
 

Viral genomes reveal patterns of the SARS-CoV-2 outbreak in 
Washington State 
 
One Sentence Summary: Local outbreak dynamics of SARS-CoV-2 in Washington State 
(USA) were driven by regionally different mitigation measures and repeated introductions of 
unique viral variants with different viral loads. 
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Abstract: The rapid spread of SARS-CoV-2 has gravely impacted societies around the world. 
Outbreaks in different parts of the globe are shaped by repeated introductions of new lineages 
and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 
viral genomes from Washington State to characterize how the spread of SARS-CoV-2 in 
Washington State (USA) was shaped by differences in timing of mitigation strategies across 
counties, as well as by repeated introductions of viral lineages into the state. Additionally, we 
show that the increase in frequency of a potentially more transmissible viral variant (614G) over 
time can potentially be explained by regional mobility differences and multiple introductions of 
614G, but not the other variant (614D) into the state. At an individual level, we see evidence of 
higher viral loads in patients infected with the 614G variant. However, using clinical records 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2020. .https://doi.org/10.1101/2020.09.30.20204230doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.30.20204230
http://creativecommons.org/licenses/by-nc/4.0/


 

data, we do not find any evidence that the 614G variant impacts clinical severity or patient 
outcomes. Overall, this suggests that at least to date, the behavior of individuals has been more 
important in shaping the course of the pandemic than changes in the virus. 
 
Introduction 
 
After its emergence near the end of November or beginning of December 2019 in Wuhan, 
China, SARS-CoV-2 rapidly spread around the world (1). In the United States, the first reported 
case of COVID-19, the disease caused by SARS-CoV-2, was found in Washington State on 
January 19, 2020 in a traveler who returned from China 4 days earlier. Until the end of 
February, no additional cases of COVID-19 were reported in Washington State. 
 
At the end of February, however, a case of COVID-19 was reported in Snohomish County, the 
same county where the initial case was reported. This case had no known travel history and 
constitutes the first reported case of community transmission in Washington State (2). While 
genetically closely related to the initial case, the later sequenced cases share a common 
ancestor in early February and have been reported to likely be due to an independent 
introduction (2). 
 
After these initial introductions, SARS-CoV-2 has been introduced repeatedly into Washington 
State from different parts of the globe. Viruses introduced later differ genetically from those 
introduced earlier, most notably in one amino acid in the spike protein, which facilitates viral 
entry and includes the receptor-binding domain. Since its first occurrence, this amino acid 
substitution from aspartate (D) to glycine (G) at position 614 of the Spike protein increased in 
relative frequency around the world (visible at: https://nextstrain.org/ncov/global?c=gt-S_614 ) 
and now represents the vast majority of all new cases of COVID-19 (3–5). This increase in 
relative frequency of the 614G variant has been proposed to be due to higher transmissibility of 
the 614G variant over the 614D variant (4, 6). A modest increase in viral load has been 
observed in patients infected with the 614G variant (4, 7). Recently, multiple in vitro studies in 
human cell lines found a 3-9 fold increase in infectivity of the 614G variant (5, 8, 9). However, it 
remains unclear whether the population level trends are due to higher transmissibility of the 
virus, or simply due to founder effects, i.e. owing to strong bottlenecks when SARS-CoV-2 
spread globally, as the D614G variant got a start early on in the European COVID-19 epidemic 
and spread from Europe to the rest of the world.  
 
Washington State differs regionally, from more densely populated areas at the coast, to more 
sparsely populated areas inland. We here focus on differences between the spread on lineages 
of 614D and 614G in the context of regional differences within Washington State. Extensive 
local spread of SARS-CoV-2 was first detected in King County, which includes the city of 
Seattle. King County was also the first region in the state to take action to curb the spread of 
SARS-CoV-2, including several large companies in the area mandating work from home in early 
March 2020 (10). After a statewide lockdown, new cases began to fall in the whole state, except 
for Yakima County, where cases peaked substantially later than in the rest of the State. 
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Using viral genetic sequence data isolated from patients in Washington State between February 
and July 2020, we test the impact of temporal differences in county level mobility trends, as well 
as the role of introductions from outside the state in driving case loads. We additionally 
investigate potential transmissibility differences by comparing viral loads using cycle thresholds 
for viral quantification. Lastly, we investigate whether the D614G amino acid substitution leads 
to more severe disease in patients infected with SARS-CoV-2.  

Outbreak in Washington State caused by repeated introductions and shaped by temporal 
differences in mobility reductions 

We sequenced 3940  viruses from Washington State collected between February and July 2020 
and use these sequences alongside other publicly available sequences from elsewhere in the 
world to characterize transmission dynamics. We observe SARS-CoV-2 entered Washington 
State from different parts of the world and subsequently spread locally, evident as clusters of 
genetic similar Washington State viruses in the global phylogeny (Fig. 1A). An early February 
introduction of a 614D variant (2, 11) fueled much of the early outbreak in March and April, but 
this lineage was supplanted through multiple introductions of 614G and past April the majority of 
viruses are 614G (Fig. 1). 

To analyse the introduction and local spread of SARS-CoV-2 in Washington State, we first split 
these sequences into different local transmission clusters, which we define as groups of 
sequences that originate from a single introduction into Washington State. To do so, we use a 
parsimony based clustering approach, considering Washington State and everything outside 
Washington State as the two possible locations for parsimony clustering. The local transmission 
clusters obtained are shown at 
https://nextstrain.org/groups/blab/ncov/wa-phylodynamics?c=cluster_size  and their size 
distribution and D614G makeup shown in Figure S1. We then use these local transmission 
clusters to analyse the spread of SARS-CoV-2 in the state using two phylodynamic approaches. 
First, we estimate the effective reproduction number (Re) using a birth-death approach (12), 
where we treat each individual local transmission cluster as independent observation of the 
same underlying population process (13). Next, we estimate effective population sizes over time 
and the degree of introductions using a coalescent skyline approach (14). To do so, we assume 
that all sequences that cluster together are the result of local transmission and each individual 
cluster is the result of one introduction into Washington State. We then model the whole process 
as a structured coalescent process (15, 16) where we assume to know the migration history 
based on the previous clustering (see Methods and Material for details). In contrast to the 
birth-death model, the coalescent conditions on sampling, meaning that the information about 
population level trends comes from the phylogenetic tree itself and not from the number of 
sequences through time.  
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Fig. 1. SARS-CoV-2 phylogeny highlighting D614G split and cases through time in Washington 
State. (A) Phylogenetic tree of 10,051 sequences from Washington State and around the world. Tips are 
colored based on sampling location. This is a time-calibrated phylogeny with time shown on the x-axis. 
The split between 614D sequences (blue) and 614G (orange) sequences is shown as a bar to the right of 
the phylogeny. (B-E) Confirmed cases and genetic makeup of SARS-CoV-2 across Washington State and 
individual counties. The green line shows a 7 day moving average of daily confirmed cases. The bar plots 
show weekly sequenced cases in our dataset. Cases due to the 614D variant are shown in blue and 
cases due to the 614G variant are shown in orange. 

We perform these phylodynamic analyses for a random subsample of 1500 samples from all 
Washington counties except for Yakima County as well as for the 614D (500 sequences) and 
614G (1000 sequences) lineages separately. Additionally, we performed the same analysis 
using 750 sequences from Yakima County only. After an initial introduction (2), the number of 
cases grew rapidly (Fig. 2A). As expected, growth in confirmed cases is mirrored in 
phylodynamic estimates of viral effective population size (Fig. 2A). Additionally, we observe 
maximal transmission intensity at the end of February when Re is between 2 and 3  (Fig. 2B). 
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This is consistent with other estimates of the effective reproduction number of SARS-CoV-2 
during early phases of an epidemic when control measures are not in place (17–19). 

Around the time when community spread in King County was announced on February 29, 2020, 
we observe decreased occupancy of workplaces according to Google mobility data (Fig. S2) 
(20). This reduction in workplace mobility occurred earlier in King County, compared to other 
regions of the state that had little or no reported cases at the time (Fig. S2). This is consistent 
with several businesses starting to institute measures, such as work-from-home policies, at the 
beginning of March (10). This reduction in mobility in King County coincided with a reduction in 
the effective reproduction number of 614D cases in the state (Fig. 2B). By the time initial 
statewide measures were taken on the 11th of March, cases of 614D had almost peaked and 
were starting to decline while overall cases were approximately constant or still increasing (Fig. 
2A).  

Cases of 614G were still increasing and peaked a little over a week later than cases of 614D 
(Fig. 1 and 2A). This was around the time when the statewide lockdown order came into effect 
on March 24, 2020. While cases of 614D were initially mostly located around Seattle, cases of 
614G were more widespread throughout the state. Viruses sampled from cases in Pierce 
County and in the counties north of King County mostly harbored the 614G variant (Fig. 1C). 
Changes in the effective reproduction number of 614G coincided with changes in mobility 
outside of King County (Fig. 2B). An alternative phylodynamic method using a coalescent 
approach yields highly similar results (Fig. S3). 

Yakima County was the other county in the state (besides King County) with a significant 
number of 614D cases later in the epidemic (Fig. 1D). The outbreak there happened later than 
the first large outbreak in King and neighboring counties. Additionally, the trend in cases in 
Yakima County became increasingly decoupled from workplace mobility as measured by 
cellphone movement for reasons likely associated with a large population of essential workers in 
the agricultural sector and seasonal worker migration poorly captured in mobility metrics (Fig. 
S4) (21, 22). 
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Fig. 2. Regional dynamics of SARS-CoV-2 in Washington State inferred from confirmed cases and 
pathogen genomes . (A) Estimates of effective population sizes for the outbreak in Washington State 
(green interval), as well as for 614D (blue interval) and 614G (orange interval) individually compared to 
confirmed cases in the state (gray bars). The inner band denotes 50% highest posterior density (HPD) 
interval and the outer band denotes the 95% HPD interval. (B) Re estimates using a birth death approach 
for the same groups as in (A). The Re  estimates are compared to Google workplace mobility data for King, 
Pierce, Skagit and Snohomish Counties shown as black solid and dashed lines. Workplace mobility is 
represented as a 7 day moving average. 

We next investigated the importance of introductions in driving the outbreak in Washington 
State. To do so, we estimated the relative contribution of introductions compared to local 
transmission following the coalescent approach introduced above. In short, we use the 
estimated changes in effective population sizes over time and the estimated rates of 
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introduction to compute the percentage of new cases in the state due to introductions (see 
Material and Methods for details).  

We estimate the percentage of new cases due to introductions in Washington State (excluding 
Yakima County) to be below 10% initially and to then have increased to about 10% by the 
middle of March through early April (Fig. 3). As a reference, the US instituted a travel ban for 
non-residents coming from China on February 2, 2020, and a travel ban from Europe effective 
March 16, 2020. Increases in the proportion of introductions of the overall cases can either be 
driven by a reduction in the local transmission rate and or an increase in the rate of introduction.  

These introductions were unevenly distributed across the different clades 614D and 614G (Fig. 
3) (6, 23). The proportion of introduced 614G cases is substantially greater than the proportion 
of introduced 614D cases. We estimate the percentage of introduced 614D cases to be below 
3% during the whole outbreak. On the other hand, we infer the percentage of introduced 614G 
cases to have been over 10% until the beginning of April. This means that a substantially higher 
fraction of 614G cases were caused by introductions than in 614D cases. This is expected 
considering that cases of 614G were much more widespread outside of China (Fig. 1A), 
including in areas with relatively strong travel patterns to Washington State during the epidemic, 
such as New York State. 

We next tested whether the percentage of new cases caused by introductions are reasonable 
given the number and size distribution of local transmission clusters. To do so, we simulated 
local transmission clusters where 0.1%, 1% or 10% of all infections are caused by novel 
introductions. We find that the observed patterns in transmission cluster size distributions fall 
between the simulated patterns for 1% and 10% of all infections having been caused by 
introductions (Fig. S5). 

Overall, it appears that population level changes in Washington State in relative frequencies of 
the two lineages can be explained by differences in timing of measures to curb the spread of 
SARS-CoV-2 on a county level and by repeated introductions of 614G. Although a parsimonious 
explanation of observed dynamics, this does not preclude 614G having a higher transmission 
rate relative to 614D. Additionally, these population level trends are impacted by many 
confounding factors that are not directly related to the virus itself. We therefore next move to 
investigate whether we can observe differences between patients infected with viruses from 
either lineage on an individual level.  
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Fig. 3. Phylogenetic estimate of the percentage of introductions of the overall cases . Proportions 
are estimated as the relative contribution of introductions to the overall number of infections using the 
multi-tree coalescent. Proportions are shown for the outbreak in Washington State (green interval), as 
well as for 614D (blue interval) and 614G (orange interval). The inner area denotes the 50% HPD interval, 
the outer area denotes the 95% HPD interval.  
 
D614G leads to higher viral load, without apparent effects on virulence 
 
We tested for differences in viral loads between patients infected with either the 614D or the 
614G viral variants by comparing cycle threshold (Ct) values. Ct values are inversely correlated 
with viral load, and differences in Ct values between these two variants have been reported 
previously (4, 7). To test this, we analyzed 1770 SARS-CoV-2 sequenced samples from 
Washington State for which we had access to Ct values. We only used genomes sampled 
between February and April 2020, when both lineages were circulating in Washington State. 
 
Of these 1770 genomes, 1128 genomes were from patients referred by a healthcare provider 
for nasopharyngeal swab testing to the University of Washington (UW) Virology laboratory. 550 
genomes were from samples collected by the Washington Department of Health (WA DOH), 
and 92 samples were from self-collected nasal swabs mailed in for testing as part of the Seattle 
Coronavirus Assessment Network (SCAN).  During this time period, UW Virology used multiple 
platforms for PCR testing (Fig. S6). Since it is difficult to compare Ct across primer sets and 
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platforms (24), we mainly focus on samples amplified with the most common primer set: N1, N2 
(n=879), although analyses of results using ORF1ab primers (n=229) were also conducted. 
 
We found that patients infected with viruses with the 614G substitution had lower Ct values 
(higher viral load) than those infected with 614D viruses in all three collection channels (Figs. 
4A, S7). This difference was significant by Wilcoxon Rank Sum Test in samples from UW 
Virology (N1, N2 primers: median Δ = 1.5 cycles, p = 1.5e-12, ORF1ab primers: median Δ = 2.5 
cycles, p = 0.0012) and WA DOH (median Δ = 1.5 cycles, p = 0.014), but not when only using 
the samples from SCAN, where we had far fewer samples (median Δ = 2.1 cycles, p = 0.077) 
(Figs. 4A, S7).  
 
We next tested whether factors other than D614G variant predict Ct values. To do so, we 
applied a generalized linear model (GLM), assuming normally distributed Ct values, to the UW 
Virology samples using variant, patient age, and calendar week of sampling as potential 
predictors of Ct values. If later in the epidemic, carriers of SARS-CoV-2 are detected at an 
earlier stage of their infection, the measured Ct values would be impacted purely based on how 
long after infection a patient has been tested (25–28). We include sampling week as a potential 
predictor of Ct values to potentially correct for this. 
 
We find that D614G variant is the best predictor of Ct values, with 614G having a Ct value that 
is, on average, 1.4 cycles lower than for 614D (N1, N2 primers) (Fig. 4B) when controlling for 
age and sampling week. This difference in Ct translates to a 0.42 log 10 increase in viral load 
(95% CI: 0.26-0.57 log), assuming the standard curve is linear in this region. With ORF1ab 
primers, we observe similar coefficients and significance in the GLM (Fig. S7); however, the 
residuals are not normally distributed, suggesting the model fits poorly with ORF1ab primers.  
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Fig. 4. Factors affecting viral load and disease severity at an individual level. A Comparison 
between cycle threshold (Ct) values for viruses from the 614D and 614G clade. B GLM analysis of Ct 
values using variant, age, and sampling week as predictors. C Odds ratios of being hospitalized given 
being infected with SARS-CoV-2. Error bars show 95% CI, corrected for multiple hypothesis testing using 
a Bonferroni Correction. D Proportion of viruses in 614D and 614G clades grouped by sex, 
immunocompromised status, hospitalization, and severe outcome (requiring critical care or death). 
Proportion was calculated as the mean of a binary clade variable; error bars show standard error of the 
mean. 
 
We also found a difference in age of people infected between the two lineages (Fig. S8). In 
samples from UW Virology, the average age of patients infected with viruses from the 614D and 
614G lineages were 56.6 and 52.4, respectively (p = 5.8e-04, Student’s t-test). In SCAN 
samples, the average age of patients was 45.8 for 614D and 38.4 for 614G (p = 0.088). Age 
differences may be caused by increased testing, resulting in detection of less severe, younger 
cases later in the epidemic when 614G was more prevalent (Figs. 1 and 2). However, we tested 
this hypothesis in a GLM with week of sample collection and D614G variant as potential 
predictors of age. Individuals with 614G variant were 3.5 years younger on average (p = 0.0098) 
while sample week was not a significant predictor of age (p = 0.20) (Fig. S8). A skew towards 
younger individuals is consistent with either a more transmissible virus or with more severe 
infection as this would result in a larger fraction of younger patients seeking testing. However, 
the absolute difference in age of infection is still small.  
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For 248 of the 1128 sequences from patients referred for SARS-CoV-2 testing by a healthcare 
provider, we had access to additional clinical information. 104 of these patients were infected 
with viruses from the 614D clade, and 144 patients were infected with viruses from the 614G 
clade. We used data from electronic health records to examine if differences in Ct values hold 
after correcting for additional potentially confounding factors. We performed the same GLM 
analysis as above, but included additional potential predictors, such as sex, active cancer or 
immunocompromised status, hospitalization, and whether a patient required intensive care or 
died.  
 
We again found clade membership of the virus to be significantly associated with Ct values (N1, 
N2 primers, n=184). Sex was also significant predictor of Ct with males having Ct values 1.09 
units lower than females. None of the other predictors were found to be significant in predicting 
Ct values, which might be driven by a small sample size (Table S1). With ORF1ab primers, 
clade membership was not significantly associated with Ct values although this is likely due to 
smaller sample size (n=63) (Table S2). 
 
We next investigated which factors impact clinical outcome. To do so, we grouped cases into 
inpatient (hospitalized) or outpatient (not hospitalized). We then performed a logistic regression 
with inpatient or outpatient as potential outcomes. As factors predicting the outcome, we 
considered clade membership, sex, immunocompromised/active cancer, age, week of testing 
and measured Ct value. The significant predictors for hospitalization were age (p = 3.2e-06) and 
measured Ct value (p = 0.012) after Bonferroni Correction for multiple hypothesis testing. 
Whether a patient was suffering from active cancer and/or was immunocompromised had an 
estimated odds ratio of 2.9 (0.8-10.8) but was not significant. We did not find any evidence that 
D614G variant impacts clinical outcome (Fig. 4C). This is consistent with neither variant being 
enriched significantly in males, immunocompromised/active cancer patients, hospitalized 
patients, and patients who required intensive care or succumbed due to COVID-19 (Fig. 4D). 
 
Discussion 
 
The COVID-19 pandemic has greatly impacted lives around the world. As a virus that just 
recently made the jump into humans, understanding its transmission dynamics and the drivers 
of its spread are of utmost importance. The emergence of novel, more transmissible strains of 
SARS-CoV-2 based on an increase in relative frequencies over time has been suggested 
previously (23).  
 
Consistent with trends from other locations around the world (4), we find that cases of the spike 
614D variant were initially dominating in Washington State, but were later taken over by spike 
614G. However, the trends for 614G and 614D cases we observe in Washington State appear 
to be explained by differences in when action to curb the spread of SARS-CoV-2 were taken on 
a county level (Figs. 1, 2). The trends in effective reproduction numbers between the two clades 
614G and 614D coincide with the different trends in mobility of King County (which includes 
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Seattle) and other areas that experienced substantial spread of SARS-CoV-2. The observed 
patterns are consistent with initial spread of the 614D clade being largely concentrated in King 
County, which was then mitigated early on (Fig. 2B). Spread of 614G on the other hand, while 
present in King County, dominated in other areas of the state and the reduction in the Re of this 
variant coincides with a reduction in mobility in these areas, which happened approximately 9 
days after King County (Fig. 2B). The spread of SARS-CoV-2 in Yakima County, however, 
seems to be poorly captured by mobility trends (Fig. S4).  
 
We additionally infer introductions to play a larger role in driving cases of the 614D variant than 
of the 614G variant. This suggests that differences in the relative frequencies of the two variants 
are at least in part driven by differences in when and where lineages were introduced into the 
state. Overall, we find that we can explain the changes in relative frequency of the 614D and 
614G variants over time by non-viral factors in absence of intrinsic transmission rate differences. 
This does, however, not exclude the possibility that such differences exist and have led to the 
replacement of 614D by 614G in other parts of the world. 
 
We do find evidence for lower Ct values in patients infected with viruses of the 614G variant, 
which suggests higher viral loads (Fig. 4A,B). This holds, even after including several additional 
factors, such as the age of a patient and when samples were taken, as potential predictors for 
Ct values. However, we did not find evidence that D614G has an impact on risk of 
hospitalization (Fig. 4C,D). The differences in Ct values translates approximately to a 0.42 log 10 
increase in viral load (95% CI: 0.26-0.57 log 10). This difference might not be large enough to 
lead to large differences in severity or transmissibility that can be observed in a dataset of this 
size. 
 
Our findings are broadly consistent with other analyses on the spike D614G substitution. Korber 
et al. did find evidence of lowered Ct but limited clinical difference for viruses of the 614G clade 
in Sheffield, UK (4). Recent in vitro studies show that pseudovirus containing spike protein with 
614G substitution exhibits greater infectivity (5, 8, 9). Volz et al. suggest increased 
transmissibility of 614G over 614D in an analysis of thousands of sequences from the United 
Kingdom (6). 
 
Overall, we do find evidence for higher viral loads in individuals with viruses from the 614G 
clade, which theoretically could impact transmissibility and severity. However, we do not see 
strong evidence that these differences in Ct values significantly impact the transmissibility or 
severity of infection with SARS-CoV-2 in the Washington State epidemic. 
 
Materials and Methods 
 
Sample collection & testing for SARS-CoV-2 
 
In this manuscript, we analyze 3940 SARS-CoV-2 genomes sequenced from samples collected 
in Washington State between February and July 2020 as our primary dataset. These samples 
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were pooled across three different channels: UW Virology, WA DOH and SCAN, described 
below. 
 
For the 1236 UW Virology samples, nasopharyngeal/oropharyngeal swabs were obtained as 
part of clinical testing for SARS-CoV-2 ordered by local healthcare providers, or collected at 
drive-up testing sites. RNA was extracted and the presence of SARS-CoV-2 was detected by 
RT-PCR as previously described using either the emergency use-authorized UW CDC-based 
laboratory-developed test, Hologic Panther Fusion or Roche cobas SARS-CoV-2 tests (29). 
 
For the 2601 WA DOH samples, nasopharyngeal/oropharyngeal/bronchoalveolar/sputum 
samples were obtained for SARS-CoV-2 clinical testing as requested by submitting healthcare 
entities. RNA was extracted and the presence of SARS-CoV-2 was detected either via the CDC 
2019-nCoV RT-PCR Diagnostic Panel or Applied Biosystems TaqPath COVID-19 Combo Kit. 
 
For the 103 SCAN samples, specimens were shipped to the Brotman Baty Institute for Precision 
Medicine via commercial couriers or the US Postal Service at ambient temperatures and 
opened in a class II biological safety cabinet in a biosafety level-2 laboratory.  Two or three 650 
µL aliquots of UTM were collected from each specimen and stored at 4˚C until the time of 
nucleic acid extraction, performed with the MagnaPure 96 small volume total nucleic acids kit 
(Roche).  SARS-CoV-2 detection was performed using real-time RT-PCR with a probe sets 
targeting Orf1b and S with FAM fluor (Life Technologies 4332079 assays # APGZJKF and 
APXGVC4APX) multiplexed with an RNaseP probe set with VIC or HEX fluor (Life Technologies 
A30064 or IDT custom) each in duplicate on a QuantStudio 6 instrument (Applied Biosystems).  
 
Viral sequencing & genome assembly 
For UW Virology samples, sequencing was attempted on all specimens with Ct < 32 using either 
a metagenomic approach described previously (2, 30), via oligonucleotide probe-capture (31), 
or using an amplicon sequencing based approach (32). Libraries were sequenced on Illumina 
MiSeq or NextSeq instruments using 1x185 or 1x75 runs respectively. Consensus sequences 
were assembled using a custom bioinformatics pipeline (https://github.com/proychou/hCoV19 ) 
that combines de novo assembly and read mapping to generate a per-sample consensus 
sequence. Consensus sequences were deposited to Genbank and GISAID, and raw reads to 
SRA under Bioproject PRJNA610428. 
 
For samples from WA DOH and SCAN, sequencing was attempted on all specimens with Ct < 
30 using a hybrid-capture approach.  RNA was fragmented and converted to cDNA using 
random hexamers and reverse transcriptase (Superscript IV, Thermo) and a sequencing library 
was constructed using the Illumina TruSeq RNA Library Prep for Enrichment kit.  Using Ct value 
as a proxy for viral load, samples were balanced and pooled 24-plex for the hybrid capture 
reaction.  Capture pools were incubated overnight with probes targeting the Wuhan-Hu-1 
isolate, synthesized by Twist Biosciences.  The manufacturer’s protocol was followed for the 
hybrid capture reaction and target enrichment washes.  Final pools were sequenced on the 
Illumina NextSeq or NovaSeq instrument using 2x150bp reads. The resulting reads were 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2020. .https://doi.org/10.1101/2020.09.30.20204230doi: medRxiv preprint 

https://paperpile.com/c/Qe8Lce/jgRi
https://paperpile.com/c/Qe8Lce/HD0H+52ro
https://paperpile.com/c/Qe8Lce/wjcJ
https://paperpile.com/c/Qe8Lce/OsWi
https://github.com/proychou/hCoV19
https://doi.org/10.1101/2020.09.30.20204230
http://creativecommons.org/licenses/by-nc/4.0/


 

assembled against the SARS-CoV-2 reference genome Wuhan-Hu-1/2019 (Genbank accession 
MN908947) using the bioinformatics pipeline https://github.com/seattleflu/assembly. Consensus 
sequences were deposited to Genbank and GISAID. 
  
Clustering 
In order to distinguish between sequences that are connected by local transmission, we cluster 
all sequences from Washington State together based on their pairwise genetic distance. To do 
so, we first built a timed tree using sequences from Washington State and from around the 
world using the Nextstrain pipeline (3). Overall, we used 4023 sequences from Washington 
State and 6028 from the rest of the world. 2601 of all sequences were from the Washington 
Department of Health, 1236 from the UW Virology Lab, 103 from SCAN. All other sequences 
were downloaded from the GISAID EpiCoV database (33, 34). 
 
We then use a parsimony based approach to reconstruct the locations of internal nodes. To do 
so, we consider all sequences from Washington State as one location and all sequences from 
anywhere else on the globe to be from another location. We then reconstruct the internal node 
locations using the Fitch parsimony algorithm. We consider each group of sequences to be on 
the same local transmission cluster, if all their common ancestor nodes are inferred to be in 
Washington State. 
 
Estimating population dynamics jointly from multiple local outbreak clusters 
To estimate the population dynamics of the Washington State outbreak, we use a coalescent 
approach to infer these dynamics jointly from all known local outbreak clusters. To do so, we 
model the coalescence and migration of lineages within Washington State as a structured 
coalescent process with known migration history. The known migration history here is given by 
the clustering of sequences into local outbreak clusters. The migration events from anywhere 
outside WA into WA are always assumed to have happened before the common ancestor of all 
sequences in each local outbreak cluster. How long before this common ancestor time is 
inferred during the MCMC. 
 
We then infer the effective population size and rates of introductions through time using a 
skyline type approach. Effective population sizes and rates of introduction are allowed to 
change at predefined time points. Between these predefined time points where the rates are 
estimated, the rates are interpolated. This is equivalent to assuming exponential growth or 
decline between the effective population sizes at these time points. 
 
We then use two different ways to account for correlations between adjacent scaled effective 
population sizes (Neτ). First, we use the classic skyride (14) approach where we assume that 
the logarithm of adjacent Neτ is normally distributed with mean 0 and an estimated sigma. 
Additionally, we use an approach where we assume that the differences ingrowth rates are 
normally distributed with mean 0 and an estimated sigma. This is equivalent to using an 
exponential coalescent model with time varying growth rates. We implemented this multi tree 
coalescent approach as an extension to the Bayesian phylogenetics software BEAST2 (35). 
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The code for the multi tree coalescent is available here (https://github.com/nicfel/NAB) and is 
validated in Figure S3. We allow the effective population sizes to change every 2 days and the 
rates of introduction to change every 14 days. The inference of the effective population sizes 
and rates of introductions is performed using an adaptive multivariate Gaussian operator (36), 
implemented here https://github.com/BEAST2-Dev/BEASTLabs and the analyses are run using 
adaptive Metropolis coupled MCMC (37) 
 
In contrast to backwards in time coalescent approaches, we can consider different local 
outbreak clusters as independent observations of the same underlying population process using 
birth death models. We infer the effective reproduction number using the birth-death skyline 
model (12) by assuming the different local outbreak clusters are independent observations of 
the same process with the same parameters (13). We allow the effective reproduction number 
to change every 2 days. As for the coalescent approach, we assume adjacent effective 
reproduction numbers to be normally distributed in log space with mean 0 and an estimated 
sigma. We further assume the becoming un-infectious rate to be 52.3 per year which 
corresponds to an average duration of infectivity of 7 days (38). We allow the probability of an 
individual to be sampled and sequenced upon recovery to change every 14 days. 
 
Subsampling of sequence 
We analysed the population dynamics in total for 4 different datasets. In the first datasets, we 
randomly subsample 1500 of the sequences from Washington State, excluding sequences from 
Yakima County. For the second and third dataset, we distinguish between two different clades 
we call D and G. The D clade consists of all sequences with an aspartic acid at site 614 of the 
spike protein. The G clade consists of all sequences with a glycine at this position (visible at 
https://nextstrain.org/ncov/global?c=gt-S_614). For the 614D datasets, we use the same 
subsampling procedure as for the above dataset, but with 500 sequences 750 sequences and 
for the 614G clade. For the dataset from Yakima County, we used 750 randomly subsampled 
sequences. 
 
Estimating percentage of introductions of overall new cases 
We estimated the relative contribution of introductions compared to local transmission using the 
coalescent approach introduced here. In addition to the regular assumptions of the coalescent 
approach that all samples are taken at random from a well mixed population, we assume that 
differences in effective population size between adjacent time intervals can be used to compute 
the transmission rate. We then compute the transmission rate as the sum of the growth rate of 
the effective population size and the becoming uninfectious rate (i.e. we use the relationship 

to compute the transmission rate). WeNe/dt transmission rate – becoming uninfectious rated =   
assumed an average time of infectiousness of 7 days. Additionally, we assume that dNe/dt is 
independent from the rate of introduction. We then computed the percentage of introductions in 
overall cases using the rate of introduction and the transmission rate. The rate of introduction 
can be expressed as the total number of introductions divided by the number of infected in WA, 
i.e. rate of . The total number of new infections locally canntroduction r introductions/ infectedi = n  
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be expressed as , which in turn means that ratio of introductions overransmission rate infectedt *   
local infections can be expressed as

. From this ratio, we canratio (rate of  introduction infected)/(transmission rate infected) =  *  *   
then compute the percentage of introductions of the overall cases. 
 
We tested that we can retrieve the percentage of introductions from simulations, where we 
simulated phylogenetic trees using an IR compartmental model with superspreading using 
MASTER (39). We then simulated genetic sequence data using those trees and then inferred 
the percentage of new cases due to introductions from those sequences (Figs.S9 and S10). 
 
Chart review 
Clinical record review of UW affiliated patients was performed under University of Washington 
IRB: STUDY00000408. This included patients who visited UW affiliated clinics and patients who 
were hospitalized at UW Medical Center, both the Montlake and Northwest locations, and 
Harborview Medical Center. Sex, age, presence of active cancer or immunosuppresive 
medication, hospital admission, critical care admission, and deceased status was extracted from 
all charts. 
 
Factors affecting Ct and clinical outcomes of individuals 
R/3.6.2 was used for Ct and clinical record analysis. The code and data cleaned of all patient 
identifiers is available at: https://github.com/blab/ncov-wa-d614g . 
 
UW Virology used three different primer sets and platforms over the timeframe of the dataset 
(Fig. S6). Since it is difficult to compare Ct across primer sets, we ran both tests comparing Ct 
by viral clade and the generalized linear model predicting Ct separately for N1, N2 primers and 
ORF1ab primers. There were insufficient samples amplified with Egene/RdRp primers for 
statistical analysis (n=20). 

We chose to use Wilcoxon Rank Sum Test to compare differences in Ct between viral lineages, 
and Student’s T-test for comparing differences in age between viral lineages. Age was reported 
as a decade bin converted into a numerical equivalent, and Wilcoxon Rank Sum Test 
underestimates differences with duplicate numbers.  

For generalized linear models (GLM) of Ct and age, we used a multivariate linear regression of 
form: 

β +  β  xyi =  0 Σ j i,j
 
 
+ εi  

where y is the dependent variable (either Ct or age), β is the coefficient of the predictor variable, 
x is the predictor variable, and 𝜖 is the residual error. Models were run with the glm package in R 
(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm). 

UW Virology samples were used to estimate predictors of Ct as SCAN samples were limited in 
number (n=78), and age was not available for WA DOH samples.The predictor variables were 
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amino acid at Spike 614 (binary variable), week since community spread of COVID-19 was 
reported in Washington (continuous variable), and age of patient (continuous variable).  

In the GLM of Ct with only samples from UW Medicine affiliates, we additionally included sex 
(binary variable), active cancor or immunocompromised (binary variable), hospitalized (binary 
variable), and required critical care or deceased (binary variable) as predictors of Ct. 

To estimate predictors of patient age, we used all SCAN & UW Virology samples with age 
available (n=1172). The predictor variables were amino acid at spike 614 (binary variable) and 
week since community spread of COVID-19 was reported in Washington (continuous variable). 

To estimated predictors of hospitalization if infected with SARS-CoV-2, we used a multivariate 
logistic regression: 

ogit(P ) β +  β  xl i =  0 Σ j i,j
 
 
+ εi  

Where P is the probability of hospitalization, β is the coefficient of the predictor variable, x is the 
predictor variable, and 𝜖 is the residual error. Predictor variables were: week since first sample in 
dataset (continuous variable), sex (binary variable), active cancer or immunocompromised 
(binary variable), age in decade (continuous variable), amino acid at Spike 614 (binary variable), 
and average Ct (continuous variable). To fit the logistic regression, we again used the glm 
package in R, specifying family as “binomial”. P-values and confidence intervals for risk of 
hospitalization were adjusted for multiple hypothesis testing using a Bonferroni Correction. 

Chi-Squared tests were used to compare proportions of viral lineages by sex, 
immunocompromised status, clinical outcome (inpatient or outpatient), and severe outcome 
(critical care or death). P-values were adjusted for multiple hypothesis testing using the 
Bonferroni Correction. 

 
Data and materials availability 
Sequencing and analysis of samples from the Seattle Flu Study was approved by the 
institutional review board at the University of Washington (protocol STUDY00006181). Informed 
consent was obtained for all community participant samples and survey data. Informed consent 
for residual sample and clinical data collection was waived. Sequencing and analysis of 
samples from SCAN was approved by the institutional review board at the University of 
Washington (protocol STUDY00010432). Informed consent was obtained for all community 
participant samples and survey data. For UW Virology Lab, use of residual clinical specimens 
was approved by the institutional review board at the University of Washington (protocol 
STUDY00000408) with a waiver of informed consent. Data and code associated with this work 
are available at https://github.com/blab/ncov-wa-phylodynamics and 
https://github.com/blab/ncov-wa-d614g . SARS-CoV-2 consensus genome sequences 
associated with this work have been uploaded to Genbank and the GISAID EpiFlu database 
and accession numbers are available in supplementary data. 
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Fig. S1. Number of Lineages through time for different local transmission clusters. Here we show 
the number of lineages in each local transmission cluster (y-axis) over time (x-axis). The different plots 
show the lineage through time plots for the different datasets analyses here. 

 
Fig. S2. Workplace mobility trends of different counties in Washington State compared to King 
County. Each plot shows the workplace mobility trend of King County and compares it to either Pierce 
County, Skagit County or Snohomish County. The red line shows the mobility trend of a county shifted to 
match the trends in King County. The number of days that the trend line is shifted by is shown in each 
subplot. 
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Fig. S3. Re  estimates using the coalescent skygrowth model compared to Google mobility data. 
 

 
Fig. S4. Effective reproduction number and workplace mobility in Yakima County. Here, we show 
the effective reproduction number estimates over time in Yakima County using the birth-death skyline 
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model (A) and the coalescent skygrowth model (B). The inner band shows the 50% highest posterior 
density (HPD) interval and the outer band, the 95% HPD interval. Additionally, we compare those 
estimates to mobility trends in Yakima County and (as a reference) King and Pierce County. The mobility 
trends are shown as a 7 day moving average. 
 
 
 

 
Fig. S5. Percentage of introductions due to introductions using cluster size distributions. Here we 
compare the probability that adding a new sequence to a dataset reveals a new introductions between 
what we observed empirically and when we simulate clusters using different percentages of introductions. 
To do so, we randomly chose n samples (x-axis) and then added one additional sample. We then 
estimate the probability that this additional sample revealed a new introduction (y-axis). We repeated the 
procedure for simulated clusters with different percentages of introductions in overall cases. 
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Fig. S6. Histogram of primers used by UW Virology across time for samples analyzed for Ct value 
 

 
Fig. S7. Comparison of cycle threshold (Ct) from ORF1ab primers across SARS-CoV-2 clade. A 
Boxplot of Ct with ORF1ab primers by amino acid at Spike 614. B GLM analysis of Ct values from 
ORF1ab primers using several different predictors. 
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Fig. S8. Age of infected individuals by 614D or 614G variant over time. A Age of infected individuals 
in UW Virology and SCAN samples according to D614G variant. Mean age and two standard deviations 
are shown in black. B Age of infected individuals over time partitioned by D614G variant. C GLM of 
patient age predicted by D614G variant and sampling week. 
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Fig. S9. Estimation of effective population sizes and rates of introductions from simulations. Here, 
we infer effective population sizes and rates of introductions from phylogenetic trees, simulated under the 
structured coalescent when conditioning on observing a migration history.  
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Fig. S10. Estimation of effective population sizes and rates of introductions from simulations. 
Here, we test how well we can retrieve the percentage of new cases due to introductions over time from 
simulations. To do so, we simulated a local outbreak using a constant rate of introduction. We then 
simulated genetic sequences and then used the local transmission cluster to estimate the percentage of 
introductions in blue using the multi tree coalescent. 
 
Table S1 . GLM of Ct with N1, N2 primers in patients at UW affiliates  

Variable Coefficient 
estimate 

Std. Error p-value 

Intercept 16.00 1.45 <2e-16*** 

614G -1.35 0.55 0.014* 

Week since start of 
WA epidemic 

0.32 0.27 0.23 
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Male 1.09 0.48 0.023* 

Age 0.012 0.014 0.36 

Active cancer or 
immunocompromised 

-0.253 0.77 0.74 

Hospitalized 1.22 0.77 0.11 

Critical care and/or 
deceased 

-0.65 0.98 0.51 

 
 
 
Table S2 . GLM of Ct with ORF1ab primers in patients at UW affiliates  

Variable Coefficient 
estimate 

Std. Error p-value 

Intercept 23.13 6.39 6.6e-04*** 

614G 1.07 1.92 0.58 

Week since start of 
WA epidemic 

-0.75 0.72 0.30 

Male 0.76 1.76 0.67 

Age 0.013 0.044 0.76 

Active cancer or 
immunocompromised 

2.18 2.92 0.46 

Hospitalized 1.22 0.77 0.11 

Critical care and/or 
deceased 

-2.96 2.99 0.33 
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