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Duck enteritis virus (DEV) UL54 protein, a
novel partner, interacts with DEV UL24
protein
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Abstract

Background: UL24 is a multifunctional protein that is conserved among alphaherpesviruses and is believed to play
an important role in viral infection and replication.

Results: In this paper, to investigate putative UL24-binding proteins and to explore the functional mechanisms of
DEV UL24, yeast two-hybrid (Y2H) was carried out, and further verified the interaction between UL24 and partners
by co-immunoprecipitation and fluorescence microscopy experiments. Interaction partners of UL24 protein were
screened by yeast two-hybrid (Y2H) with the cDNA library of DEV-CHv strain post-infection DEF cells. A novel
partner, DEV UL54 protein, was discovered by Y2H screening and bioinformatic. Co-immunoprecipitation
experiments suggested that DEV UL24 interacted with UL54 proteins. And distribution of a part of UL54 protein
was changed from nucleus to cytoplasm in DF-1 cells of co-subcellular localization experiments which also showed
that DEV UL24 interacted with UL54 proteins.

Conclusions: The interaction between the DEV UL24 and UL54 proteins was discovered for the first time. Thus, DEV
UL54 protein as a novel partner interacted with DEV UL24 protein.
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Finding
Duck enteritis virus (DEV, anatid alphaherpesvirus 1
species), clustered in mardivirus genus, alphaherpesviri-
nae subfamily, Herpesviridae family according to the lat-
est report of the International Committee on Taxonomy
of Viruses (ICTV) [1], causes considerable economic
losses to the commercial duck industry and poses a con-
tinuous threat to wild and migratory waterfowl popula-
tions (e.g., ducks, geese and swans) due to their high
mortality and decreased egg production rates [2].
Currently, there are three complete genomic se-

quences of DEV strains available in GenBank: the Chin-
ese virulent DEV strain (DEV CHv) [3, 4], the European
virulent strain (2085) [5], and the attenuated vaccine
strain (VAC) [6], and the publications related to the

three genome sequences have cast light on the genome
structure of DEV. DEV is a linear, double-stranded DNA
virus, the genome size of which is approximately 158–
162 kb [3–6]. The entire genome of DEV is composed of
a unique long (UL), a unique short (US) and two
inverted repeated sequences (IRS and TRS) [6]. A total
of 78 ORFs were predicted to code for the potential
functional proteins. Of these ORFs, 10 and 68 ORFs
coded for structural proteins and non-structural pro-
teins, respectively. Many DEV proteins, such as UL16
[7], UL38 [8], gE [9], gN [10, 11] have been researched
in molecular biology studies. However, these researches
on protein-protein interaction (PPI) were only done be-
tween gM and gN [10]. And there was no report on
partners of DEV UL24 protein.
UL24 protein is a conserved multifunctional protein

and is believed to play an important role in viral infec-
tion and replication. UL24 protein contains five hom-
ology domains (HDs) with a high percentage of amino
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acid identity among its homologs of the other Herpes-
virus family members (including HSV1/2 UL24, EHV-1
ORF37, HCMV UL76, MHV-68 ORF20, and so on) and
one PD-(D/E)XK endonuclease motif in the N-terminal
regions (NTRs) [12–14]. Using mouse infection model,
researches showed that HSV-1 UL24 protein was in-
volved in viral pathogenesis [15, 16] and contributed to
viral replication in the mucous membranes [17]. ORF 37
is a neuropathogenic determinant of equine herpesvirus
1 (EHV-1) [18, 19]. UL76 protein of human cytomegalo-
virus (HCMV) was able to induce DNA double-strands
breaks and DNA damage response [20–22]. ORF 20 of
murine herpesvirus 68 (MHV-68) was reported to be in-
volved in inducing cell-cycle arrest at the G2/M phase
followed by apoptosis [13, 23]. In summary, UL24 pro-
tein contributes to virus virulence [16, 17, 19], viral rep-
lication [15, 24–26], cell membrane fusion [27, 28], cell
cycle arrest [23], and redistribution of nucleolin (C23)
and nucleophosmin (B23) [27–31]. Up to now, research
on DEV UL24 protein showed that it is located in the
cytoplasm around the periphery of the nucleus in DEV-
infected DEF cells [32]. And attenuated Salmonella
Typhimurium delivering DNA vaccine encoding DEV
UL24 induced immune responses and conferred good
protection against challenge [33, 34].
The DEV UL54 is an immediate early gene [33], but

its function is not very clear. Bioinformation analysis
showed that DEV UL54 encode a 51.75 KDa protein of
458 AA with 56% homology to the corresponding HSV-
1 protein ICP27. ICP27, a conserved and multifunctional
protein, is characterized nucleocytoplasmic shuttling
based on crucial nuclear localization signal (NLS) and
nuclear export signal (NES) [35–37]. ICP27 has been im-
plicated in viral replication [35, 38], gene expression [39,
40], apoptosis [41] and host immunization reactions [42,
43], all of which promote infection. Thus, these features
of ICP27 provide ideas or inspiration for research on
UL54.
UL24 protein family is a multifunctional protein play-

ing important roles in herpesvirus invasion and replica-
tion. However, there are only a few reports on the
molecular mechanisms underlying the function of UL24
protein [32, 34, 44, 45]. Thus, study on PPI of DEV
UL24 contributes to better understanding of functions
and molecular mechanisms of this protein, which also
prompts us to understand the molecular mechanisms of
DEV infection. To this end, we employed yeast two-
hybrid technology coupled with co-immunoprecipitation
to screen DEV UL24 protein interacting partner.
Sequence analysis of the N-terminal region of DEV

UL24 gene (nucleotides 1–720, Additional file 1: Figure
S1) was carried out by codon optimization with host
yeast of Saccharomyces cerevisiae (http://www.jcat.de/).
Optimized sequence was generated by company of

Huada (China). To clone full-length optimized DEV
UL24 gene, two pairs of primer were designed (Table 1,
primers UL24/N-F/R, UL24/C-F/R). Viral sequences (N-
terminal fragment, UL24/N; and full-length optimized
DEV UL24 gene, UL24/FL) were cloned into pGBKT7
plasmid (bait plasmid; Clontech) and Y2HGold strain
(bait strains; Clontech) was transformed with this two
recombinant plasmids (Fig. 1a, b), respectively. UL24/N
strain was used as a control. Then, bait strains were veri-
fied for self-activation, toxicity and Western blot analysis
according to protocols as described in Matchmaker Gold
Yeast Two-Hybrid System User Manual (Clontech) [46,
47].Self-activation and toxicity detection of bait strains
were negative. Western blot analysis revealed that UL24/
N and UL24/FL-fusion proteins were expressed. Based
on theoretical estimates, UL24/N and UL24/FL-fusion
proteins (contain GAL4 DNA binding domain of
pGBKT7 plasmid about 22 kDa; myc flag protein about
1 kDa) are about 50 kDa, 69 kDa respectively (Fig. 1c).
To explore the functional mechanisms of DEV UL24 and

to investigate putative UL24-binding proteins, Y2H screens
were performed by mating (according to protocol in
Matchmaker Gold Yeast Two-Hybrid System User Manual,
Clontech). Briefly, the cDNA library was constructed by
previously described, which was comprised all genes of the
DEF cells post-infection DEV-CHv strain and contained
more than 107 primary clones per milliliter [48]. Four puta-
tive interacting proteins, DEV UL54 (Accession:
EU071033.1), duck PSF2 (Accession: XM_013096619.1),
GNB2L1 (Accession: XM_005018317.2), and Anas platyr-
hynchos Nudix-type motif 9 (Accession: XM_005012818.2)
were obtained by sequencing analysis and NCBI (National
Center for Biotechnology Information) blast analysis. NCBI
blast analysis suggested that the first base of positive clone
contained GNB2L1 mRNA sequence, and matched with
the 426th base of GNB2L1 mRNA sequence; the 78th base
of positive clone contained Anas platyrhynchos Nudix-type
motif 9 mRNA sequence and matched with the 194th base
of Anas platyrhynchos Nudix-type motif 9 mRNA se-
quence. According to triplet code characteristic of nucleic
acid code protein, we concluded the positive clones which
contained GNB2L1 mRNA sequence and Anas platyr-
hynchos Nudix-type motif 9 sequences as probably frame-
shift mutants. PSF2 sequence lay in 3’UTR of duck PSF2
mRNA whereas DEV UL54 sequence unaffected. Thus, we
used positive clone which contains UL54 sequence to elim-
inate the false positive of it by Y2H (Fig. 2). DEV UL54
mRNA also contained a polyA site that was 26 nt down-
stream of the UL54 CDS region.
DEV UL24 and UL54 sequences were cloned by re-

combination into pCMV-myc-N and pCMV-Flag-N vec-
tors respectively. Primers were designed and are listed in
Table 1 (primers pCMV-myc-UL24 F/R, pCMV-Flag-
UL54 F/R). Positive clones were identified by
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sequencing. HEK293T cells (Human embryonic kidney
cells, HEK) were cultured in DMEM (Dulbecco modified
Eagle medium, Gibco) supplemented with 10% (v/v) FBS
(fetal bovine serum, Gibco), 100 units/mL penicillin, and
100 μg/mL streptomycin in an atmosphere of 5% CO2 at

37 °C. For co-expression DEV UL24 and UL54 proteins,
equal plasmids were transiently co-transfected into
HEK293T cells using a Lipofectamine-2000 transfection
reagent system (Invitrogen). Total protein was harvested
at 48 h post-transfection by incubating cells for 30 min

Table 1 primer sequences

primer name sequence restriction enzyme

UL24/N-F 5′-AGGAGGACCTGCATATGATGGCTTCTAAGGTTCAAAAGAAGAGA-3’ Nde I

UL24/N-R 5′-GGATCCCCGGGAATTCTGGTATTCAGACAAACCAG-3’ EcoR I

UL24/C-F 5′-ATCGCTGGTTTGTCTGAATACCACATACCTACCAAAGGTAAGCGCCGG-3’ ——

UL24/C-R 5′-GGATCCCCGGGAATTCCTAGTGTTTAGTTGGTCTGA EcoR I

pCMV-myc-UL24 F 5′-ATGGAGGCCCGAATTCGGATGGCATCGAAGGTACAGA-3’ EcoR I

pCMV-myc-UL24 R 5′-GCCGCGGTACCTCGAGACTAGTGTTTAGTTGGTCTGAA-3’ Xho I

pCMV-Flag-UL54 F 5′-CATATGATGGCCTGCAGTGCTAAA-3’ Nde I

pCMV-Flag-UL54 R 5′-GGATCCCAAACATTTCATTACAATAAAA-3’ BamH I

pEGFP-N1-UL24-F1 5′-AAGCTTCGAATTCTGATGGCATCGAAGGTACAGA-3’ EcoR I

pEGFP-N1-UL24-R2 5′-CGACCGGTGGATCCCGGGCGTGTTTAGTTGGTCTGAATA-3’ Sma I

pDsRed-N1-UL54-F1 5′- TCTCAAGCTTAAGCTATGGCCTGCAGTGCTAAAC-3’ Hind III

pDsRed-N1-UL54 R2 5′- GGCGACCGGTGAGCTCGTAAACATTTCATTACAATA-3’ BamH I

The restriction enzyme sites were bold

Fig. 1 Bait plasmid construction. a, the nucleotide sequence of UL24/C (721 ~ 1230 bp, lane 3) and codon optimized UL24/N (1 ~ 720 bp, lane
2) was firstly amplified by PCR. Then, the full length codon optimized UL24 gene (1 ~ 1230 bp, lane 4) was amplified with the DNA fragments
UL24/C and UL24/N as template by overlap PCR. M4500: DNA Marker 200 ~ 4500 bp. DL2000: DNA Marker 100 ~ 2000 bp. b, “bait” proteins (N
and FL) were expressed in Saccharomyces cerevisiae Y2HGold strain according to be detected by western blotting. Primary antibody (mouse-anti
myc mAb) is diluted 1000 folds, and HRP-goat anti-mouse antibody is diluted 80,000 folds. Immunoreactive proteins are detected using the ECL
kit (enhanced chemiluminescence system, Bio-Rad)
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on ice, followed by scraping into NP-40 lysis buffer with
the addition of ionic detergents (0.5% sodium deoxycho-
late and 0.1% SDS) [35]. Debris was pelleted by centrifu-
gation at 13,000×g for 20 min in 4 °C. Western blot
(WB) analysis of cell extracts revealed that both UL24
and UL54 fusion proteins were expressed with molecular
weights of about 45 kDa and 50.5 kDa, respectively
(Additional file 2: Figure S2). The full length UL24-fusion
protein was expressed and about 69 kDa (containing
22 kDa binding domain of GAL4 protein and 1 kDa myc
tagged protein) in Saccharomyces cerevisiae Y2HGold
strain firstly according to codon optimization (Additional
file 1: Figure S1). Thus, full length DEV UL24 protein was
about 46 kDa in Y2HGold strain which was consistent
with expected results. Therefore, DEV UL24 protein
expressed in eukaryote is about 45 kDa.
Immunoprecipitation was performed with 2 mg of

total protein incubated with 5 μL myc-agarose (mouse-
anti-myc monoclonal antibody coupling with agarose,

Santa Cruz Biotechnology) for 2 h at 4 °C, or incubated
with 3 μg rabbit anti-UL24 antibody (polyclonal anti-
body, pAb) for 2 h at 4 °C. And compounds which con-
tained pAb UL24 were incubated with protein A&G plus
agarose (Santa Cruz Biotechnology) for another 2 h at
4 °C. Then, the other steps of immunoprecipitation were
performed as protocol [49]. According to WB analysis,
we observed that UL54 fusion protein, in above trans-
fected 293 T cell extracts, was expressed in the experi-
mental group (Fig. 3, lane 1&2) in contrast to control
where no visible band was detected (Fig. 3, lane 3). Sim-
ultaneously, cell extracts were precipitated using rabbit-
anti DEV UL24 antibody coupled to protein A &G-
agarose and precipitated with myc-agarose respectively.
Subsequent WB analysis showed that UL54 fusion pro-
tein was detected in the experimental group (Fig. 3, lane
1&2), but not in the control group (Fig. 3, lane 3). Fur-
thermore, the intensity of the UL54 fusion protein in
lane 2 was greater than in lane 1. To summarize, using
co-immunoprecipitation, our results suggested that
UL24 and U54 proteins interact with each other.
To further verify the interaction between UL24 and

UL54 protein and to explore the function of UL24 pro-
tein during DEV infection, fluorescence microscopy was

Fig. 2 Mapping of the UL24/UL54 interaction. Candidate UL54
protein was identified by Y2H assay. Empty bait vector (pGBKT7) and
prey vector pGADT7-UL54 were used to self-activation detection of
UL54 protein. Bait vector pGBKT7 and prey vector pGADT7 were
used as a blank control. Bait vector pGBKT7-Lam and prey vector
pGADT7-T were used as a negative control. Bait vector pGBKT7-p53
and prey vector pGADT7-T were used as a positive control. A posi-
tive interaction is indicated by the production of a blue yeast colony
in the SD/−Leu/−Trp/−His/−Ade/X/A plates

293 T

IP UL24 Myc Myc

WB Flag

CO-IP

Cell extract

Flag Flag

WB Flag

Fig. 3 Co-immunoprecipitation of UL24 and UL54. HEK293T cells were
co-transfected with eukaryotic plasmids (pCMV-myc-UL24 and pCMV-Flag-
UL54, pCMV-myc-UL24 and pCMV-Flag respectively). At 48 h
post-transfection, rabbit anti-UL24 pAb were incubated with the extracts
from the cells co-transfected with the plasmids pCMV-myc-UL24 and
pCMV-Flag-UL54; Abs against myc (mouse against myc) were incubated
with extracts from the cells co-transfected with pCMV-myc-UL24 and
pCMV-Flag-UL54, pCMV-myc-UL24 and pCMV-Flag-N respectively.
Immunoprecipitated complexes were analyzed by western blotting with
mouse anti-Flag pAb. The above transfected 293 T cell extracts were
analyzed by western blotting with mouse anti-Flag pAb to detect the
expression of Flag-UL54
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carried out. DEV UL24 and UL54 sequences were
cloned by recombination into pEGFP-N1 and pDsRed-
N1 vectors respectively. Primers were designed as in
Table 1 (primers pEGFP-N1-UL24 F/R, pDsRed-N1-
UL54 F/R). Positive clones were identified by sequen-
cing. Chicken fibroblast cells (DF-1) were cultured and
transiently transfected/ co-transfected as same as
HEK293T cells. Respectively, 12 h, 24 h, 36 h, 48 h after
transfection, the transfected cells were fixed in 4% para-
formaldehyde for 10 min, permeabilized treatment in
0.3% Triton X-100 for 10 min, stained in 10 μg/mL
DAPI solution (Sigma) for 8 min, and observed with a
fluorescence microscope under a × 40 objective [50]. Re-
sults in Fig. 4 also demonstrated that UL24-EGFP protein
was localized predominantly to the nucleus but a fraction
also appeared to be located in the cytoplasm at 36 h and
48 h, post-transfection. Simultaneously, significant nuclear
fragmentation was observed at 12 h48 h post-transfection
as revealed by DAPI stain. Thirdly, UL24-EGFP protein
distribution exhibited a globular shape or crystal shape ag-
gregation. Figure 5 showed that UL54-DsRed protein was
located in nucleus predominantly.
Subcellular co-localization of UL24- and UL54-fusion

proteins, at 12 h ~ 36 h post-transfection, UL24-EGFP
and UL54-DsRed proteins was redistributed equably in
nucleus. At 48 h post-infection, UL54-DsRed proteins
were partly transported to cytoplasm although most of
UL24- and UL54-fusion proteins were distributed equ-
ably in nucleus (Fig. 6, UL24-EGFP + UL54-DsRed
group). Furthermore, some cell nucleus, in which UL24-
EGFP and UL54-DsRed proteins were redistributed equ-
ably, was not a form of visible micronucleus by fluores-
cence microscopy. For in groups of negative control

(UL24-EGFP+ DsRed group, EGFP + UL54-DsRed group),
UL24-EGFP and UL54-DsRed proteins were predominantly
laid in nucleus, respectively (Fig. 6, list 1&3). The blank
control group (EGFP + DsRed group) revealed that EGFP
and DsRed co-located in cytoplasm and nucleus equably
(Fig. 6, list 4). In summary, our data suggested that UL24-
and UL54-fusion protein could be co-expressed in DF-1
cells, and that the redistribution of UL54-fusion protein was
caused by interactions between UL24 and UL54 protein.
In the past years, it has been reported that the HSV-1

ICP27 protein, a homologue of DEV UL54 protein [38,
51–53], can shuttle from the nucleus to the cytoplasm
due to interaction with the host Nup62 protein [35].
The interactions between ICP27 protein and Nup62 pro-
tein inhibits host mRNAs exported to cytoplasm and
regulates the expression of virus genes via regulation of
the amount of the virus mRNAs exported to cytoplasm
[35, 54]. HSV-1 UL24 protein is located in the nucleus,
nucleolus and cytoplasm [55], whereas DEV UL24 pro-
tein is localized in the cytoplasm and the nucleus [34,
44]. UL24 protein interaction with UL54 protein existed
in other five herpesviruses [56]. Therefore, we infer that
the function of UL24 and UL54 PPI in DEV was prob-
ably the same as UL24 and ICP27 in HSV-1.
The UL24 protein is located differently in different

cells. In this article, the localization of UL24-EGFP fu-
sion protein was in the nucleus and cytoplasm in DF-1
cells (Fig. 4). In previous study, DEV UL24-LTB fusion
protein was also located in the nucleus and cytoplasm
when it was transiently expressed in COS-7 cells [34].
When overexpressed in COS-7 or DF-1 cells, UL24-
fusion protein was predominantly localized in the nu-
cleus. But DEV UL24 protein was located in the

Fig. 4 Subcellular localization of UL24 protein in DF-1 cells. DF-1 cells were transfected with pEGFP-N1-UL24. 12 h, 24 h, 36 h and 48 h after
transfection, cells were fixed, permeabilized and then stained with 4′,6-diamidino-2-phenylindole (DAPI). The subcellular localization of UL24
protein was visualized using fluorescent microscopy. The DF-1 cells were transfected with the empty vector pEGFP-N1 as a negative control
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perinuclear region in DEV infected DEF cells, and re-
gardless of an earlier or later time-point in infection, a
little UL24 protein was observed in the nucleus [32]. It
was guessed that there was a protein which interacted
with DEV UL24, and UL24 could made it shuttle from
nucleus to cytoplasm during DEV infection. DEV UL54
protein had a characterization of nucleocytoplasmic
shuttling [57], and DEV UL24 interacted with UL54.
Thus, we concluded that DEV UL54 probably promoted
UL24 transportation from nucleus to cytoplasm during
DEV infection.

Overexpression of UL24-fusion protein in DF-1 cell, in-
duced DNA fragmentation and formation micronucleus ac-
cording to DAPI stain (Fig. 5 and Additional file 2: Figure
S2), suggested DEV UL24 protein functions in DNA dam-
age. Similarly, HCMV UL76 protein, a homologue of DEV
UL24 protein in herpesvirus family could induce DNA frag-
mentation and a form of micronucleus [21, 22]. Co-
subcellular localization of UL24 and UL54-fusion protein,
and redistribution of UL24-EGFP and UL54-DsRed proteins
were changed at time post-transfection. Thus, we concluded
that the redistribution of UL24 and UL54-fusion protein

Fig. 5 Subcellular localization of UL54 protein in DF-1 cells. After infection pDsRed-N1-UL54 plasmids 12 h, 24 h, 36 h and 48 h respectively, DF-1
were fixed, hyalinized and DAPI stained. And fluorescence microscopy was visualized directly. Meanwhile, DF-1 cells were transfected with
pDsRed-N1 as a negative control

Fig. 6 Subcellular co-localization of UL24 and UL54 protein in DF-1 cells. DF-1 cells were co-transfected with equal pEGFP-N1-UL24 and pDsRed-
N1, pEGFP-N1 and pDsRed-N1-UL54, pEGFP-N1-UL24 and pDsRed-N-UL54, pEGFP-N1 and pDsRed-N1 respectively. 12 h, 24 h, 36 h and 48 h after
infection, cells were fixed, hyalinized and DAPI stained. Fluorescence microscopy was visualized directly
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was caused by interactions between UL24 and UL54 pro-
tein. Interestingly, in cells of co-expression UL24 and UL54
proteins, some nucleus did not have DNA damage (Fig. 6,
list 2). It suggested that the PPI between UL24 and UL54
protein could reduce the effect of DNA damage, and we
would explore the molecular mechanism in the future.

Conclusions
UL24 is a multifunctional protein, playing important roles in
virus invasion and replication. To identify the molecular
mechanisms underlying the function of UL24 protein, Y2H
experiment coupled with CO-IP and co-subcellular
localization were employed. UL54 protein, as a novel part-
ner, interacted with DEV UL24 protein and conserved in
herpesviridae family. In addition, the redistribution of partial
UL54 proteins took changes from nucleus to cytoplasm, and
the micronucleus disappeared in some of co-expression DF-
1 cells. We concluded that the interaction between the two
proteins is associated with several pathogenic processes in
DEV infection, such as DNA damage and viral replication.
And the molecular mechanism of this interaction contribu-
tion to DEV pathogenic infection is required to be further
researched in the future.

Additional files

Additional file 1: Figure S1. UL24/N gene codon optimization
(1 ~ 720 bp). The green short-line was optimized nucleotides. (PDF 312 kb)

Additional file 2: Figure S2. WB analyzed the expression of UL24-
fusion protein and UL54-fusion protein in HEK293T cells. HEK293T cells
were transfected with eukaryotic plasmid pCMV-myc, pCMV-myc-UL24,
and pCMV-Flag-UL54 respectively. At 48 h post-infection, the 293 T cell
extracts were carried out Western blotting analysis, which indicated that
myc-UL24 and Flag-UL54 was expressed in 293 T cells and the molecular
mass of fusion protein is about 45 KD, 50.5 KD respectively. Primary Abs
against myc-UL24 and Flag-UL54 were serums of rabbit against UL24 and
mouse against Flag respectively. (PDF 44 kb)
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