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Purpose: Genetic factors in type 2 diabetes (T2D) pathogenesis have been widely explored 
by the genome-wide association studies (GWAS), identifying a great amount of susceptibility 
loci. With the development of high-resolution sequencing, the N(6)-methyladenosine (m6A) 
RNA modification has been proved to be affected by genetic variation. In this study, we 
identified the T2D-associated m6A-SNPs from T2D GWAS data and explored the underlying 
mechanism of the pathogenesis of T2D.
Methods: We examined the association of m6A-SNPs with T2D among large-scale T2D 
GWAS summary statistics and further performed multi-omics integrated analysis to explore 
the potential role of the identified m6A-SNPs in T2D pathogenesis.
Results: Among the 15,124 T2D-associated m6A-SNPs, 71 of them reach the genome-wide 
significant threshold (5.0e-05). The leading SNP rs4993986 (C>G), which is located near the 
m6A modification site at the 3ʹ end of the HLA-DQB1 transcript, is expected to participate in 
the pathogenesis of T2D by influencing m6A modification to regulate the HLA-DQB1 
expression.
Conclusion: The current study has suggested a potential correlation between m6A-SNPs 
and T2D pathogenesis and also provided new insights into the pathogenic mechanism of the 
T2D susceptibility loci identified by GWAS.
Keywords: type 2 diabetes, single nucleotide polymorphism, epigenetics, m6A, genome- 
wide association study

Introduction
With the continuous increase in obesity and life expectancy in recent decades, the 
global incidence of diabetes has also risen rapidly.1 Type 2 diabetes (T2D) is the 
most common type of diabetes, accounting for approximately 90% of all diabetes 
cases.2 T2D is a chronic non-infectious disease characterized by impaired islet beta- 
cell function, insulin resistance and the resultant hyperglycemia. Besides the com-
mon environmental factors, cumulative evidence indicates that genetic factors also 
play a decisive role in the occurrence and progression of T2D. Clarifying the 
involvement of genetic variants in the development of T2D is critical to understand 
its pathogenesis. Indeed, many endeavors have been made to investigate T2D 
susceptibility genes over the past years.3–5 Numerous susceptibility loci for T2D 
have been identified by a series of genome-wide association studies (GWAS).6–8

More than 400 genomic regions have been identified as affecting T2D.9 For 
example, variations in hematopoietically expressed Homeobox (HHEX), the Solute 
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Carrier Family 30 Member 8 (SLC30A8), and the tran-
scription factor-7-like2 (TCF7L2) gene regions were the 
earliest identified susceptibility loci in GWAS related to 
T2D. Most of these risk genes were related to glucose 
metabolism and lipid synthesis.10–12 Unfortunately, 
besides a small number of the published T2D-associated 
single nucleotide polymorphisms (SNPs) locating in pro-
tein coding regions, most of these SNPs are located in 
non-coding regions, making it more difficult to explain 
their biological effects.13,14

N6-methyladenosine (m6A) is the methylation of the 
adenosine at the sixth position of the nitrogen, which is 
the most common post-transcriptional RNA modification in 
eukaryotes. With the landmark study that identified the first 
m6A demethylase fat mass and obesity-associated protein 
(FTO) in 2011 and the transcriptome-wide profiling of m6A 
by high-throughput sequencing,15 precise mapping of m6A 
distribution on transcript has been achieved. These m6A 
peaks have a conserved modification motif RRACH (R for 
A or G, H for A, U or C).16 In mRNA transcripts, the 
recognition of modification sites by m6A methyltransferase 
is highly dependent on these m6A-specific sequences, while 
genetic variation may change these m6A-specific recogni-
tion sequences on local gene transcripts, thus affecting the 
modification and recognition of m6A. Through the combi-
nation of m6A sequencing and whole genome sequencing 
(WGS) of large-scale cohort, Xiong and Zhang et al proved 
that genetic variation is an effective driver of m6A modifi-
cation, respectively.17,18 Recently, the correlations between 
m6A RNA methylation-related SNPs (m6A-SNPs) and her-
editary diseases were widely explored.19–23 In studies of Mo 
et al, they identified a large number of m6A-SNPs affecting 
a series of phenotypes related to cardiovascular diseases, 
such as blood pressure, blood lipids and coronary heart 
disease.24–26 In the field of neurology, m6A-SNPs have 
been verified to be closely associated with stroke and multi-
ple sclerosis.27,28 Besides, m6A-SNPs could also participate 
in cancer development. m6A-SNP rs178184 was shown to 
affect the occurrence of colon cancer by regulating the 
expression of NOVA1 gene.22 Our previous study proved 
that m6A RNA methylation-related SNPs might be 
involved in adiposity, which had a close causal relationship 
with T2D.29 These findings are crucial for a better under-
standing of the role of m6A modification in pathological 
changes caused by genetic variation. However, no study has 
been reported on the role of m6A-SNPs in T2D pathogen-
esis until now. In this study, we explored the association of 

m6A-SNPs with T2D and demonstrated the potential func-
tions of these m6A-SNPs in T2D pathogenesis.

Materials and Methods
Determination of m6A-SNPs for T2D
To identify the T2D-associated SNPs that probably affect 
RNA m6A modification, we retrieved a recently released 
large-scale T2D GWAS summary statistics among 81412 
T2D cases and 370832 controls.6 The data is publicly 
available on the DIAGRAM website (http://diagram- 
consortium.org/index.html). We identified the potential 
m6A-SNPs by comparing the m6A-SNP list in m6AVar 
database with T2D summary statistics.30 The identified 
m6A-SNPs were annotated, and a preliminary screening 
was performed with a threshold of 5.0e-05 for subsequent 
analysis. GO enrichment analysis of m6A-SNPs passing 
threshold was performed through an online website metas-
cape (http://metascape.org/gp/index.html).31

Integrative Analysis of T2D-Associated 
m6A-SNPs
It has been confirmed that m6A modification can affect the 
mRNA splicing, nuclear export, stability and degradation, 
thus affecting local gene transcription, which might be an 
important mechanism for m6A-SNPs to involve the patho-
genesis of T2D. To investigate whether these genetic var-
iants could lead to changes in gene transcription, we 
retrieved their expression quantitative trait loci (eQTL) 
effects through the HaploReg browser (http://pubs.broad 
institute.org/mammals/haploreg/haploreg.php).32 Further, 
we also searched for several other potential regulatory 
mechanisms of these SNPs on transcriptional regulation, 
such as altering protein binding and changing motif. The 
results are shown in Table 1 and Supplementary Table 1.

Prediction of m6A Modification Near 
m6A-SNPs
Among the T2D-associated m6A-SNPs identified above, 
we predicted the potential m6A modification site on the 
transcript by inputting the reference and altered sequence 
to an online m6A modification prediction tool, SRAMP 
(http://www.cuilab.cn/sramp/).33 SRAMP is a website- 
based computational predictor for identifying mammalian 
RNA m6A modification sites. SRAMP includes three ran-
dom forest classifiers and uses genomic sequence or 
cDNA sequence as input. To identify whether m6A-SNP 
could affect the nearby m6A modifications, the altered 
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sequence and reference sequence were input into SRAMP, 
and the confidence of m6A modifications was predicted.

Differential Expression Analysis
For m6A-SNPs that showed eQTL signal, we further tried 
to determine whether the related gene expression of these 
T2D-associated m6A-SNPs genes in T2D was changed. 
Based on the transcriptomic data available in the gene 
expression omnibus (GEO) database, we displayed the 
expression level of the identified T2D-associated genes 
(m6A-SNPs showed eQTL signal). Three datasets 
GSE23343, GSE38642 and GSE78721 containing standar-
dized T2D-associated gene expression signals were 
retrieved and downloaded from GEO database (http:// 
www.ncbi.nlm.nih.gov/geo). Samples in GSE23343 were 
collected from 7 subjects with normal blood glucose levels 
and 10 patients with T2D. GSE38642 contained the gene 
expression profile in 63 islets from cadaver donors (includ-
ing 9 diabetic and 54 non-diabetic). And GSE78721 con-
tained gene expression level of adipose tissues from 63 
patients suffering from T2D and 68 age/BMI matched 
normal glucose tolerance controls. Considering that multi-
ple tests are used among the three datasets, we use the 
Bonferroni adjustment to set a more stringent threshold, 
p < 0.0167 (0.05/3) was set as a threshold for defining 

differential genes. Also, to prove that these gene expres-
sion differences were mediated by m6A-SNPs instead of 
the T2D phenotype, we downloaded the transcriptome data 
of tissues that are not closely related to the T2D phenotype 
as control sets, including enteroendocrine cells 
(GSE132831) and peripheral blood monocytes 
(GSE156061). We also explored the expression of these 
differential genes in control sets.

For single-cell RNA sequencing (scRNA-seq) data 
analysis, we downloaded the islet scRNA-seq data of high- 
fat diet-induced diabetic mice and healthy controls in 
GSE162512, and used the Seurat package to load the 
hdf5 format data for subsequent process.34 Based on the 
expression of classic cell markers, we defined the cell 
types and compared the expression of HLA-DQB1 (H2- 
Ab1) in different cell populations.

Quantitative Reverse Transcription 
Polymerase Chain Reaction (qRT-PCR)
A total of 8 db/db mice and 8 heterozygous mice at the age 
of 8 weeks were used. Male db/db mice were used as 
animal model of T2D, and the heterozygous mice were 
used as control. The islets of the mouse pancreas were 
isolated as previously described.35 In brief, the pancreatic 

Table 1 The 20 Most Important m6A-SNPs Related to T2D

Variant CHR Position P. value Gene Confidence_Level eQTL 
Hits

DEG Methylation 
Type

Allele 
Frequency

rs1801206 4 6302707 4.90E-39 WFS1 Prediction:(Low) 8 hits No m6A 5.76E-01

rs116234738 5 102537357 1.40E-27 PPIP5K2 Prediction:(Low) 0 hit Yes m6A 3.07E-02

rs5213 11 17408404 1.90E-26 KCNJ11 MeRIP-Seq:(Medium) 16 hits Yes m6A 7.18E-01
rs750625 8 41525914 1.90E-25 ANK1 Prediction:(Low) 3 hits No m6A 6.57E-06

rs10832778 11 17394073 8.50E-23 NCR3LG1 Prediction:(Low) 26 hits No m6A 7.09E-01

rs9379084 6 7231843 2.30E-20 RREB1 MeRIP-Seq:(Medium) 1 hit Yes m6A 9.19E-02
rs12590 10 12292348 5.50E-17 CDC123 Prediction:(Low) 2 hits No m6A 1.50E-01

rs3743481 15 77907145 1.60E-16 LINGO1 MeRIP-Seq:(Medium) 1 hit No m6A 4.42E-01
rs2641348 1 120437884 5.60E-16 ADAM30 Prediction:(Low) 6 hits No m6A 1.69E-01

rs6685892 1 120458004 6.20E-16 NOTCH2 Prediction:(Low) 5 hits No m6A 1.68E-01

rs2793823 1 120437718 7.30E-15 ADAM30 Prediction:(Low) 3 hits No m6A 2.70E-01
rs11553326 4 724884 5.50E-12 PCGF3 Prediction:(Low) 7 hits No m6A 3.21E-02

rs2308891 6 32610009 1.40E-11 HLA-DQA1 Prediction:(Low) 293 hits No m6A 2.44E-02

rs3760471 17 4069735 2.80E-11 ANKFY1 Prediction:(Low) 5 hits Yes m6A 1.38E-04
rs1058129 15 77905661 4.30E-11 LINGO1 Prediction:(Low) 5 hits No m6A 7.06E-01

rs7250850 19 47585517 9.70E-11 ZC3H4 Prediction:(Low) 1 hit No m6A 5.23E-01

rs1046080 6 31595882 1.30E-10 PRRC2A miCLIP:(High) 38 hits No m6A 7.43E-01
rs1033500 6 32307382 3.00E-10 C6orf10 Prediction:(Low) 21 hits No m6A 3.37E-01

rs2227956 6 31778272 3.10E-10 HSPA1L Prediction:(Low) 112 hits No m6A 8.77E-01

rs4993986 6 32627652 6.10E-09 HLA-DQB1 miCLIP:(High) 1 hit Yes m6A 3.69E-01
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tissue was cut into small pieces of 1~2 mm and digested in 
1 mg/mL collagenase XI (Sigma) for 20 minutes. Ficoll 
solution was used to purify the islets by centrifugation. 
Total RNA of the obtained islets was extracted using 
Trizol reagent (Invitrogen), and then reversely transcribed 
to obtain stable cDNA using PrimeScriptTM RT reagent 
Kit with gDNA Eraser (TaKaRa Bio). The qRT-PCR was 
performed using SYBR Premix Ex Taq II (TaKaRa Bio) in 
Quant StudioTM 3 real-time fluorescent quantitative PCR 
instrument (ThermoFisher Scientific). Glyceraldehyde 
3-phosphate dehydrogenase (Gapdh) was used as an inter-
nal reference to normalize the gene expression. The result 
was calculated using the 2−ΔΔCt method and expressed as 
a multiple change relative to Gapdh. The primer sequences 
were summarized in Supplementary Table 2. The animal 
studies were approved by the Animal Care and Ethics 
Committee of West China Hospital of Stomatology, 
Sichuan University. The animal experiments complied 
with the ARRIVE guidelines and were carried out in 
accordance with the National Institutes of Health guide 
for the care and use of Laboratory animals (NIH 
Publications No. 8023, revised 1978).

Results
Determination of T2D-Associated 
m6A-SNPs
We identified 15,124 m6A-SNPs and 16,420 potentially 
affected m6A sites (Figure 1). For these 15,124 T2D- 
associated m6A-SNPs identified, 11820, 2950 and 354 
m6A-SNPs belong to the low, medium and high confi-
dence categories, respectively. p < 5.0e-05 was defined 
as the significance threshold and 71 appeared to be asso-
ciated with T2D (p < 5.0e-05) (Figure 2A). GO enrich-
ment analysis showed that these 71 genes were mainly 
enriched in antigen processing and presentation related 

biological processes (Figure 2B). Among these m6A- 
SNPs, 56, 12 and 3 belong to the low, medium and high 
confidence intervals, respectively. 21 SNPs are non- 
synonymous, 20 are synonymous mutations, and 28 are 
located at untranslated regions (UTR) (Supplementary 
Table 1). As for other potential regulatory mechanisms of 
these m6A-SNPs, we found that 52 altered the motifs and 
19 influenced the binding of regulatory proteins in differ-
ent cell types from the ENCODE transcription factor 
ChIP-seq datasets (Supplementary Table 1).

Identification of Differentially Expressed 
Genes
For the 56 T2D-associated m6A-SNPs with eQTL signals, 
we analyzed whether the related gene expression changed 
in published datasets about the gene expression of the 
tissues from T2D patients and controls. The etiology of 
T2D is complicated, and the abnormal function of organs 
related to glucose metabolism may lead to blood glucose 
homeostasis disorders. For instance, liver dysfunction will 
lead to a decline in glycogen synthesis capacity, resulting 
in an imbalance in blood glucose homeostasis.36,37 And 
the excessive accumulation of adipose tissue, especially 
visceral adipose tissue, can lead to chronic inflammation 
and promote the progression of T2D.38,39 Also, the dys-
function and loss of β-cells that secrete insulin in the 
endocrine pancreas can also cause T2D.40 Therefore, the 
transcriptomic data of these three tissues were selected in 
the GEO database to validate the expression change of the 
m6A-SNPs related genes in T2D patients. We found that 
11 of these genes were differentially expressed in at least 
one dataset (Supplementary Table 1). Then, the expression 
level of representative genes with medium or high con-
fidence were selected to be shown (Figure 2C). Islet beta- 
cells can secrete insulin to regulate blood glucose, and 

Figure 1 Design and main implementation steps of this study.
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impaired beta-cell function can lead to hyperglycemia 
caused by insufficient insulin secretion. In GSE38642, 
HLA-DQB1 (p = 0.00365124) and KCNJ11 (p = 
0.00538383) were found to be differentially expressed in 
islet tissue. Insulin resistance caused by obesity also leads 
to T2D. PPARA (p = 0.00839) and MFHAS1 (p = 0.00067) 
were found to be abnormally expressed in GSE78721 
(adipose tissue). In addition, the liver can respond to 

blood glucose concentration and regulate the secretion of 
insulin or glucagon, thereby regulating the homeostasis of 
glucose. In GSE23343 (liver tissue), RREB1 (p = 
0.0107675) was differentially expressed. Therefore, we 
found that 11 m6A-SNP-related genes were differentially 
expressed between T2D patients and healthy controls. The 
abnormal expression of these genes may be involved in the 
pathogenesis of T2D. In the control sets (enteroendocrine 

Figure 2 Identification of T2D related m6A-SNPs. (A) The identified T2D related m6A-SNPs with genome-wide significance are displayed in the Manhattan plot. P < 5.0e 
−05 was set as the suggestive threshold, and p < 5.0e-08 was set as the genome-wide threshold. (B) GO enrichment analysis of the T2D related m6A-SNPs (p < 5.0e-05). 
(C) Gene expression differences between T2D patients and controls in islet (GSE38642), adipose (GSE78721), and liver tissue (GSE23343).
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cells and peripheral blood monocytes), we found that 8 of 
11 were also differentially expressed in at least one control 
set (Supplementary Table 3). Therefore, we believe that 
the differential expression of these genes is caused by 
m6A modification and not related to T2D phenotype.

To validate whether the top m6A-SNP-related genes 
showed expression changes during T2D pathogenesis, we 
detected the expression of these genes in the pancreatic 
islets of db/db mice and heterozygous control by qRT- 
PCR. The results showed that the expression of 8 genes 
was found to be significantly different between the dia-
betic group and control. Although the expression of 
Mfhas1, Ppara and Rreb1 did not show a significant dif-
ference, their average expression levels were the same as 
the trend of these genes in GEO datasets (Supplementary 
Figure 1). In short, the results of qRT-PCR proved that the 
expression of these m6A-SNP-related genes changed 
under the diabetic condition.

Integrative Analysis of T2D-Associated 
m6A-SNPs
To further elucidate the potential functional mechanisms of 
the identified 71 T2D-associated m6A-SNPs, we further 
investigated whether the 71 T2D-associated m6A-SNPs 
were related to the expression level of local genes and the 
underlying functional mechanism. In all, 56 T2D-related 
m6A-SNPs displayed eQTL signals related to local genes 
expression. Among these m6A-SNPs, 19 of them might 
change the binding of transcription factors in different cell 
lines, and 52 of them might change motifs (Table 1 and 
Supplementary Table 1). From a transcriptional influence 
standpoint, the leading SNP rs4993986 was located at the 
3ʹ-UTR of HLA-DQB1 with DNaseI hypersensitivity and 
ENCODE transcription factor clusters binding signals. 
RNA-binding protein (RBP) analysis revealed that the 
RBP PABPC1 showed a binding region to rs4993986 
(Figure 3A). According to the results of SRAMP prediction, 
the original m6A modification peak disappeared (labeled in 
red) when the altered gene sequence was input (Figure 3B), 
and the RNA secondary structure prediction showed that 
rs4993986 (C>G) was located nearby the m6A modification 
site (Figure 3C). In short, m6A-SNPs may affect the expres-
sion of local genes at the transcriptional level through the 
above-mentioned multiple pathways.

Furthermore, in the scRNA-seq dataset of islet from 
diabetic mice induced by high-fat diets, we found that 
HLA-DQB1 was highly expressed in two cell populations 

(macrophages and acinar cells). The expression of HLA- 
DQB1 was increased in the acinar cells of diabetic group 
(Figure 3D and E), which is consistent with the up- 
regulation of HLA-DQB1 expression in diabetic patient 
islet.

Discussion
It has been found that more than 170 RNA modifications 
are involved in physiological processes and disease 
progression,41 among which m6A modification is consid-
ered to be the most abundant modification in mRNA.42 

m6A modification has been reported to exert an important 
role in blood glucose homeostasis. Conditional knockout 
of the m6A methyltransferase Mettl14 led to decreased 
insulin secretion in β-cells and blood glucose 
intolerance.43,44 In addition, the hepatocyte-specific 
knockout of Mettl3, which is also a key component of 
the m6A methyltransferase complex, improved the mouse 
hepatic insulin sensitivity and inhibited the fatty acid 
metabolism.45 However, no studies have yet found the 
contribution of m6A-SNPs to the pathogenesis of T2D. 
In the current study, a great amount of T2D-associated 
m6A-SNPs have been identified, which are verified by 
other published datasets at genes expression level.

m6A modification of RNA can be recognized by different 
m6A readers, which may improve the stability of RNA 
transcripts (eg IGFBPs),46 or promote the degradation of 
transcripts (eg YTHDF2).47 RNA methylation has been 
reported to regulate the entire mRNA metabolism process, 
including RNA stability, splicing, nuclear transport, transla-
tion, and degradation, thereby affecting the key biological 
functions in the regulation of different cellular processes.48,49 

Therefore, the expression of genes corresponding to m6A- 
SNPs may be affected. Experimental epitranscriptomic study 
conducted by Tian and his colleagues proved that overex-
pression of the rs8100241[A] (an m6A-SNP, G>A) allele 
significantly increased the level of ANKLE1 m6A and pro-
moted the expression of ANKLE1 protein compared with 
that of rs8100241[G] allele.50 To validate whether the 
screened m6A-SNP-related genes were involved in the dia-
betes pathogenesis, we retrieved the GEO database and 
selected three tissues (liver, adipose, and pancreatic islets) 
from T2D patients to explore the expression of m6A-SNP- 
related genes under diabetic status. 11 m6A-SNP related 
genes were differentially expressed between T2D patients 
and the controls in at least one dataset. Also in diabetic mice, 
the expression trend of the m6A-SNPs related genes was 
verified by qRT-PCR. HLA-DQB1 encoded by the leading 
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m6A-SNP rs4993986 was significantly upregulated in islets 
of diabetic patients and islet acinar cells in diabetic mice. 
With a minor allele frequency of 0.3691, rs4993986 was 
considered as a common SNP. Human leukocyte antigen 
(HLA) class II molecules are the gene loci found to be 
most highly associated with autoimmune diabetes 
mellitus.51 Increased expression of HLA-DQB1 results in 
beta cell failure mediated by autoimmunity.52 The structural 
changes of the HLA-DQB1 gene also participated in T2D 
pathogenesis,53 indicating that genetic variations in HLA- 
DQB1 locus were closely related to the occurrence of T2D. 
To determine the cell-type specific contribution of these 

m6A-SNPs, we further analyzed the scRNA-seq data of 
islet tissue in diabetic mice, and found that HLA-DQB1 
was abnormally expressed in acinar cells under diabetic 
condition, which might participate in the progression of 
diabetes.

In order to avoid a large number of false-positive 
results, traditional GWAS usually sets a strict significance 
threshold (usually p < 5.0e-08) to screen for susceptibility 
loci.54 With the traditional significance threshold, the mod-
erately correlated variations found in GWAS data can be 
ignored, and further research is needed to determine if they 
are involved in the disease.55 Thus, a relatively loose 

lortnoCsetebaiD

H
LA
-D
Q
B
1

rs4993986

A B

rs4993986(C>G)

C

Reference sequence

Altered sequence

D

Diabetes
Control

HLA-DQB1

E

Figure 3 Integrated analysis of the leading m6A-SNP rs4993986. (A) The protein coding region of rs4993986 in HLA-DQB1 gene sequence shows high transcriptional activity 
and DNaseI hypersensitivity. RNA-binding protein analysis revealed that rs4993986 exhibited a binding region to the RBP PABPC1. (B) Prediction of m6A modification on 
the HLA-DQB1 transcript (ENST00000434651.6) on the SRAMP website. (C) The secondary structure of HLA-DQB1 transcript and the position of rs4993986 near the m6A 
modification site. (D) The expression of HLA-DQB1 (H2-Ab1) was identified in the mouse pancreas scRNA-seq data. Violin plot shows that HLA-DQB1 expression is increased 
in diabetic islet acinar cells. (E) HLA-DQB1 expression of different cell types in islet of diabetes and control group.
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threshold of p < 5.0e-05 was set to avoid missing some 
valuable SNPs in this study.26 Exploring the potential 
functions of identified m6A-SNPs as multifunctional var-
iants is essential for the study of T2D pathogenesis. In 
addition to affecting m6A modification, genetic variation 
could also alter gene expression by affecting transcrip-
tional regulation factor binding, changing motif and RNA 
secondary structure. Therefore, the biological role of 
m6A-SNP should be considered as a multifunctional var-
iation. By querying the HaploReg browser, we found 
several other potential regulatory mechanisms for these 
m6A-SNPs to affect gene transcription. For instance, 
rs4993986 was located in the DNaseI hypersensitivity 
cluster region, which may affect the binding of four pro-
teins and alter six motifs. rs4993986 had a binding region 
with RBP PABPC1, which could be recruited to m6A 
modification sites by the m6A reader protein IGFBP2, 
and increased the transcript stability.56 Therefore, 
rs4993986 should be considered as a multifunctional var-
iant involved in the pathogenesis of T2D. In addition, the 
possible m6A methylation site is predicted by a sequence 
of the HLA-DQB1 transcript on the SRAMP website. 
A m6A modification peak with a very high confidence at 
the 3ʹ end of the HLA-DQB1 transcript near the SNP 
rs4993986 is predicted, suggesting that rs4993986 is likely 
to affect the modification of m6A methylation of this site.

In conclusion, we made the first endeavor to explore 
the relationship between T2D and m6A-SNPs in this 
study. 71 m6A-SNPs were potentially associated with 
T2D and the potential functions were identified. For 
example, rs4993986 has been shown to be located near 
a m6A modification at the 3ʹ end of the HLA-DQB1 
transcript, which may participate in the pathogenesis of 
T2D by altering HLA-DQB1 expression. Gene therapy 
targeting HLA-DQB1 locus and m6A demethylation 
enzymes may alleviate the progression of T2D. Also, 
there are still several limitations in the current study. We 
speculated that m6A-SNPs participated in T2D patho-
genesis by affecting local gene expression. However, 
m6A modification has also been proved to affect trans-
lation process.57 Therefore, the validation of the 
screened m6A-SNPs at protein expression level has yet 
to be performed. As the exploration of RNA epigenetic 
regulatory networks increases, more m6A modifications 
in non-coding regions will be detected. Genetic varia-
tions near these sites may also be considered as m6A- 
SNPs to affect the pathogenesis of T2D, thus more 
m6A-SNPs that may affect non-coding regions remain 

to be identified. Further study targeting these m6A-SNPs 
to alleviate the development of T2D may become a new 
direction.
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