradation by binding 
to the promoters of its target gene [122].

In human PD post-mortem brain tissue, the expression 
of UPR activation markers, such as p-PERK and p-eIF2α, 
were upregulated in the dopaminergic neurons of the SNpc 
[123, 124]. In another study, Baek et al. [125] showed an 
upregulation of the GRP78 and p-PERK protein levels in 
the cingulate gyrus of PD patients. More recently, Baek et al. 
[126] concluded a significant upregulation of GRP78 mRNA 
level in all brain regions in PD patients compared to con-
trol subjects. Nonetheless, the eIF2α mRNA level was not 
significantly different in any of the brain regions compared 
to the control group [126]. However, in a study by Esteves, 
Cardoso [127], the protein expression levels of GRP78 and 
ATF4 were found to be downregulated in the SNpc of PD-
post-mortem brain samples. Interestingly, a study reported 
colocalization of p-IRE1 with α-synuclein in the SNpc of 
PD patients, indicating that the accumulation of α-synuclein 
contributes to the activation of IRE1/XBP-1 of the UPR 
[128]. In line with these studies, a time-dependent increase 

in the protein expression of GRP78, glucose-regulated pro-
tein of 78 kDa (GRP94), and p-eIF2α in the dopaminergic 
N27 cells treated with paraquat (500 μM, 12–48 h) was also 
observed [129]. Moreover, protein expression of p-PERK, 
p-eIF2α, ATF6, p-IRE1, XBP-1, and immunoglobulin heavy 
chain binding protein (BiP) was found to be upregulated in 
adrenal pheochromocytoma PC12 cells treated with para-
quat (1 mM, 24 h) [130], suggesting that paraquat plays an 
important role in causing ER stress.

Physiological processes requiring a high demand for pro-
tein synthesis can activate the UPR without triggering the 
apoptotic pathway [131]. However, conditions that lead to 
prolonged ER stress can often cause cellular dysfunction and 
cell death. Chronically sustained activation of eIF2α upregu-
lates the pro-apoptotic transcription factor GADD153/CHOP 
[132]. Upregulation of both the mRNA and protein expres-
sion of GRP78 and CHOP was observed in the SNpc region 
of PD post-mortem brains compared to the age-matched 
control group [133]. However, another study by Baek et al. 
[126] reported that CHOP mRNA levels in all brain regions 
were not significantly different between PD patients and con-
trol subjects. Paraquat has been demonstrated to increase the 
mRNA expression of CHOP in a concentration-dependent 
manner in SH-SY5Y cells [134]. Overexpression of CHOP 
has been reported to result in cell cycle arrest and ER stress-
induced apoptosis [135]. This was demonstrated in two inde-
pendent studies by Chinta et al. [129] and Huang et al. [130], 
where an upregulation of protein expression of CHOP and 
other apoptotic markers, such as caspase-3, caspase-7, and 
cleaved poly(ADP-ribose) polymerase (PARP) in vitro, indi-
cating the activation of ER stress-induced apoptosis.

Paraquat‑Induced Mitochondrial 
Dysfunction

Many lines of evidence suggested that impairment of the 
mitochondrial function has been linked to the pathogenesis 
of PD [136]. An increased level of deleted mitochondrial 
DNA was observed in the SNpc of PD patients, suggest-
ing respiratory chain deficiency and mitochondrial dys-
function [137]. A reduction in the metabolic activity and 
protein level of NADH dehydrogenase or mitochondrial 
complex I in the SNpc and frontal cortex of post-mortem 
examination in PD patients has been reported [138, 139]. 
In addition, a recent study has shown the deficiency in 
the mitochondrial complex I throughout the brain of PD 
patients [140]. Furthermore, brain mitochondria from PD 
patients showed functional impairment and mis-assembly 
of complex I [141]. Mitochondrial complex I is the first 
enzyme present in the mitochondrial ETC, which functions 
to translocate protons from the mitochondrial matrix to 
the intermembrane space, generating an electrochemical 
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gradient to produce ATP. The disruption of mitochon-
drial complex I activity leads to the inefficient generation 
of ATP and an increased level of ROS in the neurons. 
Therefore, complex I is considered to be an important site 
of ROS generation. Nonetheless, the causes and conse-
quences of mitochondrial complex I deficiency in SNpc 
neuronal cells remain to be explored in the future. Regard-
less, Choi et al. [142] demonstrated that dopaminergic 
neurons from NADH: ubiquinone oxidoreductase subunit 
S4 (NDUFS4) knockout mice that are complex I-deficient 
appeared normal and healthy with no decrease in survival 
when compared to neurons from wild-type mice.

The direct linkage of mitochondrial dysfunction with 
PD came from neurotoxins such as paraquat. A study con-
ducted by Fukushima et al. [143] demonstrated a decrease 
in mitochondrial complex I activity and an increase in lipid 
peroxidation in the brain of bovine treated with 500 μM 
paraquat. Mitochondrial complex I transfers two electrons 
from NADPH to ubiquinone, resulting in the oxidation of 
NADPH to  NADP+. Upon entry into cells, paraquat dication 
 (PQ2+) undergoes redox cycling where it disrupts the oxi-
dation of NADPH by accepting electrons to form paraquat 
mono-cation radical  (PQ•+) through NADPH-cytochrome 
P450 reductase, ultimately inhibiting mitochondrial complex 
I activity [144, 145]. In a study by Srivastav et al. [40], ATP 
levels were decreased in the Drosophila flies when treated 
with paraquat (20 mM, p.o., 48 h). Choi et al. [142] have 
suggested that the inhibition of mitochondrial complex I is 
not a pivotal factor to paraquat-induced dopaminergic neu-
ronal death. In that study, the dopaminergic neurons from 
NDUFS4 knockout mice did not show increased sensitivity 
to paraquat (50 μM, 24 h) or  MPP+ [142]. However, another 
PD-mimicking neurotoxin, rotenone, showed increased TH-
positive neuronal loss in NDUFS4 knockout mice compared 
to wild-type mice [142]. Nonetheless, the potential for para-
quat to induce mitochondrial dysfunction on dopaminergic 
neurons warranted further investigation.

The mitochondrial membrane potential (ΔΨm) generated 
by the proton pumps of the ETC, i.e., complex I, complex 
III, and complex IV, plays a crucial role in storing energy in 
the form of ATP during oxidative phosphorylation. Under 
basal conditions, cells maintain a stable intracellular ΔΨm, 
which is essential for maintaining normal cellular homeosta-
sis [146]. Alteration to the ΔΨm can have deleterious effects 
on cells. Paraquat has been shown to impair the ΔΨm, as 
evidenced in a study by Kang et al. [147], where a decrease 
in the ΔΨm in PC12 cells by 75% was seen when the cells 
were treated with paraquat (300 μM, 24 h). The loss of ΔΨm 
has been widely due to the opening of the mitochondrial 
permeability transition pore, a transmembrane protein resid-
ing in the inner mitochondrial membrane [148]. Once the 
ΔΨm has collapsed, the cells are committed to the apoptotic 
pathway due to energy depletion [149].

Cytochrome c, a protein located in the inner mitochon-
drial membrane, plays a vital role in shuttling electrons from 
complex III and complex IV in the ETC [150]. Cytochrome 
c is undoubtedly an essential player in the apoptotic path-
way of cells. Although it is a ‘quiet worker’ in the ETC, the 
induction of apoptotic stimuli causes cytochrome c to be 
released from the mitochondria to the cytosol to initiate the 
recruitment of caspase-9 and maturation of other caspases 
that eventually mediates the biochemical and morphologi-
cal features of apoptosis [150]. Studies have shown that 
paraquat can induce cytochrome c release from the mito-
chondria to the cytosol of neuroblastoma cell lines in a con-
centration-dependent fashion [44, 151]. In addition, Yang 
et al. [152] co-transfected cells with a vector designed for 
fluorescent labeling of mitochondria and another vector for 
the fluorescent labeling of pro-apoptotic proteins. SH-SY5Y 
cells treated with paraquat were then fixed and subjected 
to confocal microscopy. Besides cytochrome c, Yang et al. 
[152] also reported that other mitochondrial pro-apoptotic 
proteins, such as DIABLO and HTRA2, were also released 
upon paraquat exposure (300 μM, 24 h). DIABLO and 
cytochrome c are released from the intermembrane space of 
the mitochondria into the cytosol [153]. While cytochrome 
c directly activates Apaf-1 and caspase-9, DIABLO interacts 
and removes multiple inhibitor of apoptosis proteins (IAPs) 
that inhibit both initiator and effector caspases [153]. Thus, 
removing IAPs by DIABLO frees up the caspases and con-
sequently activates the apoptotic mechanism.

Paraquat‑Induced Apoptosis

Dopaminergic neuronal cell death in the SNpc is a defining 
feature of PD [154]. Apoptosis or programmed cell death is 
thought to be the primary mechanism contributing to dopa-
minergic neuronal cell death [155]. Neuronal apoptosis is 
an evolutionarily well-conserved process where it plays a 
vital role in many physiological processes, particularly in the 
development and maturation of the nervous system [156]. 
Several studies have suggested that paraquat can induce 
apoptosis in the dopaminergic neuronal cells in vitro and 
in vivo, ultimately resulting in cell death. Flow cytometric 
assessment by Ju et al. [157] using Annexin V-FITC dye 
reported a 3.8-fold increase in the total percentages of early 
and apoptotic SH-SY5Y cells when treated with paraquat 
(300 μM, 24 h). Another study by Alural et al. [43] showed 
that paraquat (500 μM, 24 h) caused a 1.8-fold increase in 
the percentage of SH-SY5Y apoptotic cells in the sub G1 
phase of the cell cycle.

Apoptosis is characterized by a series of specific mor-
phological events in which the onset begins with the cell 
and nuclear shrinkage in addition to condensation of the 
chromatin in the nucleus [158]. Extensive plasma membrane 
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blebbing also occurs during this stage. Later on, the nucleus 
of the cells progressively condenses and fragments [158]. 
Apoptotic characteristics, such as nuclear condensation, 
chromatin fragmentation, and apoptotic chromatic changes, 
were reported in the SNpc dopaminergic neurons of PD 
patients [159]. Chen et al. [160] demonstrated that para-
quat (400 μM, 24 h) significantly increased the number of 
N27 dopaminergic neuronal cells with fragmented apoptotic 
nuclei and multiple chromatin condensation. Nonetheless, 
one of the hallmarks of apoptosis is internucleosomal DNA 
fragmentation, which has been demonstrated together with 
the typical morphological events described above [158]. 
DNA fragmentation occurs when endogenous DNases excise 
the internucleosomal region into double-stranded DNA 
fragments of 180–200 bps [161]. This was confirmed by 
Chun et al. [72] in which the nuclear DNA of dopaminergic 
neuronal cells was isolated and separated on an agarose gel 
and found out that paraquat (800 μM, 12 h) resulted in a 
significant number of cells undergoing DNA fragmentation 
as indicated by the presence of multiple bands on the gel. 
Another method of detecting DNA fragmentation is known 
as the TUNEL assay. A study showed that exposure of PC12 
cells to paraquat (300 μM, 24 h) caused a significant 3.7-fold 
increase in the number of TUNEL-positive cells, indicating 
that paraquat induces apoptosis in PC12 cells [147]. Simi-
larly, a lower dose of paraquat (14 µM, 24 h) also caused a 
5.5-fold increase in the number of TUNEL-positive SK-N-
SH neuroblastoma cells [38].

The initiation of apoptosis is a tightly regulated and 
controlled process since it is irreversible once activated. 
To date, research has indicated that there are two main 
pathways to initiate apoptosis; extrinsic (death receptor 
pathway) and intrinsic (mitochondrial pathway) [162]. 
While there is some consensus that the extrinsic pathway 
contributes to the mechanism of neuronal loss in PD, its 
role remains unclear; thus, it will not be explored in this 
review. Regardless, the intrinsic pathway is initiated inside 
the cells by many endogenous and exogenous stimuli, 
including ischemia, oxidative stress, and DNA damage. 
A key player to the intrinsic pathway is the mitochondria, 
where the outer membrane of the mitochondria membrane 
becomes permeable and releases apoptogenic proteins 
such as cytochrome c, which normally exists in the mito-
chondrial intermembrane space, to the cytosol [163]. This 
process, which is also known as mitochondrial outer mem-
brane permeabilization (MOMP), is mediated and con-
trolled by the balance between pro-apoptotic (i.e., Bak and 
Bax) and anti-apoptotic Bcl-2 family proteins (i.e., Bcl-2) 
[163]. Elevated Bax level has been reported in the SNpc 
of PD patients [149]. The level of Bcl-2 mRNA expression 
was reduced in SK-N-SH and SH-SY5Y neuroblastoma 
cell lines upon exposure to paraquat [151, 164]. Exposure 
of paraquat (500 μM, 24 h) in SH-SY5Y cells resulted 

in a 2.6-fold increase in the pro-apoptotic Bax mRNA 
expression and a 1.7-fold increase in Bax protein expres-
sion [43]. Fei et al. [151] demonstrated a higher level of 
the pro-apoptotic protein Bak in SK-N-SH cells and SNpc 
of C57BL/6 mice, by 220% and 30%, respectively, when 
treated with paraquat.

Caspases are widely expressed in most cells as inactive 
zymogens and activate other procaspases, allowing the pro-
tease cascade initiation [165]. The activation of caspases 
results in the amplification of the apoptotic signaling path-
way, leading to rapid programmed cell death. Caspases-8 
and -9 are initiator caspases that initiate the entire apoptotic 
cascade. In contrast, caspase-3, -6, and -7 are executioner 
caspases that carry out mass proteolysis by degrading cel-
lular components [166]. Furthermore, increased activity and 
protein expression of caspase-3 was reported in the SNpc 
of PD patients [167, 168]. In addition, active caspase-8 and 
caspase-9 were also detected in the SNpc from autopsied PD 
patients but were not detected in normal controls [169]. Ju 
et al. [157] reported a 1.9-fold increase in caspase-9 protein 
expression in SH-SY5Y cells treated with paraquat (300 μM, 
24 h). In vitro studies using N27 rat dopaminergic neuronal 
cells have demonstrated that caspase-3 and -7 protein expres-
sion in addition to caspase activity were upregulated in 
dopaminergic N27 cells upon exposure to paraquat (500 μM, 
48 h) [129]. Srivastav et al. [40] reported a 4-fold increase 
in the mRNA expression and a 3-fold increase in the protein 
expression of caspase-3 in the head section of Drosophila 
flies after treatment with paraquat (20 mM, p.o., 48 h).

One of the several vital proteins responsible for cel-
lular functioning and survival is PARP. PARP is a highly 
conserved and multifunctional nuclear protein that plays a 
vital role in repairing single- and double-stranded bases in 
DNA [170]. Activation of PARP-1 catalyzes the transfer 
of negatively charged ADP-ribose moieties from cellular 
 NAD+ to many proteins on specific amino acid residues, 
generating nicotinamide and ADP-ribose as by-products 
[170]. Successive addition of ADP-ribose unit to form a 
long and branched-chain of poly(ADP-ribose), also known 
as the poly(ADP-ribosylation), forms a scaffold. It then 
recruits other proteins critical in the DNA repair mecha-
nism. Cleavage of PARP-1 by caspases is considered a 
prominent hallmark of apoptosis and is responsible for the 
inactivation of the poly(ADP-ribosylation) process [171]. 
Cleavage of PARP-1 by caspase-3 has been implicated in 
several neurological diseases such as PD [171]. A large 
body of evidence has shown that PARP-1 is cleaved by cas-
pase-3, -7, and -9. Nevertheless, it has also been described 
that paraquat induces PARP activation in vitro. Chinta et al. 
[129] reported a 4.8-fold increase in the protein expression 
of cleaved PARP after paraquat treatment (500 μM, 24 h); 
however, the protein expression was observed to decrease 
at 48 h.
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Conclusions

The mechanisms of PQ-induced toxicity are summarized in 
Fig. 1. The synthesized review has strongly demonstrated 
the relationship between paraquat and PD as a strong inducer 
of oxidative stress, which contributes ROS formation. PD is 
a multifactorial disease involving many biochemical path-
ways, such as oxidative injury, mitochondrial dysfunction, 
ER stress, alteration in dopamine catabolism, inactivation 
of TH, and decrease in the neurotrophic factor BDNF, ulti-
mately resulting in apoptosis of the dopaminergic neurons 
in the SNpc. Thus, the use of in vitro and in vivo models 

using paraquat, which directly or indirectly contributes to 
the pathogenesis of the disease under the exacerbated condi-
tion of oxidative stress, may provide us with a larger picture 
to develop new therapeutic targets in the near future. The 
production of ROS and RNS such as  O2

•− and  ONOO− via 
redox cycling of paraquat is widely proposed to be the key 
mechanism of oxidative stress resulting in the apoptosis of 
dopaminergic neurons. Like innumerable reviews, we identi-
fied consistency among studies that investigate the cellular 
processes and in vivo organisms, in addition to the human 
population in the framework of PD pathogenesis. The patho-
physiological processes involving laboratory animals and 
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the affected signaling cassettes we reviewed in this paper 
identifying the development of PD characteristics following 
exposure to paraquat provides imperative evidence to expand 
this research and solve this problem.
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Fig. 1  The major molecular targets of paraquat that lead to cellular 
damage and apoptosis. (1) Paraquat crosses the blood–brain barrier 
via LAAT. (2) It then enters neuronal cells via transporters such as 
dopamine transporter DAT, OCT2, and OCT3. (3) Upon entry to the 
cells, paraquat undergoes a process of redox cycling, a process of 
alternate reduction and reoxidation. Paraquat is reduced by enzymes 
present in the mitochondria to form a monocation free radical,  PQ•+. 
 PQ•+ is then rapidly reoxidized in the presence of oxygen to generate 
 O2

•− and regenerates its parent compound  PQ2+. If there is sufficient 
NADPH as an electron donor and  O2 as an electron acceptor, para-
quat will repeatedly undergo the reduction–oxidation cycle, generat-
ing  O2

•−. This results in the initiation of a reaction cascade leading to 
ROS generation, such as  H2O2 and  OH−, in addition to RNS such as 
 ONOO−. (4) The generation of ROS and RNS are counterbalanced by 
the activation of the Nrf2-Keap1-ARE signaling pathway to activate 
endogenous antioxidant enzyme genes, such as HO-1 and NQO1. (5) 
Paraquat increase α-synuclein modifications, misfolding, and fibril-
lation rate resulting in aggregation to form Lewy bodies which are 
toxic to the cell. (6) Paraquat can also induce ER stress by activat-
ing the UPR signal proteins, such as PERK, ATF6, and IRE1, conse-
quently leading to the upregulation of the pro-apoptotic transcription 
factor, CHOP. (7) Ultimately, the activation of various pathological 
cellular processes, such as oxidative and nitrosative stress, ER stress, 
and mitochondrial dysfunction, results in the apoptotic pathway acti-
vation, leading to the cell death of dopaminergic neurons. ARE anti-
oxidant response element, ATF6 activating transcription factor 6, 
BiP binding immunoglobulin protein, CHOP C/EBP-homologous 
protein, DAT dopamine transporter, ER endoplasmic reticulum, GPx 
glutathione peroxidase, GRP78 glucose regulatory protein 78, GRP94 
glucose regulatory protein 94, GSH glutathione, GSSG glutathione 
disulfide, H2O water, H2O2 hydrogen peroxide, HO-1 heme oxyge-
nase-1, HtrA2 HtrA serine peptidase 2, IAPs inhibitor of apoptosis 
proteins, IRE1 inositol-requiring transmembrane kinase/endoribonu-
clease 1, Keap1 Kelch-like ECH-associated protein 1, LAAT  l-neutral 
amino acid, NO nitric oxide, NQO1 NAD(P)H dehydrogenase (qui-
none) 1, Nrf2 nuclear factor erythroid 2-related factor 2, O2 oxygen, 
O2

•− superoxide anion, OCT2 organic cation transporter 2, OCT3 
organic cation transporter 3, ONOO− peroxynitrite, PARP-1 poly 
(ADP-ribose) polymerase-1, PERK protein kinase RNA-like endo-
plasmic reticulum kinase, PQ paraquat, PQ•+ paraquat monocation 
free radical, PQ2+ paraquat dication, ROS reactive oxygen species, 
Smac/DIABLO second mitochondria-derived activator of caspase/
direct inhibitor of apoptosis-binding protein, SOD superoxide dis-
mutase, Ub ubiquitin, UPR unfolded protein response
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