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Abstract: Underwater video surveys play a significant role in marine benthic research. Usually,
surveys are filmed in transects, which are stitched into 2D mosaic maps for further analysis. Due to
the massive amount of video data and time-consuming analysis, the need for automatic image seg-
mentation and quantitative evaluation arises. This paper investigates such techniques on annotated
mosaic maps containing hundreds of instances of brittle stars. By harnessing a deep convolutional
neural network with pre-trained weights and post-processing results with a common blob detection
technique, we investigate the effectiveness and potential of such segment-and-count approach by
assessing the segmentation and counting success. Discs could be recommended instead of full shape
masks for brittle stars due to faster annotation among marker variants tested. Underwater image
enhancement techniques could not improve segmentation results noticeably, but some might be
useful for augmentation purposes.

Keywords: underwater imagery; Ophiuroidea; deep learning; semantic segmentation

1. Introduction

Underwater studies are critical from various aspects, such as economic (off-shore wind
farms and oil extraction platforms construction), ecological (biodiversity monitoring and
impact assessment), and scientific (geology, archaeology, biology studies). The demand for
maritime space requires an integrated planning and management approach, which should
be based on solid scientific knowledge and reliable mapping of the seabed [1,2]. One of
the widely used seabed habitat mapping methods in the continental shelf and deep seas
is underwater imagery [3,4]. Technological progress from hand-held cameras to remotely
operated vehicles (ROV) and autonomous underwater vehicles (AUV) increases video
material amounts and quality. This method’s main advantage is its simplicity, enabling
the rapid collection of large amounts of data, and, hence, cost-effectiveness. However,
only a small part of the information available in underwater imagery archives is being
extracted due to labour-intensive and time-consuming analysis procedures, thus the need
for automatic image analysis arises.

Automated solutions should encompass two steps: (1) preparing imagery data by
converting video transects into 2D mosaic maps; (2) performing semantic segmentation and
quantitative evaluation of seabed coverage. The first step comes from image processing
field and is known as photo stitching, while the second step is usually concerned with the
application of supervised machine learning. Our work is related to the second step and
explores automatic identification and quantification of brittle stars, in 2D mosaics stitched
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from video material. Semantic segmentation seeks to label each pixel by its corresponding
category automatically, and success is usually quantified by the mean intersection over
union (mIOU) metric.

Datasets of annotated underwater imagery for semantic segmentation research task
are relatively scarce. Some of them appear in coral reef research [5,6], along with a web-
based repository and a coral analysis tool named CoralNet [7,8]. However, these images
are mainly suited for the task of classification, rather than segmentation. Following the
success of deep learning techniques, in which backbone (feature extraction) layers are
often pre-trained on ImageNet [9] and later fine-tuned to the streamlined task at hand, [10]
similarly exploited CoralNet. A substantial collection of 431068 images with 191 different
coral species was used to pre-train the encoder part of DeepLabv3 [11] model, following
with a streamlined task of semantic segmentation, improving the mIOU metric from 51.57%
to 53.63%. Additionally, the proposed multilevel superpixel strategy for augmenting sparse
labels bolstered the mIOU to 76.96% when training with 4193 and testing with 729 images
containing 34 coral categories.

Recently, analysis of other categories of species or objects in underwater imagery has
also been gaining interest, and authors often experiment with deep learning techniques
to achieve pixel-level semantic segmentation with acceptable accuracy. Ref. [12] adapted
the DeepLabv3+ [11] model and achieved 64.65% mIOU when training with 2237 and
testing with 300 images containing 16 categories (nautilus, squid, plant, coral, fish, jellyfish,
dolphin, sea lion, Syngnathus, turtle, starfish, shrimp, octopus, seahorse, person, stone).
Ref. [13] introduced an underwater imagery dataset and compared many deep learning
models for the semantic segmentation task. Their proposed SUIM-Net model with the VGG-
16 backbone achieved 86.97% mIOU when training with 1525 and testing with 110 images
containing seven categories (human diver, aquatic plant or sea-grass, wreck or ruins, robot,
reef and invertebrates, fish and vertebrates, and sea-floor or rock). [14], instead of using
many categories, concentrated on segmenting Posidonia oceanica meadows and successfully
applied the VGG-16/FCN-8 convolutional architecture and achieved pixel-wise detection
accuracy of 96.1% when training on 460 and testing on 23 images. Additional tests on
unseen data from other locations and cameras confirmed detection robustness with 94%
and 87.6% accuracies.

This work explores brittle stars detection in underwater imagery using deep learning-
based semantic segmentation. Two experts annotated brittle stars in seabed mosaics in
two variants (full shape and discs only). Several underwater image enhancement methods,
most of them from the review by [15], were considered and evaluated as a pre-processing
step. The main novelty lies in comparing annotation variants and how switching experts
between training and testing affect segmentation accuracy. Additional contribution is
evaluating if pre-processing can help the selected seabed mosaics and how accurate the
segment-and-count approach is for the brittle stars species.

The article is organized as follows: collection of underwater video material and
preparation of 2D seabed mosaics are described in Section 2; methods used for image pre-
processing, deep learning model architecture, and post-hoc analysis techniques to count
detected objects are outlined in Section 3; experimental results are reported in Section 4;
conclusions with some discussion are in Section 5.

2. Underwater Imagery

Video data for constructing 2D seabed mosaics used in our work were collected in
July of 2019 in Borebukta bay on Spitsbergen Island, Svalbard, Norway (see Figure 1). The
video was recorded using a remotely operated underwater vehicle (ROV), equipped with a
vertically mounted camera (3 CCD, 1920 × 1080 resolution, high-quality Leica Dicomar
lenses and 10× optical zoom) and a lighting system consisting of 16 bright LED in 4 × 4
stations. At a depth of 45 m, approximately 1 m above the seabed, the ROV registered two
consecutive 30 s transects.
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Figure 1. Map of the study area where the seabed imagery was collected. Borebukta bay on
Spitsbergen Island, Svalbard (Norway).

The raw video transects were later converted into two video mosaics-2D seabed maps,
suitable for machine learning training and testing splits. Video mosaicking is a process
that involves converting video material into a still image by stitching the overlapping
frames. To obtain the dataset used in our experimentations, a video mosaicking method
developed by the Center for Coastal and Ocean Mapping (CCOM) [16,17] was used. The
process consists of several stages: firstly, a 30 s segment is extracted from a raw video
and then compensated for filming platform’s pitch and roll angles, and visually enhanced.
The next stage is an automatic frame-to-frame pair-wise registration where the CCOM
software calculates neighbouring frames’ overlap. Finally, a 2D mosaic is built by using the
overlapping data.

The data underlying this article are available in Mendeley Data repository “A fully-
annotated imagery dataset of sublittoral benthic species in Svalbard, Arctic” [18,19] where
selected 2D seabed mosaics had dimensions of 1487 × 6775 (Mosaics/B5_0032_30s.jpg)
and 1488 × 7862 (Mosaics/B5_0102_30s.jpg) pixels with hundreds of either fully visible or
partially hidden brittle stars. Two marine scientists annotated the mosaics in pixel-level
detail by drawing closed polygons around visible brittle stars using the online collaborative
annotation platform Labelbox [20]. Two variants of annotation were considered: a full
star-like shape with tentacles included and a simplified circle-like shape as the main body
disc. Example annotations for full and disc shapes are shown in Figure 2.

The prepared dataset consists of two data sources-2D mosaics, referred to as mosaic-1
and mosaic-2, with 361 and 457 markers in full shape or 362 and 500 markers as discs of
brittle stars, respectively. One of the marine experts, referred to as expert A, annotated
both mosaics in two marker variants (shape and disc). Another expert annotated mosaic-1
only with full shape masks (443 instances). Due to the nature of brittle star positioning on
the seabed, it is much easier to correctly annotate brittle star bodies (disc shapes), which
explains the disparity between the full vs disc shape instance counts in the mosaics.
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(a) (b)

Figure 2. Annotation variants considered when preparing seabed mosaics for the semantic segmen-
tation task. (a) Full shape annotation. (b) Disc annotation.

3. Methods

This section introduces the methods used for mosaic pre-processing through underwa-
ter image enhancement, the deep learning model applied, the assessment of segmentation
success, and blob count estimation for post-processing.

Fully convolutional network (FCN) [21] is a form of deep neural network that swaps
the last fully connected layer, used for the classification task, to convolutional, thus making
whole network have only convolutional layers. Extending this modification with some
form of upsampling FCN models can be tailored to solve pixel-level classification tasks like
semantic segmentation. They have shown to produce favourable results in many computer
vision scenarios and even underwater imagery segmentation. It has been shown that
through a pyramid pooling module [22] deep neural networks develop the capability
of extracting global context information by aggregating region-based contexts. Such
architecture is named a pyramid scene parsing network (PSPNet). Once trained, the
neural network is tasked with segmenting the seabed mosaics into two classes: brittle stars
and background. The resulting segmentation is then used to quantify brittle stars in the
region, mainly by denoising the erroneous predictions and using connected component
analysis (CCA) to count the brittle star instances.

3.1. Image Enhancement

Feasibility of various image enhancement techniques for possible improvements of
deep learning model’s segmentation results was tested by experimenting with 2D mosaics
enhanced using Python and Matlab implementations of methods reviewed by [15]. The
following 13 methods were explored for pre-processing: 4 from underwater image colour
restoration and 9 from underwater image enhancement. The main difference between
these categories is the use of the optical imaging physical model-the underwater image
formation model (IFM) [23], where colour restoration methods are IFM-based and image
enhancement methods are IFM-free. IFM seeks to decompose the scene’s colour captured
by the camera into the direct transition and background scattering component, which is es-
pecially important in artificial lighting conditions. Image enhancement (IMF-free) methods
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seek to improve the contrast and colour through pixel intensity redistribution avoiding
direct modelling of underwater imaging principles but still dealing with water-specific
deteriorations such as hazing, colour cast, and low contrast. As summarized by results
in [15], the IFM-free methods effectively improve contrast, visibility, and luminance of the
underwater imagery but have a downside of unnatural chromaticity and introduced noise.

Underwater image colour restoration methods considered:

1. dark channel prior (DCP) [24];
2. maximum intensity prior (MIP) [25];
3. removal of water scattering (RoWS) [26];
4. Paralenz colour correction [27] (with the gain set to 0.5).

Underwater image enhancement methods considered:

1. contrast limited adaptive histogram equalization (CLAHE) [28];
2. Matlab-based enhancement ensemble (Fusion) [29];
3. gamma intensity correction (GC) [30];
4. integrated colour model (ICM) [31];
5. relative global histogram stretching (RGHS) [32];
6. unsupervised colour correction (UCM) [33];
7. underwater dark channel prior (UDCP) [34];
8. underwater light attenuation prior (ULAP) [35];
9. de-hazing with minimum information loss and histogram distribution prior

(TIP2016) [36].

Visual examples of image pre-processing results are shown in Figure 3 for qualitative
comparison. Instead of quantitative comparison, which was done in [15] by using five
objective metrics (entropy, image quality evaluation, etc.), we pre-process full mosaic
images and then use them further for training deep learning models and testing accuracy
of the resulting segmentation. We assume that such a comparison of segmentation accuracy
would help to directly measure the usefulness of restoration and enhancement methods as
a pre-processing step for the data selected and task performed.

Figure 3. Example result of underwater image enhancement (left to right, starting from the top row):
original raw image, DCP, MIP, RoWS, Paralenz, CLAHE, Fusion, GC, ICM, RGHS, UCM, UDCP,
ULAP, TIP2016.

3.2. Deep Learning Model

For our experiments, we considered a deep convolutional neural network-PSPNet [22]
model containing ResNet-101 [37] as a backbone (feature extraction network) with its
weights pre-trained on ImageNet. The Keras [38] framework (version 2.3.1), running on
Tensorflow [39] backend (version 2.1.0), was used with segmentation-models [40] (version
1.0.1) package. The architecture of the convolutional neural network model used in the
context of our work is shown in Figure 4.
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Figure 4. The input to the network is a patch of the mosaic, the output - semantic segmentation mask.
Adapted from Ref. [22]. Since the feature map output by the ResNet-101 backbone is 1/8 the input
image size, the pyramid pooling module is followed by upsampling through bilinear interpolation to
get a segmentation mask of proper dimensions.

The training parameters for the model are shown in Table 1. The parameter named
“patch size” represents the size of the input image in training, “batch size” indicates
the number of images used for the weight tuning step, “down-sample” represents the
downsampling rate which corresponds to the backbone depth in PSPNet model. The
training loss minimized is an additive combination of Jaccard [41] and Focal [42] losses.
The model was trained for 500 epochs on full mosaics or 300 epochs on halved ones. The
rectangular patch size of 288 × 288 pixels implies that block processing will be required to
slice mosaics into patches. The patches were extracted using 144 × 144 strides to slide the
patch over the input image. This procedure, also known as sliding window approach, is
shown in Figure 5.

Table 1. Summary of deep learning model parameters.

Parameter Value Parameter Value

learning rate 0.00012 dropout rate 0.3
down-sample 8 patch size 288
activation sigmoid batch size 8

Figure 5. A generalized overview of sliding window approach to slice an input image into patches
for training input.

By training models with different annotation strategies (disk shape or full shape), we
gain insights into segmentation and the subsequent quantification effectiveness.
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3.3. Segmentation Performance

To evaluate the deep learning model, we have used Intersection-Over-Union (IOU),
a common evaluation metric in semantic image segmentation, measuring segmentation
success by comparing the ground truth with the prediction mask.

The IOU metric is defined as:

IOU =
true positive

true positive + false negative + false positive

The IOU metric is obtained from the confusion matrix, calculated using the output
threshold of 0.5 for the model’s predictions. Please, note that confusion matrix is not
related to object detection task, but to pixel-level assignment of the correct class. Therefore,
true positive should be understood here simply as an overlap between prediction and
ground-truth, whereas denominator in IOU formula is a union between prediction and
ground-truth.

3.4. Connected-Component Analysis

To get the most of the segmented mosaic masks, objects, which in our case are brittle
stars, ought to be quantified. The standard algorithmic way of achieving this is by perform-
ing the connected-component analysis (CCA) [43]. CCA is an algorithmic application of
graph theory: given a subset of connected components, each one is uniquely labelled on a
given heuristic.

In our work, the workflow to achieve the quantification of objects using CCA is
as follows:

1. Reduce the noise in the predicted segmentation mask by morphological opening
(erosion followed by dilation).

2. Isolate and remove blobs having an area smaller than the set threshold.
3. Calculate the Euclidean distance transform (EDT) [44] for the smoothed image.
4. Apply the 8-connectivity CCA and perform the watershed transform [45] on the

resulting markers.

In our case, the blob count, corresponding to the number of brittle stars, is assumed to
be the number of unique labels after applying the watershed transformation step. Expertly
achieved parameter values for this workflow are shown in Table 2 (two kernel size and
two minimal area values for the disc and full shape segmentations, respectively).

Table 2. CCA workflow parameters.

Parameter Value

Operator dilation
Variant opening
Kernel form ellipse
Kernel size (2, 2); (4, 4)
Minimal Area 40 px; 120 px
EDT minimal local distance 55
CCA connectivity 8

4. Experiments

We used the two expertly annotated 2D mosaics block-processed into patches of
288 × 288 pixels with a stride of 144 pixels both for training and testing the neural network
model. This processing resulted in 528 image patches for mosaic-1 and 514 patches for
mosaic-2. The experiments were conducted to evaluate the effectiveness of deep learning
application on individual mosaics and different segmentation markers (full shape vs central
disc), assess image enhancements and, finally, evaluate segmentation differences when
switching between annotators for training mosaic-1.
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4.1. Experimental Setup

The hardware configuration was as follows: Intel(R) Core(TM) i7-8700 CPU @3.2 GHz,
32 GB of operating memory, NVIDIA GeForce RTX 2070 with 8 GB of graphic memory.
The software configuration was as follows: Windows 10 Enterprise (build 1809) 64-bit
operating system, CUDA 10.1, CuDNN 6.4.7 and Python 3.6. The applied model takes
approximately 5 s per epoch to train. In all experimental settings, the loss converged after
approximately 250 training epochs, but model trained on the preset maximum number of
epochs was used for inference.

4.2. Experimental Results

Table 3 reports segmentation performance for different combinations of training and
testing mosaics. In case the same mosaic is used both for training and testing, learning
is performed on one-half of the mosaic by splitting it horizontally at the middle and
training on the top while testing on the bottom halves. When mosaics for training/testing
differ, the entire images are used. As seen from the results, the highest IOU score for the
experiment with full shape annotations is 58%. The lowest performance score results from
training and testing on mosaic-1. Surprisingly, when training on mosaic-1, better results
are achieved on the mosaic-2, whereas the same can not be said when training on mosaic-2.
For segmentation of brittle star discs, the best-achieved IOU is about 75% when training on
the same mosaic. The effect of full shape training does not repeat here: better scores are
achieved when training and testing on the same mosaic. Figure 6 shows some examples of
better and worse segmentation areas in mosaic-1 for full and disc shape markers.

(a) (b) (c)

Figure 6. Segmentation results when testing on mosaic-1: comparison between acceptable (first
two rows) and not so successful (last two rows) mask predictions. (a) Raw image. (b) Ground truth.
(c) Prediction from PSPNet.
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Table 3. Segmentation performance by the IOU metric for different training/testing configurations.

Train Mosaic Test Mosaic Full Shape IOU Disc Shape IOU

mosaic-1 mosaic-1 0.533 0.744
mosaic-2 0.562 0.731

mosaic-2 mosaic-2 0.582 0.751
mosaic-1 0.549 0.728

To better understand the pre-processing effects on the underwater mosaics, enhance-
ments described in Section 3.1 are used to transform the images. The segmentation perfor-
mance when using this setup is shown in Table 4.

Table 4. The full shape segmentation performance by the IOU metric obtained after pre-processing
underwater images by various colour restoration or image enhancement methods. Top 5 results for
each column are denoted in bold face.

Method Train on Mosaic-1, Train on Mosaic-2,
Test on Mosaic-2 Test on Mosaic-1

DCP 0.550 0.552
MIP 0.553 0.549
RoWS 0.566 0.551
Paralenz 0.563 0.551
CLAHE 0.548 0.553
Fusion 0.555 0.493
GC 0.552 0.547
ICM 0.561 0.550
RGHS 0.528 0.548
UCM 0.557 0.549
UDCP 0.539 0.553
ULAP 0.503 0.548
TIP2016 0.541 0.545

none 0.562 0.549

From the reported results in Table 4 it can be seen that none of the enhancements
noticeably contribute to better segmentation results, especially when training on mosaic-1
and testing on mosaic-2.

Since two experts annotated mosaic-1, the resulting cross-validation between the
annotators might garner useful information. The results are shown in Table 5.

Table 5. The full shape segmentation performance by the IOU metric obtained when switching
annotators-training using annotations of one and testing using annotations of another.

Train Mosaic Test Mosaic IOU

mosaic-1-A mosaic-1-B 0.455

mosaic-2-A mosaic-1-B 0.444

mosaic-1-B
mosaic-1-B 0.549
mosaic-1-A 0.506
mosaic-2-A 0.421

The results show that the segmentation performance decreases when training and
testing mosaics with ground-truth masks from different annotators.
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Connected component analysis results (shape counts) are shown in Table 6. Despite
the achieved mediocre IOU values, the match of estimated counts for brittle stars in the
mosaics ranges from 78% to 93% if compared to the annotator’s ground-truth.

Table 6. Blob count results after post-processing predicted segmentation.

Annotations Train Mosaic Test Mosaic
Blob Counts

Blobs Detected Ground Truth Ratio

Full shape mosaic-1 mosaic-2 377 457 0.824
mosaic-2 mosaic-1 337 361 0.933

Disc shape mosaic-1 mosaic-2 393 500 0.786
mosaic-2 mosaic-1 342 362 0.944

5. Discussion

Depending on how model performance indicators are evaluated, in a strict or forgiv-
ing way, results could differ significantly. The reason for this is not only model performance
but also variations in raw material quality. In this study, organisms had moved during
recording, which resulted in various artefacts in the mosaics. More artefacts were intro-
duced due to the mosaic stitching process. In some cases, brittle stars were clipped and, in
others, multiplied. It significantly affected full shape model performance: in many cases,
separated legs in the imagery were confusing even to an expert to annotate, and even more
so for the model (see Figure 6). Although central disk annotations and model results also
suffered from raw data artefacts, they did so to a lesser degree. Therefore, some of the
model mistakes should be interpreted differently.

When the model falsely detected the central disk in some false positive cases, the
detected object was still associated with the actual organism (see Figure 7). Therefore
even if a central disk was not accurately detected, the count estimate of organisms was
correct. Depending on what to consider as the final result, such a detection result could be
considered correct or incorrect.

Figure 7. Example of false positive prediction which is still useful for counting.

Some organism instances in the mosaic were very tiny, although still detectable by a
human expert. However, in some such cases, the central disk is not visible in the imagery
(see green coloured disks on the left hand side of Figure 8). One cannot expect that model
trained to mainly detect clearly visible central disks could easily detect a rare case of brittle
stars with no disk visible, therefore, some of the false negatives can be explained not by
model errors but by flaws in the scenery. We made two model performance evaluations by
a human expert: a strict one not considering the problems described and a forgiving one.
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Figure 8. Example of false negative prediction from the model: organisms with hardly visible disk,
marked in green color (left hand side), were missing in the prediction result (right hand side).

In Table 7, two kinds of evaluations for false positive and false negative are provided:
strict evaluation, where predictions were left as is and forgiving, where some cases were
excluded from false predictions. For false positives, exclusion occurred when the disk
was not correctly detected but the organism was present or expert did not annotate that
organism. For false negatives, exclusion occurred when no distinguishable central disk
could be observed in imagery but expert still annotated that organism.

Table 7. Inspecting disc shape counts for two types of evaluation. Test mosaic ‘mosaic-1’ means that
the model was trained on ‘mosaic-2’ and vice versa.

Test Mosaic
Strict Evaluation Forgiving Evaluation

False Positives False Negatives False Positives False Negatives

mosaic-1 45 7 18 5
mosaic-2 82 6 43 2

For mosaic-1, the forgiving evaluation of disc shapes reduces false positives by 27
(from 45 to 18) and, consequently, increases ratio of correctly counted blobs from 0.944 to
1. Actually, when applying forgiving evaluation the ratio of correctly counted instances
exceeded 1 since a few brittle stars were not annotated by the expert. For mosaic-2, forgiving
evaluation of disc shapes reduces false positives by 39 (from 82 to 43) and, consequently,
increases ratio of correctly counted blobs from 0.786 to 0.864. False negatives were reduced
by 2 for mosaic-1 and by 4 for mosaic-2, indicating that organism with its disk hidden
beneath the sand was a rare case.

Performance noticeably decreased when training on annotations of one expert and
testing on annotations of another expert. Such a drop in performance could be partially
explained by different annotation styles when experts were marking tentacle parts-tentacles
annotated by the expert A were consistently thicker. This result highlights the importance
of discussing the annotation style before starting these labour-intensive efforts when
annotations do not overlap. In case of overlapping annotations (when several annotators
label the same object), variance in annotations could be exploited to increase amounts of
training data as a specific variant of augmentation. Also, merging of annotations, or even
devising a survey to vote for the best ground-truth [19], could be considered.

From pre-processing methods explored only RoWS and Paralenz methods were able
to marginally improve the IOU values. Surprisingly, the other methods tested seem to
negatively affect segmentation performance. In case of training on mosaic-2 and testing
on mosaic-1, more methods (6 out of 13) provide a positive effect on the segmentation,
although these improvements are rather marginal (difference is less than 0.01 in IOU
metric). This lack of improvement from pre-processing could be due to mosaics being very
similar in colour and lighting. It is expected that the usefulness of pre-processing could
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be more pronounced if testing images are more different from training ones with more
significant colour mismatches and the problem of domain adaptation.

In the future, we plan to expand this work by increasing the number of examined
species from the used fully annotated Arctic imagery dataset with the inclusion of more
fauna (e.g., tube-dwelling Polychaeta) as well as flora (e.g., brown alga- kelp Laminaria)
classes. Comparison of PSPNet to other existing deep learning architectures, such as
DeepLab [11] or Mask R-CNN [46] or LinkNet [47], with respect to segmentation accuracy
and computational efficiency, is of utmost importance. Additional improvements could be
related to the model ensemble and efforts to combine several architectures’ outputs into a
fused segmentation result. The overall vision of current research would be a collaborative
platform for semi-automatic analysis of large and diverse underwater imagery from the
Baltic Sea and the Arctic Ocean.

6. Conclusions

Extracting valuable information from underwater imagery in the form of segmentation
masks and using these masks to count the instances of objects of interest is an important
research avenue for benthic studies. For seabed inspection purposes computer vision
enables new opportunities to explore and understand the seabed in different regions.
An invasive species of brittle star, previously restricted to Pacific ocean, has surprisingly
established itself at some places in the Atlantic [48]. Techniques explored here could be
useful in measuring abundance of megafauna for commercial or invasive species and
quantitatively monitoring organisms such as crabs, scallops, crown-of-thorns sea stars,
flatfishes, sea urchins, etc.

The PSPNet based model trained using expertly annotated 2D seabed mosaics (from
Svalbard region in Norway) was more successful for segmenting discs than full shapes.
Count estimates of extracted blobs corresponded to the ground truth rather well with 78.6–
94.4% of brittle stars detected and counted. After forgiving evaluation these estimates
increased even more. Therefore, we suggest using disc masks for marking brittle stars, since
discs are way more straightforward to annotate. Overall, a relatively low segmentation
performance both for full shapes (54.9% and 56.2%) and discs (72.8% and 73.1%) could be
not only due to incomplete overlap between prediction and ground-truth, but also due to
annotators missing some stars, which could have inflated false positives.

With convolutional neural networks leading in several research areas, deep learning al-
gorithms attracted significant interest in multiple fields due to state-of-the-art achievements.
However, these algorithms were unable significantly impact the domain of underwater
imaging as of yet, primarily due to the lack of available training data. Instead, various im-
age pre-processing approaches to remove depth-related distortions in underwater imagery
are researched in the respective domain. We have found the RoWS method as promising,
and although such pre-processing did not provide large improvements for selected im-
agery, it could be potentially helpful for data augmentation purposes, especially with more
varied imagery.
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