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ABSTRACT
Recent developments in Statistical Parametric Mapping (SPM) for continuum data (e.g. kinematic time
series) have been adopted by the biomechanics research community with great interest. The Python/
MATLAB package spm1d developed by T. Pataky has introduced SPM into the biomechanical literature,
adapted originally from neuroimaging. The package already allows many of the statistical analyses
common in biomechanics from a frequentist perspective. In this paper, we propose an application of
Bayesian analogs of SPM based on Bayes factors and posterior probability with default priors using the
BayesFactor package in R. Results are provided for two typical designs (two-sample and paired sample
t-tests) and compared to classical SPM results, but more complex standard designs are possible in both
classical and Bayesian frameworks. The advantages of Bayesian analyses in general and specifically for
SPM are discussed. Scripts of the analyses are available as supplementary materials.
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Introduction: Statistical Parametric Mapping

Statistical Parametric Mapping (SPM) was originally devel-
oped for statistical inference on neuroimaging data where
dependent variables are sampled on a large number of
spatially correlated voxels (volume elements) (Friston
2007). The same methodology applies, however, to all
spatiotemporally registered and smooth data, and subse-
quent work from the research group of Todd Pataky has
introduced SPM in the biomechanics and human move-
ment science community for analysis of pedobarographic
images (Pataky and Goulermas 2008), finite-element
simulations (Pataky 2010) and uni/multivariate time series
data (kinematics, kinetics, sEMG, etc.)(Pataky 2012; Pataky
et al. 2013; Robinson et al. 2015). Recent developments
include power analysis and sample size calculations
(Pataky 2017) and SPM for cortical bone mapping (Li
et al. 2009; Poole et al. 2017; Yu et al. 2017) and pedobaro-
graphic videos (Booth et al. 2018). The nomenclature of
SPM uses ‘nDmD’ to describe the dimensionality of the
dataset, where the parameter n describes the dimension
of the field in which the dependent variable(s) is(are)
sampled and the parameter m describes the number of
dependent variables (Pataky et al. 2016). In the present
paper, our focus lies on univariate time series, i.e. 1D1D
data where one dependent variable is sampled continu-
ously over time (a one-dimensional field), but the same
principles apply to all nDmD data.

SPM offers a couple of strong advantages for biome-
chanists and movement scientists. The primary advan-
tage is that no abstraction of the originally sampled
time series needs to be performed in order to statisti-
cally analyze the data. The full 1D field can be examined
in a non-directed hypothesis test without any ad-hoc
assumptions regarding the spatiotemporal foci of inter-
est. Since kinematic or kinetic time series can be com-
plex, it can be difficult to objectively specify an a-priori
method for analysis and many studies, therefore, adopt
an ad-hoc approach: visualize the 1D time series and
extract a summary 0D scalar (extremum, central ten-
dency, . . .) which was not specified a priori to test
statistically (Pataky et al. 2015). Accompanying these
full-field non-directed hypotheses tests is the ability to
visualize the statistical results in the same field as where
the data were sampled. For time series data, the statis-
tical result is hence also a time series (e.g. a time series
of t-values) and allows for better interpretation of data.

SPM uses Random Field Theory (RFT) (Adler and Taylor
2007) to perform topological inference instead of per-
forming separate inferential tests at each time point
which would cause an inflation of Type I error. RFT
leverages smoothness (local correlation between adja-
cent time points) to mitigate the multiple testing pro-
blem, thereby offering accurate sampling-rate
independent control of Type I errors when testing corre-
lated field data. Because biological processes are typically
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smooth and biomechanical data acquisition samples
above the Nyquist criterion, neighboring time samples
are not independent and this should be taken into
account (Pataky 2010). Rather than computing a p-value
at each time sample, a p-value is calculated for clusters of
statistics (e.g. t) that cross a critical threshold (t*). The
logic of RFT is that the height and width of supra-
threshold clusters produced by smooth random fields
are inversely proportional to the probability of their
occurrence, making a large supra-threshold cluster the
topological equivalent of a large t-value for 0D data
(Pataky 2010; Appendix A). The definition of the SPM
p-values can be stated as: ‘the probability that smooth,
random continua would produce a supra-threshold cluster
as broad as the observed cluster’ (spm1d.org, © T. Pataky).
Critical thresholds are usually calculated with the Type
I error α = 0.05. Hence, when the observed t-statistic time
series crosses the threshold, this cluster has a p < 0.05,
allowing the researcher to reject the null hypothesis H0 of
no difference between the two time series.

These SPM p-values – as in 0D statistics – refer to the
probability of the data given that H0 is true, P(data | H0),
without recourse to any alternative hypothesis H1, which is
the classical frequentist approach to inference. In the cur-
rent implementation of the open-source package spm1d
(Python and MATLAB versions, spm1d.org, © T. Pataky),
there is only the possibility to perform frequentist inference
and in this paper, we want to propose a stepping stone
towards a Bayesian alternative. In the following sections, we
will first briefly introduce the differences between Bayesian
and frequentist inference and delineate why the Bayesian
alternative can offer additional insights from the data.

Bayesian inference

Classical inference answers the inverse question of what
researchers usually aim to answer. Above we gave the
definition of a frequentist pwhich is not the same as what
we want to know, namely the probability that H0 or H1 are
good descriptions of the data: P(data | H0) ≠ P(H0 | data)
(Cohen 1994). In fact, both probabilities are related to
each other through Bayes’ theorem:

PðHijdataÞ ¼ P datajHið ÞP Hið ÞP
P datajHj
� �

P Hj
� �

where the sum in the denominator (or integral in the
limiting case) is taken over the set of all relevant
hypotheses j (including i). Additionally, frequentist infer-
ence is asymmetric in the sense that: (1) it is only
possible to state evidence against H0 and not evidence
in favor of H0 or in favor of any alternative H1 and (2)
because it does not consider any alternative

hypotheses, the evidence against the null is always
overstated (Rouder et al. 2009; Morey and Rouder
2011; Wagenmakers et al. 2018). When a researcher
wishes to demonstrate the invariance of some variable’s
time series during a movement (invariance with respect
to a model prediction, experimental manipulation or
group membership), classical inference only allows
statements like ‘the data showed no evidence against
H0 during the movement’ which is not the same as the
statement which was the aim of the study: ‘the data
showed evidence in favor of H0 and thus an invariance
during the movement’. With Bayesian inference, the
latter statements are possible. For instance, consider
a study where the objective is to show that gait kine-
matic time series are left-right symmetric, Bayesian
inference can quantify the evidence in favor of the H0:
μleft(t) = μright(t). Conversely, a classical approach would
be to assume that symmetry exists, calculate a p-value
under this assumption and fail to reject the null. But it
makes no logical sense to assume something which you
want to prove. Interested readers in further contrasts
between classical and Bayesian inference are referred to
recent tutorial papers on Bayesian statistics (Dienes and
Mclatchie 2018; Etz and Vandekerckhove 2018;
Kruschke and Liddell 2018a).

Within the Bayesian school of statistics, many related
approaches exist, but in this paper, we will focus on an
approach to Bayesian SPM based on Bayes Factors and
Posterior Probability. A few other Bayesian alternatives
are explained in the discussion. Bayes Factors (BF) result
from the application of Bayes’ rule and can be linked to
the odds of one hypothesis over another:

PðH1jdataÞ
PðH0jdataÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
posteriorodds

¼ PðdatajH1Þ
PðdatajH0Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

BF10

:
PðH1Þ
PðH0Þ|fflffl{zfflffl}
priorodds

;

where BF10 is the Bayes Factor with the marginal like-
lihood of the data under the alternative H1 in the
numerator and the likelihood under H0 in the denomi-
nator. The prior odds reflect the relative belief in both
hypotheses before doing the experiment and is often
set equal to 1 in order not to favor any hypothesis
a priori, in which case BF10 reflects the posterior odds
of the alternative over the null. However, it is not
necessary to set the prior odds to 1, researchers may
simply communicate the BF which readers may multiply
with any prior odds they hold on the two competing
hypotheses to yield a posterior odds. The BF reflects the
change in confidence on the two hypotheses after
observing the data (Wagenmakers et al. 2018). A BF10
of 1 indicates equal evidence for both hypotheses while
0 < BF10 < 1 indicates evidence in favor of H0 and BF10 >
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1 is evidence in favor of H1. For instance, with the prior
odds set to 1, a BF10 of 5 indicates that P(H1 | data) = 5/6
and P(H0 | data) = 1/6, i.e. the probability of the alter-
native is 5 times higher than that of the null.

To calculate the Bayes Factor, researchers need to spe-
cify likelihood functions and associated prior probabilities
for both hypotheses. This allows for very flexible analyses
and to incorporate any prior knowledge about the specific
data from experience, pilot studies, meta-analyses and
other sources (Wagenmakers et al. 2018). The resulting BF
is naturally sensitive to this choice, and it should be argued
why a particular choice is relevant and how robust the
results are with respect to reasonable changes in the prior
setting. The so-called objective Bayesian school has devel-
oped default priors for a variety of typical statistical tests for
which the resulting BF has desirable theoretical properties.
These properties include: (1) scale invariance which means
thedefault BF is unaffectedbymultiplicative changes of the
variables (i.e. independent of the measurement units); (2)
consistency, which means that in the large sample limit the
BF will approach zero or infinity when the effect size is 0 or
not zero, respectively; and (3) consistency in information,
which indicates that the BF will approach the correct limit
as the statistic of interest (e.g. t) increases:limt!1BF10 ¼ 1,
independent of sample size (Rouder et al. 2012). These
default priors are general and broadly applicable and are
reasonable in most circumstances (Rouder et al. 2012) and
we will, therefore, choose them for our proposal of
a Bayesian implementation of SPM.

The BF based on default priors is a convenient sum-
mary of the evidence but has one disadvantage for
SPM, namely the control of the multiple testing pro-
blem across the 1D field (which typically includes 101
time points; 0–100% of the movement). However, the
BF can be converted to posterior probabilities which are
better suited to implement a multiple testing control
scheme. Posterior probabilities are also easier to inter-
pret for researchers used to classical statistics as they
live on the [0, 1] interval whereas a BF exist on the]0,
∞[interval. Given a prior odds of 1, the posterior prob-
abilities (PP) can be calculated as:

PH0 ¼ P H0jdatað Þ ¼ 1
1þ BF10

and PPH1 ¼ P H1jdatað Þ

¼ 1
1þ BF01

When PPH1 at a certain time point is, e.g. 0.95, the posterior
error probability of classifying this time point as evidence in
favor of H1 is 0.05 (PEP= 1 – PP). The false discovery rate
(FDR) can be used as a unified multiple-testing framework
for Bayesian and classical inference (De Villemereuil et al.
2014) and is therefore adopted here. A conservative control

of the FDR can be made by thresholding the posterior
probability SPM at, e.g. 0.95, keeping the FDR ≤ 0.05
(Friston and Penny 2003). A less conservative threshold,
while still keeping the FDR at the same level is the use of
the q-value which is defined as the cumulative mean of the
posterior error probabilities (Storey 2003; Käll et al. 2008).
A q-value of 0.05 for a certain time point implicates that for
all possible thresholds, 5% is the minimal FDR threshold at
which this time point will appear in a supra-threshold
cluster (Käll et al. 2008). Especially for SPM, the use of the
q-value is, we believe, better suited, because it indirectly
takes the temporal correlation of adjacent time points into
account. Although a q-value is calculated per time point for
1D data, it is a property of the entire time series object.
When a threshold of q* = 0.05 is used, the first time point to
be included in a supra-threshold cluster has at least
a posterior probability of 0.95; adjacent time points may
fall below that while still keeping below q*, which is reason-
able because adjacent time points are strongly correlated
and hence may be categorized in the same cluster.

Classical SPM versus Bayesian SPM

In this section, we will compare the classical SPM with
our proposition of a Bayesian version of Statistical
Parametric Mapping for 1D1D data.

Datasets

We will use example datasets that come included with
the open-source spm1d-package (spm1d.org, ©
T. Pataky) and one additional dataset from our lab. We
will use common statistical tests for demonstration pur-
poses (two-sample t-test and paired-sample t-test), but
more complex statistical models are available in the
packages for classical and Bayesian analysis (n-way
ANOVA, repeatedmeasures, (multi-)linear regression, . . .).
A description of the three data-sets is given in Table 1.

Classical SPM

The spm1d package was used to perform two-tailed
SPM{t} tests in Spyder (Python 3.6). The classical null
hypotheses for the three examples are as follows:

● SimulatedTwoLocalMax: Independent-sample
t-test: H0: μ1(t) = μ2(t)

● PlantarArchAngle: Paired- sample t- tests:
H0: μ1(t) = μ2(t)

● GaitSymmetry: Paired-sample t-tests:
H0: μleft(t) = μright(t)

INTERNATIONAL BIOMECHANICS 11



The results of the analyses with α= 0.05 are shown in
Figure 1, and the details of the supra-threshold clusters
are depicted in Table 2.

In all three examples, H0 may be rejected at a type
I error rate of 5%. However, the supra-threshold clusters
are quite small and specific to certain phases of the
motion which is in contrast to the hypotheses stated
above which apparently hold for all time points. In the
PlantarArchAngle and especially for the GaitSymmetry
example, it is contra-intuitive to completely reject the
H0 because the time series show a strong similarity. The
GaitSymmetry dataset is a good example where
a marginal effect can result in a statistically significant

difference purely because a large sample size is
obtained (but see results below on power). In the
Bayesian case, this is not necessarily so and allows
a more nuanced statement where the null can also be
accepted in other time spans.

Bayesian SPM: posterior probability maps

Similar to the classical approach, we will construct
a Statistical Parametric Map of the posterior probability
in the time domain where P(H | data) is calculated at
each time sample, analogous to an SPM{t}. The calcula-
tions of the Bayes Factors and posterior probabilities
are performed in RStudio with the R-package
BayesFactor (Morey et al. 2018), scripts and datasets
are available as supplementary materials.

The hypotheses and priors for the t-tests are para-
meterized in terms of the effect size δ =(μ1 – μ2)/σ,
where the indices refer to the two groups or two con-
ditions or left and right legs. Point null hypotheses are
very unlikely to be true exactly and trivially small effects
may exist that are not of (clinical, theoretical) interest.
This does not mean that the null should be abandoned
and it may still be preferred for parsimony’s sake as
a first approximation of the truth (Cohen 1994; Morey
and Rouder 2011). Morey and Rouder (2011) provide BF
calculations where the null includes trivially small
effects around δ = 0. We believe that this is especially
appropriate for 1D time series data (and increasingly so

Table 1. Description of example datasets used for the three
frequentist and Bayesian SPM tests. The first two datasets are
part of the spm1d-package (© T. Pataky).

Statistical test Example dataset

Two-sample
t-test

SimulatedTwoLocalMax. Dataset of 2 x n = 6 simulated
time series of 101 time samples each. The first set are
smooth unit Gaussian random trajectories.
The second set are also smooth unit Gaussian
trajectories, but with bursts at t = 25 and t = 75.

Paired-sample
t-test

PlantarArchAngle (Caravaggi et al., 2010). Dataset of 2
x n = 10 experimental time series of the plantar arch
angle of the foot at 101 time samples each.

Paired sample
t-test

GaitSymmetry. Single subject dataset (healthy male, 28
years, 83 kg, 178 cm) of left and right leg knee
flexion angles during 99 gait cycles on a dual-belt
tredmill at constant speed of 4.5 km/h, time
normalized to 101 time samples. Gait kinematics
were recorded with a 6-camera VICON system at 250
Hz. (unpublished data from our lab).

Figure 1. Classical SPM{t} results for the three datasets. Top row shows descriptive statistics for each dataset (Mean ± 1 SD error
cloud). Bottom row shows the frequentist inferences. The horizontal dashed lines depict the critical t* based on α = 0.05 and RFT
calculations of residual smoothness. Supra-threshold clusters result in p < 0.05. For the GaitSymmetry example, note that these are
time series from a single subject, the SD-cloud thus represents within-subject variability instead of between-subject variability. The
inference only pertains to this subject.
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for higher dimensional fields) because point null mod-
els would already be unlikely due to technical data
registration issues and natural movement variability. In
the calculations below, we took [−0.2, 0.2] as an interval
of trivially small effects for the difference in the time
series data, this choice corresponds to the typical
recommendation by (Cohen 1988) for small effects.
The null and alternative hypotheses for the Bayes
Factor calculations were as follows:

● paired and independent samples t-tests (point H0):

H0 : δ(t) = 0
H1 : δ(t) ~ Cauchy(r)

● paired and independent samples t-tests (interval H0):

H0: δ(t) ~ Cauchy(r) for δ(t) ∈ [−c, c]
H1: δ(t) ~ Cauchy(r) for δ(t) ∉ [−c, c]

Mathematical definitions of the default JZS-priors
(Cauchy distributions), their justification and proofs for
deriving the BFs can be found in (Rouder et al. 2009;
Morey and Rouder 2011). These default priors still allow
a flexible scaling of the width of the prior (r) and

a determination of the null interval (c). The scale of
the Cauchy prior should be set a priori and should
reflect prior knowledge about the effect sizes that are
relevant or expected for the variables of interest. The
BayesFactor package offers three default options, that
are shown in Figure 2. When the effect size is likely to
be small to moderate, then the medium scale is
a suitable choice, but when very large effects are
expected, less probability should be placed in the cen-
ter and more at the edges. For time series applications,
a well-justified prior knowledge may even be reflected
in phase-specific priors where the scale is a function of
time, r(t). One-sided priors can also be selected for
directed alternative hypotheses.

In Figure 3 and Table 3, we show the results of the
Bayesian SPM (posterior probability maps). Because we
believe the interval H0 to be the most relevant, we
report only these results, but the reader may examine
the point H0 in the R-scripts (supplementary materials).

The results of the Bayesian SPM were partially in
line with the classical SPM approach. For the inde-
pendent-sample t-test, the classical SPM showed evi-
dence against the null at t = 24–27 and at t = 77. The
Bayesian SPM confirmed the existence of both clus-
ters. For the conservative threshold, the results were
nearly identical to the classical SPM, while the supra-
threshold clusters were a little wider for the q* based
threshold. Note that the posterior probability is below
½ most of the time, which makes sense given the
model that created these simulated time series (see
Table 1). However, the small sample size was ineffec-
tive for claiming strong enough evidence for accept-
ing the null. For both types of threshold, the result
was only weakly dependent on the width of the
Cauchy scale.

Table 2. Classical SPM{t} results for the three datasets. Begin
and end-points of supra-threshold cluster locations are given as
a percentage of the total movement time.

Evidence against H0 (p < 0.05)

Cluster location p-Value

SimulatedTwoLocalMax
Independent-samples t-test

t = 24–27
t = 77

p = 0.030
p = 0.046

PlantarArchAngle
Paired-samples t-test

t = 97–101 p = 0.037

GaitSymmetry
Paired-samples t-test

t = 74–78 p= 0.011

Figure 2. Cauchy priors for the effect size δ with different scales (solid line: r = √2/2 (medium), dot-dashed: r = 1 (wide) and dashed:
r = √2 (ultra-wide)). Fifty percent of the probability mass lies between – r and + r.
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For the PlantarArchAngle t-test, the classical SPM
showed a significantly different plantar arch angle
between t = 97–101, while the Bayesian supra-threshold
cluster was a little wider (t = 95/96–101). Similar to the
previous example, the sample size was too small to claim
strong evidence in favor of the null, although the poster-
ior probability was below ½ most of the time. From
a Bayes Factor perspective, the null was more than 4
times more likely than the alternative at large phases of
the gait cycle (BF10 < ¼), but this was not enough to reach
the posterior probability thresholds of 0.95. Also, for this
example, the sensitivity to the prior scale was very small.

Arguably the biggest difference between both infer-
ential perspectives lies in the GaitSymmetry dataset.
From a classical perspective, the (point) H0 could be
rejected between t = 74–78 (p= 0. 011), whereas the
Bayesian analysis only yields a maximum of 72% prob-
ability for the alternative during this time span, which is
not convincing evidence for asymmetry. The Bayesian

perspective shows, however, that throughout most of
the time P(H0 | data) ≥ 0.95. Using the q* threshold, we
would say that except for a small amount of time
(between 1% and 6% of the gait cycle), this subject is left-
right symmetric in the knee joint motion. For this data-
set, the results are more strongly dependent on the scale
factor. Because the wide and ultra-wide settings place
a more prior probability on large effect sizes, they are
less likely alternatives and thus get penalized in favor of
the null hypothesis which results in broader clusters.

Note, however, that in the classical SPM, the significant
result ismost likely caused by an overpowered dataset. This
is a relatively common problem in single-subject designs
where additional trials are easy to sample. The maximal
significant mean difference was only 0.54° which is not
clinically relevant to consider asymmetric. The present
paper is only demonstrative, but if this were a proper
experimental study, an a-priori power analysis may have
helped to determine the number of gait cycles. Given

Figure 3. Panels (a), (b) and (c) give descriptive statistics for the three datasets (replicated from Figure 1). Panels (d), (e) and (f) give
the posterior probability maps (PPM) for the alternative hypothesis: a time series of P(H1 | data) (only shown for r= √2/2, see Table 3
for comparison to the other scales). The horizontal dashed lines at 0.05 and 0.95 depict the thresholds for which, respectively, P(H0 |
data) > 0.95 and P(H1 | data) > 0.95 [P(H0 | data) + P(H1 | data) = 1]. Panels (g), (h) and (i) show the same PPM but thresholded using
the FDR scheme. The red horizontal dashed line indicates the largest posterior error probability for which q < 0.05. It can be seen
that no new clusters are created because the minimal posterior probability for either hypothesis must still be 0.95 in order to keep
the q below 0.05. Because the cumulative mean is taken, the clusters broaden or in case of the GaitSymmetry dataset, they merge.
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a minimal difference of 2° to consider asymmetric, we
performed a power analysis with the power1d package
(Pataky 2017). The python script in the supplementary
material explains the construction of the null and alterna-
tive models used for the simulations. The results showed
that for a power of 0.80, minimal 50 gait cycles should be
sampled (Figure 4(a)). Other simulations fluctuated a little
around n = 50, so we performed the paired-samples t-tests
again with the first 55 gait cycles, the results are shown in
Figure 4(b) (classical) and 4C (Bayesian). The classical result
no longer rejects H0 while the Bayesian result still provides
evidence for H0 throughout most of the gait cycle.
Technically these conclusions are not the same, but from
an applied perspective, both conclusions would be in favor
of symmetry.

Discussion and future work

In this paper, we have proposed a stepping stone
towards a Bayesian alternative to Statistical Parametric
Mapping of 1D1D data. We have shown results of pos-
terior probability maps in two common statistical tests
(two- and paired-sample t-tests) and compared the
results to the classical SPM{t}. Both similarities and dis-
crepancies are found between both inferential meth-
ods. Bayesian methodology in general (not only for 1D
data and SPM) has a stronger face validity and is not
asymmetric like classical inference and takes an explicit
alternative hypothesis into account which allows to
calculate evidence in favor of a null hypothesis. We
used an example of gait analysis to show how
a Bayesian approach can statistically demonstrate that
knee joint angles are left-right symmetric throughout
nearly the entire gait cycle (single subject design).
While an appropriately powered classical inference
found no evidence of a significant left-right difference,
this absence of evidence is not the same as
a quantification of the evidence in favor of symmetry
like in the Bayesian approach. This ability may also
important in cases like designing neuromuscular mod-
els or testing theories where the time series of the
prediction is compared to observed time series, H0:
μmodel(t) = μempirical(t). Also in applied research with
biomechanical time series, it may be relevant to exam-
ine invariance with respect to certain interventions.
When some clinical or sports training intervention is
performed in order to change the motion pattern,
a frequentist approach could reject (successful interven-
tion) or fail to reject the null (unsuccessful experiment),
while a Bayesian approach could also provide evidence
that the intervention itself is unsuccessful which is dif-
ferent from an unsuccessful experiment.

Classical sample size calculations for 0D-data requires
a definition of the minimal effect size that should be
detectable with sufficient power and a given alpha level.
For 1D-data, null and alternative models should be con-
structed that represent the expected behavior of the time
series under the null and alternative models. For well-
known signals with simple behavior, this is relatively
easy with the power1d package (Pataky 2017) but quickly
becomes much more difficult for complex, unknown sig-
nals. Also, the expectation of the signal variability (within-
and between subjects) and how and when the two
groups would be different may be difficult to anticipate
(effect cluster shape, height, width, location). When the
observed effects in the final study are markedly different
from the anticipated effects, the study may result in ser-
ious over/underpowered conclusions. From the Bayesian

Table 3. Overview of supra-threshold clusters for the Bayesian
SPM tests (interval H0 only). The less conservative q* = 0.05
threshold always yields broader clusters than the P(H | data)* =
0.95 threshold. For the SimulatedTwoLocalMax and
PlantarArchAngle datasets, the difference between both
thresholds is small. For the GaitSymmetry example, the differ-
ence is larger and results in 4–7 separate clusters or 2 broad
clusters (for the ultra-wide setting, it is nearly 1 cluster over the
entire time span). The GaitSymmetry example also shows sen-
sitivity to the scale of the prior, whereas this sensitivity was
negligible in the other two datasets.

Evidence in favor of H0 Evidence in favor of H1

P(H0 | data) ≥
0.95

q(H0) ≤
0.05

P(H1 | data) ≥
0.95

q(H1) ≤
0.05

SimulatedTwoLocalMax (independent-samples t-test)
r= medium / / t = 25–27

t = 77
t = 24–28
t = 76–78

r= wide / / t = 24–27
t = 77

t = 24–28
t = 75–78

r= ultra-
wide

/ / t = 24–27
t = 76–78

t = 24–28
t = 75–79

PlantarArchAngle (paired-samples t-test)
r= medium / / t = 98–101 t =

95–101
r= wide / / t = 98–101 t =

95–101
r= ultra-
wide

/ / t = 98–101 t =
96–101

GaitSymmetry (paired-samples t-test)
r= medium t = 1–2

t = 9–13
t = 18–37
t = 41–49
t = 53–70
t = 83–88
t = 92–101

t = 1–74
t = 80–101

/ /

r= wide t = 1–2
t = 8–14
t = 18–37
t = 40–50
t = 52–71
t = 83–101

t = 1–75
t = 79–101

/ /

r= ultra-
wide

t = 1–3
t = 6–14
t = 17–71
t = 83–101

t = 1–76
t = 78–101

/ /

INTERNATIONAL BIOMECHANICS 15



perspective, this uncertainty may be overcome by using
Sequential Bayes Factor Designs (Schönbrodt et al. 2017).
Rather than specifying an (unrealistic) alternative hypoth-
esis, researchers may sample sequentially more and more
subjects (or trials in a single-subject design) until a pre-
defined level of evidence for either the null or alternative
or both has been reached. To our knowledge, these
Bayesian sampling plans have not been used for 1D-
data and will require further investigation. For the pre-
sented data, a slight disadvantage of the Bayesian SPM is
computation timewhich is shown in Table 4. The frequen-
tist calculation times are practically zero (analytic solu-
tions exist), while a negligible but non-zero computation
time is required for the Bayesian results. The computation
time increases for more complex designs because they
require the calculation of several Bayes Factor objects
corresponding to several potential alternative hypotheses
(in the t-test case, only one alternative hypothesis was
used). The size of the datasets did not seem to impact the
calculations, so for most biomechanical applications (typi-
cal sample sizes <100), the computational burden is
expected to be no real problem.

Much furtherwork needs to beperformed to explore the
validity and theoretical properties of this Bayesian SPM and
the FDR control schemes of thresholding on the posterior
probability and q-values. Bayesian inference and decision-

making are not based on controlling type I or type II error
rates, and the problem of multiple testing is, therefore, less
a problem than in frequentist inference (Berry and
Hochberg 1999; Kruschke and Liddell 2018b). In 0D statis-
tics, p-values are typically less conservative than Bayesian
methods. In datasets one and two, we saw that the clusters
based on the conservative threshold were indeed smaller
than the frequentist clusters, but the q*-based clusterswere
a little larger than the classical ones. For the third dataset,
the comparison between cluster sizes is difficult because
they really signify different conclusions. Friston and Penny
(2003) compared Bayesian 95%-thresholded posterior
probability maps with SPM (PET and fMRI data) and saw
that the Bayesian approach yielded larger supra-threshold
clusters than classical SPMs.

In the future work, we should examine the feasibility of
hierarchical Bayesian modeling (empirical parametric
Bayes) for 1D data (Friston and Penny 2003) which can be
used topractically eliminate theproblemofmultiple testing
(Gelman et al. 2012). Future studies should also examine
more appropriate priors for spatiotemporally correlated
data for SPM applications (Lee et al. 2017; Sidén et al.
2017). In the present proposition, we took a default JZS
prior at each point in the time series which does not take
the temporal correlation into account. One possibility we
see in this respect is the introduction of a ‘dynamic prior’

Figure 4. (a) Classical power (omnibus) analysis for calculating the number of trials necessary to reject H0 given alpha = 0.05 and
a minimal 2° difference between the left and right leg (H1). Horizontal lines show the typical power criterions of 0.80 and 0.90.
Panels (b) and (c) give the classical and Bayesian SPMs using the first n = 55 gait cycles (for which classical power >0.80). For the
Bayesian SPM, the maximal posterior error probability for which q < 0.05 was 0.113.

Table 4. Computation time for frequentist and Bayesian SPM tests.

Statistical test and dataset size
Computing time

(DELL, i7 processor, Linux Mint 19 operating system)

Independent-sample t-test
SimulatedTwoLocalMax [12 x 101]

Classical SPM (Python): 0.025 s
Bayesian SPM (RStudio): 1.325 s

Paired-sample t-test
PlantarArchAngle [20 x 101]

Classical SPM (Python): 0.025 s
Bayesian SPM (RStudio): 1.097 s

Paired-sample t-test
GaitSymmetry [198 x 101]

Classical SPM (Python): 0.025 s
Bayesian SPM (RStudio): 1.580 s
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where the posterior density at ti can serve as the prior for
the Bayes Factor calculation at ti+1. Given the temporal
correlation of the data, the effect sizes at neighboring
time samples are bound to be similar and therefore the
posterior at ti will be a good estimate for that at ti+1.
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