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Rheumatoid arthritis (RA) is a chronic inflammatory disease that will affect quality of life and, working efficiency, and produce
negative thoughts for patients. Current therapy of RA is treated with disease-modifying antirheumatic drugs (DMARDs). Although
most of these treatment methods are effective, most patients still have a pleasant experience either due to poor efficacy or side
effects or both. Interleukin-6 receptor (IL6R) is important in the pathogenesis of RA. In this study, we would like to detect the
potential candidates which inhibit IL6R against RA from traditional Chinese medicine (TCM). We use TCM compounds from the
TCMDatabase@Taiwan for virtually screening the potential IL6R inhibitors.The TCM candidate compound, calycosin, has potent
binding affinity with IL6R protein. The molecular dynamics simulation was employed to validate the stability of interaction in the
protein complex with calycosin. The analysis indicates that protein complex with calycosin is more stable. In addition, calycosin
is known to be one of the components of Angelica sinensis, which has been indicated to have an important role in the treatment
of rheumatoid arthritis. Therefore, calycosin is a potential candidate as lead compounds for further study in drug development
process with IL6R protein against rheumatoid arthritis.

1. Introduction

According to WHO statistics, 1-2 per two hundred people
suffer from rheumatoid arthritis in 2010 [1]. Half of the adults
who have been diagnosed with an autoimmune disease in the
past ten years are not in full-time work. Autoimmune disease
is a form of connective tissue disease that mainly encroaches
upon the epitenon synovium and joint. This inflammation
can cause joint deformation leading to disability, and the
patientwill lose some of the joint activity due of joint pain and
wear. This inflammation will systematically affect other extra
articular tissues, including vascular, skin, muscles, lungs,
and heart. People with rheumatoid arthritis may suffer an
increase in myocardial infarction (heart attack), the risk of
atherosclerosis, and stroke [2, 3]. Other complications could
include left heart failure, pericarditis, endocarditis, cardiac
valve inflammation, and fibrosis [4].

Nowadays, as increasing number of mechanisms of dis-
eases have been identified [5–10], the researchers detect more
andmore potential target proteins against each disease, which
are useful for drug design [11–15]. Interleukin-6 receptor
(IL6R) is important in the pathogenesis of rheumatoid
arthritis (RA) [16, 17]. It is an autoimmune disease which
principally attacks synovial joints and causes long-term
chronic inflammation. Many research results indicate that
RA may be an inherent immune response [18]. Half of the
risk of RA is thought to be genetic [1] and it has been
found to be strongly associated with the major histocom-
patibility complex (MHC) antigen HLA-DR4 (specifically
0404 and DR0401) and the expression of genes PTPN22
and PADI4. Family history is therefore thought to be an
important risk factor [19, 20] as inheritance of the PTPN22
gene has been shown to double the vulnerability to RA.
It is notable that PADI4 has been identified as the main
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Table 1: Dock score and other criteria used in screening the TCM database for the top twenty candidates.

Name Dock score -PLP1 -PLP2 H-bond forming residues H-bond quantity Pi forming residues
Calycosin 43.247 56.29 54.8 Glu144, Gln147, Ala160 3 GLN158
Valerophenone-o-carboxylic acid 42.473 35.29 34.33 Ala160 2 —
Senkyunolide D 41.848 39.67 41.1 Glu144 1 —
p-Hydroxyphenethyl trans-ferulate 41.789 44.6 43.56 Glu144 1 —
Coniferyl ferulate 41.717 54.16 59 Asn110, Glu144, Gln147, Gln158 5 —
Riligustilide 41.56 48.51 45.81 — 0 —
Ferulic acid 41.345 48.61 46 Glu144, Ala160 2 —
Angeliferulate 40.976 46.41 40.02 Gln147, Gln158 3 —
Sinaspirolide 40.283 45.76 42.57 — 0 —
Senkyunolide P 40.067 46.2 41.59 Asn110 1 —
Angelicide 39.634 43.26 43.72 Asn110 1 —
Senkyunolide H 39.53 46.55 41.92 Glu144, Ala160 5 —
Senkyunolide-I 39.471 34.44 33.41 Glu144, Ala160 3 —
6 7-Ditydroxyligustide 38.932 48.1 50.08 Glu144, Gln147, Gln158 4 —
Vanillic acid 38.163 36.88 34.7 Glu144, Gln158 2 —
Ononin 38.015 23.01 25.02 Glu144 2 —
Senkyunolide I 37.198 29.15 34.73 Glu144, Ala160 3 —
3-Butylidene-4-hydro-phthalide 36.452 30.55 29.62 Asn110, Glu144 2 —
Senkyunolide F 35.047 30.92 36.36 Glu144, Ala160 2 —
Formononetin 34.358 53.75 50.82 Aln147 1 Gln158
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Figure 1: Disordered disposition predicted by PONDR-Fit with the
key residues (red line).

risk factor in people of Asian descent [12]. First-degree
relative prevalence rate is 2-3%, and the concordance of the
disease in monozygotic twins is in the region of 15–20%
[21, 22]. Smoking is the most significant nongenetic risk
factor in the development of the disease [1], and statistical
data indicate that smokers are up to three timesmore likely to
develop RA than nonsmokers, especially inmen [23].There is
some statistical evidence that moderate alcohol consumption
may have a protective value. [24]. Vitamin D deficiency is
common in rheumatoid arthritis cases and may have a causal
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Figure 2: The chemical structure of calycosin.

association [25]. Some trials have found that a vitamin D
supplement can reduce the risk of RA, while others have not
[25].

A study byMayoClinic in 2005 indicated that rheumatoid
arthritis patients suffered from more than double the risk of
heart disease than the general population [26], independent
of other risk factors, such as alcoholism, diabetes, high
cholesterol, body mass index, and elevated blood pressure.
RA mechanisms leading to increased risk are unclear, but
the presence of chronic inflammation has been proposed as a
contributing factor [27]. More and more effective treatments
of protein diseases are being discovered [6, 8, 28–32], and
treatments involving traditional Chinese medicine (TCM)
methods are also attracting much attention; therefore, poten-
tial lead compounds are expected from investigations [28, 33–
40].

We used computer-aided virtual drug screening [41]
with data from the traditional Chinese medicine Database@
Taiwan (http://tcm.cmu.edu.tw/) [42] for the investigation of
docking simulation and employed molecular dynamics for
the investigation of changes under the static and dynamic
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Figure 5: RMSD of protein and calycosin.
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Figure 6: Analysis of MD trajectories generated by Gromacs. (a) Gyrate and (b) mean square deviation (MSD).

conditions to determine natural, effective lead compounds
with fewer putative side effects.

2. Materials and Methods

2.1. Docking and Candidate Screening. The structure of
interleukin-6 receptor (IL6R) was derived from human IL6R
kinase from the Protein Data Bank (PDB ID: 1N26) [43].
According to UniProt (P08887), the crystal structure of the
binding site is located in residues 94–194. We used the
Database of Protein Disorder to verify the stability of the
structure with the sequence of crystal structure [44].

The investigation is based on Discovery Studio 2.5.5
LigandFit molecular docking method. The small molecules
from TCM database could be used to find suitable candidates
for the IL6R receptor. All the traditional Chinese medicine
small molecules used for screening had been filtered by
Lipinski’s rule of five [45, 46] and the properties of absorption,
distribution, metabolism, excretion, and toxicity (ADMET)
[47] in DS 2.5 to rule out potentially toxic derivatives. The
binding site was defined by the cocrystallized ligand location
in the crystalline structure. All the smallmolecules formolec-
ular docking were minimized with the smart minimizer
setting under the force field of CHARMM [48].The results of
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Figure 7: Analysis of transport pathways for (a) protein complex with calycosin and (b) apoprotein.
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Figure 8: RMSF for residues in (a) protein complexes with calycosin and (b) apoprotein.

molecular docking are sorted by Dock score, -PLP1, -PLP2,
H-bond forming residues, and H-bond quantity. Pi forming
residues were also selected from the top twenty.

2.2. Molecular Dynamics (MD) Simulation. The stability of
protein-ligand complex with candidate compounds was val-
idated using molecular dynamics simulation by GROMACS
4.5.5 [49]. The production of MD simulation time was 5 ns.
The GROMACS tool provides an analysis of the MD trajec-
tories.The g rms programwas used to compare structures by
calculating the root mean square deviation (RMSD) [50] to
observe the changes of the overall structure in the dynamic
simulation process compared to a reference structure. The
g gyrate program was used for calculation of the radius of
gyration of atomic groups about the 𝑥-axis, 𝑦-axis, and 𝑧-
axis, as a function of time. The g msd program was used to
analyze the mean square displacement of proteins, and the
g energy program was used to analyze the potential energy,
total energy, kinetic energy, temperature, volume, density,
pressure change of pV, and enthalpy.The g rmsf programwas
used to determine the flexibility level of a region of a protein
by analyzing the rootmean square fluctuation (RMSF) of each

amino acid. In this study, we also analyze the vector distribu-
tion diagrams of eigenvector, distance analysis of hydrogen
bond, structure clustering, variation of secondary structure,
and Mdmat analysis. In addition, the program, CAVER
3.0 [51], was also used to calculate the import and export
pathways for the compound. The CAVER program is based
on the Dynamic Map Ensemble (DyME) application pro-
gram. Dynamic proteins in DyME can be constructed from
many different configurations of the polymer. This method
calculates the free space of protein using a Voronoi diagram,
which is presumably the pathway of a small molecule.

3. Results and Discussion

3.1. Docking and Candidate Screening. Figure 1 shows the
results of verification from PONDR-Fit software and the
position of important amino acids. As all the important
residues in the binding domain are located below the stan-
dard line at 0.5, thus the crystalline structure is stable for
docking simulation. According to the experimental results
(Table 1), the Dock score, -PLP1, -PLP2, H-bond forming
residues, H-bond quantity, and Pi forming residues are
used to rank the top twenty candidates. Calycosin, the top



6 BioMed Research International

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1000 2000 3000 4000 5000

Time (ps)

Cl
us

te
r

Fr
am

e n
um

be
r

55

50

45

40

35

30

25

20

15

10

5

0

Cluster
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a)

0 1000 2000 3000 4000 5000

Time (ps) Cluster

Cl
us

te
r

Fr
am

e n
um

be
r

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

5

4

3

2

1

0

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

(b)

Figure 9: Cluster trend of (a) protein complexes with calycosin (cutoff: 0.142 nm) and (b) apoprotein (cutoff: 0.145 nm).

candidate, is used for further investigation in this paper. In
addition, the apoprotein is used as a control.

Recently, plant based drugs have become popular ther-
apies. Since the treatment with plant based drugs had been
used thousand years ago, they are thought to be relatively
safe and effective drugs [37]. The literature notes [36] that
calycosin from Chinese Angelica (Angelica sinensis) is a form
of complement hematinic false drug.Therefore, we estimated
the calycosin content of potential compounds. The structure
of calycosin is shown in Figure 2.

Figure 3 shows the interactions of the top compound
between ligand and residues in binding site. Calycosin has
𝜋 interaction with Gln158, hydrogen bonds with Glu144,
Gln147, and Ala160, polarity force with Asn110, Glu144,
Gln147, Gln158, and Ala160, and van der Waals force with
Phe142, Pro145, Cys157, and Leu159. The stability of calycosin
is maintained by the pi interaction, hydrogen bond, polarity,
and van der Waals force (Figure 3). Figure 4 shows the
hydrophobic contacts between candidate compound and
amino acids in the binding site. Calycosin has hydrophobic
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Figure 11: DSSP analysis of (a) protein complex with calycosin and (b) apoprotein.

contacts with three amino acids, Glu144, Gln158, and
Leu159.

According to the docking results in Table 1, calycosin has
potent binding affinity with target protein. Due to the results
in Table 1, Glu144, Gln147, and Ala160 are important amino
acids for binding.

3.2. Molecular Dynamics (MD) Simulation. Figure 5 shows
the variation of root-mean-squared deviation (RMSD) for
protein complexes with candidate compound and apoprotein
in the process of molecular dynamics. For protein RMSD, it
indicates the changes of IL6R protein structure for apopro-
tein and protein complexes with candidate compound. The
variation of protein RMSD for apoprotein is more stable
than protein complexes with candidate compound during
MD simulation. For ligand RMSD, the values of RMSD for
candidate compound tend to approximately 0.10–0.15 nm.
Figure 6(a) shows that protein complexes with calycosin had
lower gyrate scores than the apoprotein, which indicated
that the protein combined with calycosin is more stable than
apoprotein. As shown by the slope of MSD in Figure 6(b),
the protein combined with calycosin has higher diffusion

changes than apoprotein as the slope is increasing after
2 ns, which may have an influence on the protein displace-
ment status. The total energy of protein complexes with
candidate compound and apoprotein over 5000 ns MD is
located between −367000 and −36000.There is no significant
difference between protein complexes with candidate com-
pound and apoprotein (Figure 7). The value of RMSF illus-
trates the flexibility of each amino acid in a time period of
MD simulation. Figure 8 indicates that the important amino
acids Glu144, Gln147, and Ala160 in protein complexes with
calycosin are more stable. The clustering analysis can display
the representative conformation of protein complexes with
calycosin (cutoff of 0.142 nm) (Figure 9(a)) and apoprotein
(cutoff of 0.145 nm) (Figure 9(b)). Figure 10 illustrates the
variation of distances between themass centers of protein and
calycosin. It shows that the binding of calycosin is not stable
at initial, but it tends to stable after 2000 ps. The structure
of DSSP (Figure 11) and the variation of Mdmat distribution
(Figure 12) have no significant difference between protein
complexes with calycosin and apoprotein. Figure 13 displays
the eigenvector distribution for protein complexes with
calycosin and apoprotein. Due to a combination of calycosin,
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Figure 12: Mdmat analysis of (a) protein complex with calycosin and (b) apoprotein.
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Figure 13: Eigenvector distribution of (a) protein complex with calycosin and (b) apoprotein.

the distribution of eigenvector PC1 has expanded from −2
to −5, and eigenvector PC2 has contracted from −5 to −2,
which indicates that there are some changes in the protein
structure after combination. In addition, Figure 14 shows the
distribution of eigenvectors PC1, PC2 and also illustrated
the variation in the distribution of eigenvectors PC1, PC2.
The results of transport pathway analysis shown in Figure
15 indicate the presumable pathway of small molecules with
colors for protein complexes with calycosin and apoprotein.
Protein complex with calycosin has less potential pathway

than apoprotein, which indicates that the space of binding
domain has variate after a combination of calycosin.

4. Conclusion

In this study, we employed the TCM database for virtual
screening and ranking the results by the scoring function of
Dock score, -PLP1, -PLP2, and H-bond forming residues, H-
bond quantity, and Pi forming residues. The influence of top
candidate, calycosin, was investigated using apoprotein as the
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Figure 14: Analysis of eigenvectors PC1 and PC2 for (a) protein complex with calycosin and (b) apoprotein.

(a) (b)

Figure 15: Analysis of transport pathways for (a) protein complex with calycosin and (b) apoprotein.



10 BioMed Research International

control. After MD simulation, the analysis of RMSD, Gyrate,
MSD, total energy, RMSF, cluster, distance of mass centers
between protein and calycosin, DSSP, Mdmat, eigenvector,
and analysis of transport pathway are performed for inves-
tigating the influence of calycosin binding in the receptor.
Although there is only slight change in the protein structure,
the analysis indicates that protein complex with calycosin is
more stable than the apoprotein and the space of binding
domain has decreased after a combination of calycosin
as there are fewer pathways than apoprotein. Calycosin is
known to be one of the components of Angelica sinensis,
which has been indicated to have an important role in the
treatment of rheumatoid arthritis. Therefore, we speculate
that calycosin is a potential candidate as lead compounds for
further study in drug development process with IL6R protein
against rheumatoid arthritis.
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