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Abstract: A novel coronavirus discovered in 2019 is a new strain of the Coronaviridae family (CoVs)
that had not been previously identified in humans. It is known as SARS-CoV-2 for Severe Acute
Respiratory Syndrome Coronavirus-2, whilst COVID-19 is the name of the disease associated with the
virus. SARS-CoV-2 emerged over one year ago and still haunts the human community throughout
the world, causing both healthcare and socioeconomic problems. SARS-CoV-2 is spreading with
many uncertainties about treatment and prevention: the data available are limited and there are
few randomized controlled trial data on the efficacy of antiviral or immunomodulatory agents.
SARS-CoV-2 and its mutants are considered as unique within the Coronaviridae family insofar as
they spread rapidly and can have severe effects on health. Although the scientific world has been
succeeding in developing vaccines and medicines to combat COVID-19, the appearance and the
spread of new, more aggressive mutants are posing extra problems for treatment. Nevertheless,
our understanding of pandemics is increasing significantly due to this outbreak and is leading to
the development of many different pharmacological, immunological and other treatments. This
Review focuses on a subset of COVID-19 research, primarily the cytoskeleton-related physiological
and pathological processes in which coronaviruses such as SARS-CoV-2 are intimately involved. The
discovery of the exact mechanisms of the subversion of host cells by SARS-CoV-2 is critical to the
validation of specific drug targets and effective treatments.
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1. Overview: Coronaviruses and the Cytoskeleton

SARS-CoV-2 is a member of the Coronaviridae family and has a large 29,903-nucleotide,
positive-strand RNA genome [1]. The genome organization of SARS-CoV-2 is similar to
other CoVs such as HCoV-OC43, MERS-CoV, SARS-CoV, SARS-CoV-2, HCoV-229E, and
HCoV-NL63. One third of its genome encodes accessory and structural proteins, which
includes the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins [2,3]
(green blocks in Figure 1); the other two thirds of the genome are occupied by two large
overlapping open reading frames (ORF1a and ORF1b) that are translated into polypro-
teins and are processed to generate 16 non-structural proteins. A ribosomal frameshift
is located between ORF1a and ORF1b. The non-structural proteins include papain-like
protease, 3CL-protease, RNA-dependent RNA polymerase, helicase, endoribonuclease,
and viroporins.

The cytoskeleton, which plays a key role in several viral processes, is an intricate
network of filaments running through the cytoplasm that helps cells to maintain their shape
and internal organization (Figure 2). This is achieved via the dynamics of the actin filaments
(AFs), microtubule filaments (MFs), and intermediate filaments (IFs) that constitute the
cytoskeletal network [4,5]; in particular, the cytoskeleton provides the mechanical support
that enables cells to perform many vital functions.
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Figure 1. Structure of SARS-CoV-2. (A) The virus with the spike (S), envelope (E), membrane (M), and nucleocapsid (N) 

proteins are displayed. (B) The ACE-2 receptor. (C) Genomic organization. The orange-brown and the blue-green sections 

correspond to ORF1a and ORF1b, respectively. The illustrations are adapted from [2,3]. 
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These functions include cargo transport, signal transduction, and the control of cell
shape, movement, and division. Recent studies have shown the importance of the interac-
tions between coronaviruses and cytoskeletal filaments. The entry of the virus involves
IFs and MFs, which is followed by the use of MFs for transportation to replication and
assembly sites, and the harnessing of the polymerization of AFs to force release [1].

2. Cytoskeletal Transport of Influenza Viruses

Viral homologs of host proteins can mimic fundamental cell process during the course
of the viral life cycle [7]. The well-characterized influenza virus is often used as a model
system for understanding viral infections [8]. When infecting host cells, the virus must
move along AFs at the cell periphery and then move along MFs through the cytosol to
reach the perinuclear region for genome release [9]. Within the host cells, myosin VI
(MyoVI) and dynein are responsible for virus transport on the AFs and MFs with the
two motor proteins being attached to the same virus-carrying vesicle (Figure 3). MyoVI
drives viruses along AFs with dynein as a passenger on the vesicle, and then dynein drives
the viruses along MFs with MyoVI as a passenger. It has been revealed that the “driver
switchover” mechanism from AFs to MFs enables the successful transport of the virus
within the host cell [9].
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3. Microtubule Filaments and Coronaviruses

In many cell types, cytoplasmic dynein motors transport cargoes in a retrograde
manner toward the minus end of MTs, which are frequently anchored at the MicroTubule
Organizing Center (MTOC) [10]. The long-range transport of the coronaviruses to and
from the cell periphery is mediated by dynein and kinesin on the MFs, while the actin and
myosin filaments mediate the short-range transport [11].

MFs are involved at the entry stage where the cytoplasmic tail of the S protein binds
to tubulin (Figure 1) and where dynamin, an MT-organizing protein [12], is important for
the internalization step [13].

CoV infections of cells may stimulate the formation of autophagosomes, which have
double membranes (see Section 6); this formation is facilitated by MFs on which their
subsequent movement and fusion depend [14]. In fact, CoV infections are considered
to entail processes closely associated with autophagy, which may even promote CoV
infection and replication ([15] and references therein). However, the interplay between the
autophagy machinery and the CoVs including the SARS-CoV-2 is unclear so far [16].

The trafficking of viruses on the MT network by dynein and kinesin-1 motors plays
an important role in the replication and spread of many viruses, as supported by excellent
studies carried out with Porcine Epidemic Diarrhea Virus (PEDV), a member of the Coro-
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navirus family [17]. Using a single-virus tracking technique, the molecular mechanisms
of the transport of PEDV have revealed the involvement of this trafficking machinery
in the fusion of the virus with the membrane and in its accumulation in the perinuclear
region. The dynamically monitored intracellular transport displayed different mechanisms
such as unidirectional movements toward MT plus/minus ends as well as bidirectional
movements along different MTs. The findings of these studies have greatly contributed to
our understanding of the pathogenesis of CoVs.

Finally, in the context of MFs, cilia should also be considered. Cilia are composite
structures based on MTs and present on the cell surface [18]. Ciliopathies are associated
with a wide range of clinical features that include chronic respiratory problems. It is
therefore significant that structural damage to the respiratory epithelium and abnormal
ciliary function are typical pathological symptoms of CoV infection with different CoVs
causing cilia loss (via changes to the structure of MFs) and/or severe damage in the upper
respiratory tract and lung [18].

4. Actin Filaments and Coronaviruses

After binding to the host cell, viruses can use the depolymerization of AFs to “surf”
to their entry sites where further dynamic rearrangements of AFs are involved in virus
internalization [1]. On one hand, cofilin, a host protein that promotes AF depolymerization,
is phosphorylated by some coronaviruses to inhibit this depolymerization and assist with
entry [19]. On the other hand, ezrin, a host protein that links the membrane to the actin
cytoskeleton, can bind to the C-terminus of the Spike protein and inhibit the entry and
fusion of SARS-CoV [20]. In the case of antibody binding to Feline Infectious Peritonitis
Virus-infected monocytes, internalization is initiated and driven by Myo I and Myosin
Light Chain Kinase, whilst subsequent passage through the cortical actin barrier involves
Myo VI [11]. At the later stage of the synthesis of the viral proteins and genomes, AFs
retract from the plasma membrane to form a ring associated with the nucleus and to bind to
virus particles near the nuclear membrane [1]. The disruption of AF dynamics counteracts
the actin ring formation and virus replication. It should be noted that actin rearrangements
can result from the action of the N protein of SARS-CoV, which induces the p38 mitogen-
activated protein kinase cascade [21]. The viral structural proteins move to the ER-Golgi
intermediate compartment where, at least in one coronavirus, an AF-crosslinking protein,
filamin A, interacts with the Spike protein [22]. Finally, interaction between β-actin and
the M protein is essential for the assembly and budding of Infectious Bronchitis Virus [23],
whilst the thickening of AFs below the cell surface is proposed to provide the bending
force to extrude SARS-CoV particles [24].

5. IFs and Coronaviruses

The IF networks of mammalian cells form highly dynamic linkages between the cell
surface and the nucleus that undergo functionally significant changes in their organization
during various cellular processes [25]. Their major physiological functions include scaf-
folding, membrane trafficking, and signal transduction. Consequently, abnormalities of IFs
lead to pathogenesis. Studies of the dynamic characteristics of the interactions between the
cytoskeleton filaments and coronaviruses such as SARS-CoV have shown that vimentin,
a component of IFs, acts as a co-receptor for the entry of the virus [1]. Vimentin has an
affinity for gangliosides [26] to which SARS-CoV-2 binds via its N-terminal domain [27]
and, significantly, lipid rafts including gangliosides are enriched in the ACE-2 receptor [28].
The angiotensin-converting enzyme 2 (ACE2) is the principal receptor on the host cell
surface. At the later stage of coronavirus replication, vimentin, which also binds to the N
protein, is essential [29].

6. Interconnection of Autophagy and CoV Infection

Virus–host interactions involve cellular degradative pathways such as macroau-
tophagy/autophagy [30]. Autophagy, the major pathway, entails the engulfment of the
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cargo/vesicles by a double-membrane phagophore to form an autophagosome via the
actions of microtubule-associated protein light chain 3 (LC3B) and the sequestosome
(SQSTM1/p62). The autophagosome then fuses with the lysosome to form an autolyso-
some, which provides an acidic milieu for the pH-dependent degradation of proteins,
lipids, nucleic acids, and vesicles. Autophagy enables cells to degrade and recycle dam-
aged organelles and proteins; its destruction leads to different diseases.

Coronaviruses as intracellular pathogens without machinery for self-replication have
a complex relationship with the autophagy of the host cells in producing viral particles
and escaping host defenses. Evidence exists for both coronavirus-induced autophagy and
coronavirus-induced arrest of autophagy. Indeed, it has been reported that chloroquine
(CQ), an autophagy inhibitor, can counteract coronavirus infection. However, it has also
been reported that autophagy can be either detrimental or beneficial to viral replication
and maturation [30]; in the latter case, it was found that the interaction of coronaviruses
with autophagy could actually increase the replication of the virus.

Interestingly, the ER-derived double-membrane vesicles formed by coronaviruses
in the host cytoplasm are so similar to autophagosomes that it has been suggested that
coronaviruses mimic the cellular autophagy pathway [31]. Such structural mimicry would
be important since the double-membrane vesicles (DMVs) serve as sites for the replication
of the CoV genome [30]. By orchestrating overall antiviral defenses, autophagy could
prevent the infection of the host as well as the “cytokine storm,” which should be controlled
in the case of COVID-19 patients [1].

7. Therapeutic Approaches to COVID-19 Based on the Cytoskeleton

The active involvement of the cytoskeleton in the hijacking of the cells infected by
the viruses is confirmed by the fact that targeting the MT cytoskeleton with MT inhibitors
reduces the viral load. Thus, a potential treatment of coronavirus-infected individuals with
MT-targeting drugs might be effective. A number of drugs used in cancer therapy alter the
dynamics and stability of MTs. While the vinca alkaloids result in the disassembly of the
MT network, paclitaxel stabilizes it; both agents therefore prevent chromosome segregation
and abolish cell division. Such effects are of great importance in chemotherapy medication,
as they would be to a MT-based treatment for virus infection/transmission. The effect of
colchicine, which inhibits microtubule polymerization, on the efficacy and safety outcomes
of COVID-19 patients has been explored [32]. If its effectivity is proved, it would be a
significant milestone in the management of COVID-19, a disease with limited available
therapeutic options. This possibility needs to be investigated.

CoV infection induces the phosphorylation of the Microtubule Associated Protein, tau,
via a glycogen synthase kinase-3b-dependent mechanism; this disrupts the MT-stabilizing
capacity of tau and results in brain damage that is related to neurodegenerative diseases
such as tauopathy [33]. In addition, a parallel can be drawn between CoV infection and the
progression of demyelinating diseases such as multiple sclerosis, which is also correlated
with MF-dependent transport processes.

In the case of AFs, a compound directed against ezrin could be used to inhibit SARS-
CoV-2 entry. Ezrin peptides have been used to treat infections that include HIV-1, hepatitis
C virus, human papillomavirus, herpes simplex I and II, acute viral respiratory infec-
tion and, in particular, in the inhibition of inflammation in viral pneumonia, a serious
complication that can occur in COVID-19 (for references, see [34]).

Cytokines and pro-inflammatory mediators implicated in respiratory viral infections,
which include bradykinin and tumour necrosis factor-alpha (TNFα), disrupt the actin
cytoskeleton. In COVID-19-related lung disease, which is a leading cause of death from this
disease, these cytokines play a major role. First, for example, bradykinin is associated with
a calcium-dependent actin reorganization and an increased permeability [35], whilst ACE2
internalization due to SARS-CoV-2 infection is believed to create an imbalance in the Kinin–
Kallikrein system, and the consequent overactivation of the pathway involving bradykinin
and related peptides results in an increase in inflammation [36]. Second, TNFα acts via
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Rho-kinase to disintegrate the endothelial and epithelial cytoskeleton and hence damage
the intercellular barrier and flood the interstitial spaces with fluid ([37] and references
therein). Disruption of the actin cytoskeleton disrupts the microdomain organization of the
plasma membrane and hence the interaction between phosphodiesterase type 3A (PDE3A)
and the cystic fibrosis transmembrane conductance regulator (CFTR) channel; this, in turn,
leads to a disruption of compartmentalized cAMP signalling and to reduced secretion [38].
It is therefore reasonable to suppose that restoring the cytoskeleton-dependent integrity of
the cell barriers within the lung would constitute a valuable approach to treating COVID-19
lung disease.

In line with the above, colchicine (see above) attenuates the inflammatory response
by interfering with pathways that include the TNFα-induced nuclear factor κB (NF-κB)
pathway [39]. The PDE3-inhibitors, milrinone and enoximone, are reported to help treat
respiratory failure in patients with severe SARS-CoV-2 pneumonia [40]. PDE3-inhibitors
prevent microvascular leakage (via a normalization of the cytoskeleton by increasing
intracellular cAMP) and increase the ciliary beat frequency of the epithelial cells within the
respiratory tract ([40] and references therein); moreover, the anti-inflammatory properties
of PDE3-inhibitors may help prevent the cytokine storm [41]. Finally, dexamethasone
has been shown to preserve the intestinal mucosal barrier and to shorten the length of
hospitalization of COVID-19 patients [42].

8. Other Therapeutic Approaches to COVID-19

Although the transmission of severe acute respiratory syndromes caused by the
viruses in human populations is known to lead to massive health and socioeconomic crises,
the recently discovered coronavirus, SARS-CoV-2, has been considered to be unique in its
fast, worldwide spread and the severity of its effects on health. The relationship between
viral infection and autophagy is known as virophagy [43]. It has been proposed that SARS-
CoV-2 hijacks virophagy to create a virus factory for replication, immune escape, exocytosis,
and ultimately the inflammatory storm associated with the most severe COVID-19 cases
and, consistent with this, pharmacological approaches based on autophagy are being tested
in over half of clinical trials on patients with COVID-19 [43].

CQ and hydroxychloroquine (HCQ) have been used to treat malaria for many years;
recently, they have been used for treatment and prevention of COVID-19 [44]. In fact, CQ is
a well-known inhibitor of autophagosome formation and hence of autophagy maturation.
As regards its involvement in the viral pathway, it has been proposed to act on both cellular
entry and exit. These drugs alter intracellular pH, and may induce ER stress, causing
misformation of essential viral proteins. Recently, it has been shown that HCQ, which has
a strong affinity for the sialic acid constituents of glycoproteins and gangliosides, can bind
to lipid raft gangliosides and neutralize virus binding and infection [27]. Remdesivir, or
GS-5734, is a broad-spectrum, antiviral, phosphoramidate pro-drug, which is involved in
the incorporation of ribonucleotides into nascent viral RNA chains. It confuses the viral,
RNA-dependent, RNA polymerase and delays, or prematurely terminates, RNA chains,
which, in turn, inhibits viral RNA production. Although evaluation of the potential effect
of Remdesivir on SARS-Cov-2 and other coronaviruses has been considered consistent with
therapeutic benefit, evidence from adequate clinical trials is missing ([45] and references
therein). CQ and HCQ can cause serious toxicity and a thorough testing of their safety and
efficacy is required before any off-label use is made of them for COVID-19 treatment.

9. Speculative Strategies with the Potential to Treat COVID-19 and New Variants

The scientific world has been making huge efforts to develop and improve vaccines
and therapeutic treatments for COVID-19. It may be that a better appreciation of the
subversion of the host cytoskeleton during CoV infections would help to inspire new
strategies to control such infections and reduce CoV-related pathological damage. In
the integrative sensor hypothesis, we have proposed that the cytoskeleton senses and
integrates the general metabolic activity of the cell by binding metabolic enzymes and
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thereby changing its dynamics and its consumption of ATP and GTP. This binding would, in
turn, depend on whether the enzyme catalyzes its cognate reaction [46,47]. A considerable
body of evidence exists showing that some enzymes only bind to the cytoskeleton when
it is active, whilst others only bind when inactive (for references see [46]). An innovative
area of research might be to search for evidence of manipulation of cytoskeleton-binding
metabolic enzymes by SAR-CoV-2. Such a search might include cytosine metabolism
considering the special need that viruses have for it (which has led to several proposals for
anti-viral strategies [48]), and the formation of cytoskeletal filaments by CTP synthase [49].

A very different type of approach to COVID-19 might be based on Defective Interfering
Particles (DIPs), which occur in every family of viruses [50–52]. They contain degenerate
virus genomes and cannot replicate on their own but need the functions of the parental
virus. They have been found to interfere with the parental virus in ways that include
virus replication, activation of immune responses, and promotion of virus persistence
and can therefore influence the severity and spread of diseases [53]. Inspired by DIPs,
it has long been thought that antiviruses or Therapeutic Interfering Particles might be
constructed to combat many infectious diseases in both humans and animals [53]. In the
case of SARS-CoV-2, a seductive possibility would be to construct such antiviruses to act
not only on animal populations that harbor the virus (and related viruses) but also on
human populations. In the latter case, it is conceivable that such DIPs exist already and are
implicated in asymptomatic COVID-19.

The family of flaviviruses is one of the most medically important groups of arbovirus
and comprises nearly 70 closely related RNA viruses. Flaviviruses can subvert the actin,
MT, and IF networks of their host cells so as to facilitate entry, intracellular transport,
replication, and exit. Favipiravir, known as T-705, is also a broad spectrum inhibitor of
viral RNA polymerase that selectively and strongly inhibits the RNA-dependent RNA
polymerase of RNA viruses, thereby preventing the synthesis of the viral RNA [54]. A
major challenge for the widespread use of Remdesivir and Favipiravir is the development
of resistance among CoVs; certain mutations in the RNA polymerase make the influenza A
virus resistant to Favipiravir [55]. Both drugs are still used in the treatment of COVID-19
and it is therefore urgent to continue to evaluate and optimize them. Such optimization
requires taking into account the different susceptibilities of the different human populations
to these drugs and to the combinations of them with other treatments. It also requires a
better understanding of the relationship between metabolism, cytoskeletal dynamics, and
viral infections, a relationship that may extend to the microbiome [56].

10. Conclusions

It should be stressed that all three cytoskeletal networks are heavily involved in both
physiological and pathological processes. Most of the data presented above concern the
relationship between such processes and CoVs in general rather than SARS-CoV-2 in par-
ticular. Nevertheless, there are exciting implications for COVID-19 research in terms of the
elucidation of the cytoskeletal structures and interactions required for infection and the
identification of specific drug targets. More specifically, therapeutic goals might include
directly targeting the ACE2 receptor and vimentin co-receptor (or indirectly targeting the
ganglioside rafts containing these proteins), and perturbing cytoskeletal dynamics with
anti-microtubule (anti-cancer) agents so as to limit damage whilst maintaining physiologi-
cal functions.
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