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Monk fruit, also named Luo Han Guo, is the fruit of Siraitia grosvenorii (Swingle)
C. Jeffrey ex A. M. Lu et Z. Y. Zhang and has been used as both food and
traditional Chinese medicine. Due to preservation concerns, monk fruit is usually
processed by hot-air drying or using low-temperature techniques after harvest. In this
study, high-performance thin-layer chromatography (HPTLC) method was developed
for the analysis of 13 mogrosides, 1 flavonoid, and 3 sugars in monk fruit products.
Then chemometric analysis was applied to investigate the chemical characteristics
in the samples dried by different methods. The results showed that the contents of
mogroside V, 11-oxo-mogroside V, isomogroside V, and sucrose in monk fruits dried
at low temperature were much higher than those in traditional hot-air drying samples,
which was also confirmed by HPTLC-scanning. These findings indicate that HPTLC
combined with chemometric analysis provides a reliable tool to understand the chemical
differences between the monk fruit products processed by different drying methods,
which will be helpful for their quality evaluation.

Keywords: monk fruit, Siraitia grosvenorii, high performance thin layer chromatography, drying method, chemical
characteristics, chemometric analysis

INTRODUCTION

Monk fruit, also known as Luo Han Guo, is the fruit of Siraitia grosvenorii (Swingle) C. Jeffrey
ex A. M. Lu et Z. Y. Zhang (1). It is mainly cultivated in Guangxi, China, and has been used
as a food ingredient, beverage, and traditional medicine for centuries. Because of its good safety
and high sweetness, monk fruit had been approved as a food sweetener by China Food and Drug
Administration and awarded the “generally regarded as safe” (GRAS) status by the U.S. Food and
Drug Administration (2). It is used as a sugar-free food additive in low-calorie health-promoting
drinks, and also as a substitute for sweeteners in health foods for patients with obesity and diabetes
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(2). As a traditional Chinese medicine, monk fruit has been used
for the treatment of dry cough, sore throat, and constipation (1).
Recent pharmacological studies have also shown that monk fruit
exhibits anti-diabetic (3–5), anti-cancer (6, 7), anti-inflammatory
(8–10), and neuroprotective effects (11–13).

The bioactive and nutritional ingredients in monk fruit
include triterpene glycosides, flavonoids, carbohydrates, proteins,
fats, vitamins, and minerals. Mogrosides are a group of
cucurbitane-type triterpene glycosides that are the major
bioactive compounds in monk fruit. The mixture of mogrosides
is 300 times sweeter than sucrose (14), but only mogrosides
with mogrol aglycone and with more than three sugar moieties
possess the sweet taste (15, 16). Flavonoids are also important
compounds in monk fruit and exert antibacterial and antioxidant
effects (17). In addition, there are various sugars found in
monk fruit. In different varieties of monk fruits, the total sugar
content accounted for 25–38% of dry weight. Among them,
the contents of fructose and glucose were 10–17% and 5–15%,
respectively (18).

Monk fruit usually needs a drying process before further use to
inhibit microbial growth and extend the shelf life. Traditionally,
monk fruit is dried by hot air at 45–70◦C for 6–8 days to
remove the moisture, after which the outer surface of the
monk fruit will turn to dark yellow or brown (Supplementary
Figure 1), and the taste may be slightly bitter. To obtain
better appearance, taste, and quality, low temperature techniques,
such as freeze-drying, freeze-vacuum drying, microwave drying,
microwave-vacuum drying, microwave-vacuum infrared drying,
and freezing followed by microwave-vacuum drying are used
for drying monk fruit (19). Currently, both types of monk
fruit products are widely available in the market. It is reported
that drying methods may greatly affect the bioactive and
nutritional components of monk fruit. Lu et al. found that
monk fruits dried with freezing contained higher content of
mogroside V than those dried under high temperatures (20).
In addition, the contents of 10 mogrosides in monk fruits
processed by vacuum drying method were markedly higher
than those in traditional drying samples (21). Wang et al.
indicated that high-temperature drying treatment resulted in
a significant decrease in sucrose and glucose concentrations
compared with freeze-dried fruit (22). However, these reports
employed high-performance liquid chromatography which
mainly focused on only mogrosides or sugars due to their
different polarity. Simultaneous analysis of multiple components
may reflect the quality more comprehensively. Therefore, in
this study, 16 compounds in monk fruit products, such as
13 mogrosides [mogroside V (1), 11-oxo-mogroside V (2),
isomogroside V (3), mogroside IV (4), siamenoside I (6),
mogroside IV A (7), mogroside III A1 (10), mogroside III E
(11), mogroside III (12), mogroside II A2 (14), mogroside II
A1 (15) and mogroside II E (16)], 1 flavonoid [grosvenorine
(13)], and 3 sugars [sucrose (5), glucose (8), and fructose
(9)] (Figure 1) were analyzed by high-performance thin-
layer chromatography (HPTLC), which has the advantages of
high selectivity for complex components and high efficiency
for comparing a large number of samples simultaneously.
Then, chemometric analysis was performed to compare the

chemical differences in monk fruit products processed by
different drying methods.

MATERIALS AND METHODS

Materials and Chemicals
Monk fruit samples of different sizes (S: small; M: medium; L:
large; and XL: extra-large) and processed by different drying
methods (HT: high temperature and LT: low temperature) were
collected at pharmacies from different locations in China. All
monk fruit samples were produced in Guilin, Guangxi, and their
information is listed in Supplementary Table 1. The botanical
origin of materials was identified by Dr. Xiao-Jia Chen, one
of the authors. All voucher specimens were deposited at the
Institute of Chinese Medical Sciences, University of Macau,
Macao SAR, China.

All chemicals and solvents were of analytical grade. Ethanol
and acetic acid were bought from Xilong Scientific Co., Ltd.
(Shantou, China), and sulfuric acid (98%) was acquired from
Merck (Darmstadt, Germany). Ethyl acetate was purchased
from ACI Lascan Limited (Bangkok, Thailand). Methanol was
obtained from Damao Chemical Reagent Factory (Tianjin,
China) while n-butanol was purchased from Tianjin Fuyu
Chemical Reagent Factory (Tianjin, China). All mogrosides
(mogroside V, 11-oxo-mogroside V, isomogroside V, mogroside
IV, siamenoside I, mogroside IV A, mogroside II A1, mogroside
II E, mogroside II A2, mogroside III, mogroside III A1,
and mogroside III E) and grosvenorine were purchased from
Chengdu Purify Co., Ltd. (Chengdu, China). Glucose, sucrose,
and fructose were acquired from Chengdu Pufei De Biotech Co.,
Ltd. (Chengdu, China). All aqueous solutions were prepared with
deionized water purified by the Millipore Milli Q-Plus system
(Millipore, Billerica, MA, United States).

Sample Preparation
Dried powdered samples (2.0 g) were sonicated with 40 ml of
mill-Q water for 30 min, then the extract was centrifugated at
3,000 rpm for 5 min. The supernatant was collected and extracted
with 20 ml of water-saturated n-butanol two times. Then, the
n-butanol fractions were combined and evaporated to dryness
in a rotary evaporator. The residue was dissolved in 2.0 ml of
methanol and filtered through a 0.22 µm nylon membrane for
further experiment.

Standard Solutions Preparation
Separate stock solutions (1 mg/ml) of the 16 compounds were
prepared in methanol or water. Then, two mixed standard
solutions were prepared, respectively, by mixing equal volumes
of the corresponding stock solutions. Mixed standard solution 1
(MS1) was composed of mogroside V, isomogroside V, mogroside
IV, siamenoside I, mogroside IV A, mogroside II A1, mogroside II
E, mogroside II A2, mogroside III, mogroside III A1, mogroside
III E, and glucose at the final concentration of 0.08 mg/ml,
while the other components (11-oxo-mogroside V, grosvenorine,
fructose and sucrose) were mixed to form the mixed standard
solution 2 (MS2) at the final concentration of 0.25 mg/ml.
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High-Performance Thin-Layer
Chromatography Analysis
A CAMAG TLC system (CAMAG, Switzerland) containing an
automatic thin-layer chromatography (TLC) sampler 4 with a 25
µl syringe, an automatic developing chamber, a chromatogram
immersion device III, a TLC plate heater III, a TLC visualizer
equipped with visionCATS (version 2.5) software, and a TLC
scanner 4 was employed for the analyses. To maintain a similar
application amount of each standard on the plate, different
application volumes were used. MS 1 (22 µl), MS 2 (8 µl), and
28 sample solutions (2 µl) were applied as 8 mm bands and
8 mm from the bottom edge on HPTLC silica gel 60 F254 plates
(20 cm × 10 cm, Merck, Darmstadt, Germany). After sample
application, the plate was pre-saturated with the mobile phase
of n-butanol - water-ethanol-acetic acid (7:1:1:0.2, v/v/v/v) for
30 min in a glass double-twin trough chamber, then the plate was

developed with the same developing agent to 80 mm from the
bottom edge. After drying, the plate was then immersed in 10%
sulfuric acid in ethanol solution for 1 s and heated at 105◦C for
10 min on a TLC plate heater. All plate images were documented
under white light and UV 366 nm. Then, the plate was scanned at
290 nm with a scanning speed of 20 mm/s and a slit dimension of
5 × 0.2 mm being employed.

Data Analysis
The obtained HPTLC images were uploaded to the rTLC V.1.0
program1 for processing (23). The data of every track in the
HPTLC images under UV 366 nm were extracted by adjusting the
parameters based on sample application. Then, the data matrix
of the red channel consisting of sample code, variables ID (Rf

1http://shinyapps.ernaehrung.uni-giessen.de/rtlc/

FIGURE 1 | Chemical structures of 16 investigated compounds.
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region), and pixel intensity was exported as csv. format and
further analyzed using SIMCA software (version 14.1, Umetrics).

RESULTS AND DISCUSSION

Optimization of the High-Performance
Thin-Layer Chromatography Conditions
Different developing agents were optimized to achieve good
separation. The mobile phase in the Chinese Pharmacopoeia,
n-butanol-ethanol-water (8:2:3, v/v/v) (1) was first tried, but the
mogrosides with the same number of sugar units were hard
to be separated. By using the upper layer of n-butanol–ethyl
acetate-water (4:2:4, v/v/v), the separation of similar mogrosides
was greatly improved but the Rf value of mogroside V was too
low. With n-butanol-water ethanol (7:1:1, v/v/v), the Rf value
of mogroside V increased but the chromatographic trailing of
mogroside V in samples existed. Finally, a satisfactory result
was presented by using n-butanol-water-ethanol-acetic acid
(7:1:1:0.2, v/v/v/v) as the mobile phase. However, under this
condition, mogroside V and 11-oxo-mogroside V, mogroside IV,
and sucrose, as well as fructose and glucose were still hard to be
separated (Figure 2). Therefore, unseparated reference standards
were prepared in two different solutions to avoid the overlapping
of structural analogs.

Comparison of Monk Fruit Samples
Dried at High Temperature and Low
Temperature by High-Performance
Thin-Layer Chromatography Images
Directly
Monk fruit samples of different sizes and dried at different
temperatures were analyzed by the developed HPTLC method.
As shown in Figure 2 and Supplementary Figure 2, there was
no significant difference among the samples of different sizes
processed by the same drying method, but the drying method
did have influence on the chemical compositions of monk

fruit. Mogroside V and 11-oxo-mogroside V, isomogroside V,
mogroside IV, siamenoside I, glucose, and fructose were observed
in all samples, while sucrose was only detected in LT groups. The
major differences between HT and LT samples were in the range
of Rf 0.10–0.25, in which the contents of mogroside V, 11-oxo-
mogroside V, and isomogroside V in LT groups were much higher
than those in HT samples. Moreover, mogroside IV A could be
found in HT samples but was hardly detected in most of the LT
samples. These results were consistent with the previous reports
(20–22).

Comparison of Monk Fruit Samples
Dried at High Temperature and Low
Temperature by Chemometric
Approaches
Although an obvious difference in the HPTLC profiles could
be visually inspected between HT and LT monk fruit samples,
visual observation was insufficient to discriminate between these
two groups. Therefore, chemometric approaches were applied to
further explore the chemical characteristics of the two types of
monk fruits. The whole HPTLC chromatograms under 366 nm
were processed by rTLC program to generate a dataset involving
sample code, Rf region, and pixel intensity, and a total of
91 variables were extracted across samples (Supplementary
Table 2). Principal component analysis (PCA) was first applied
to obtain a basic insight into the specific grouping patterns
between the monk fruit samples. As shown in Figure 3A, the
PCA score plot showed a tendency to separate the monk fruit
samples in terms of the drying method. The model is composed
of five principal components with R2X value of 0.820 and Q2

value of 0.646, indicating good fitness and prediction of the
constructed PCA model.

To further characterize the differences in monk fruit samples
treated with different drying methods, orthogonal partial
least square-discriminant analysis (OPLS-DA) was subsequently
conducted to sharpen the separation between the groups in PCA.
As shown in Figure 3B, 28 monk fruit samples were divided into
two classes based on different drying methods. All the samples

FIGURE 2 | Representative high-performance thin-layer chromatography (HPTLC) chromatograms of mixed standards and monk fruit samples. Plates were
immersed into 10% sulfuric acid in ethanol solution for derivatization and photographed under (A) white light and (B) UV 366 nm. HT, monk fruit dried at high
temperature; LT, monk fruit dried at low temperature; S, small; M, medium; L, large; XL, extra-large; MS1 and MS2, mixed standards. (1) Mogroside V (Rf 0.10), (2)
11-oxo-mogroside V (Rf 0.10), (3) isomogroside V (Rf 0.15), (4) mogroside IV (Rf 0.23), (5) sucrose (Rf 0.23), (6) siamenoside I (Rf 0.26), (7) mogroside IV A (Rf 0.29),
(8) glucose (Rf 0.35), (9) fructose (Rf 0.34), (10) mogroside III A1 (Rf 0.44), (11) mogroside III E (Rf 0.48), (12) mogroside III (Rf 0.53), (13) grosvenorine (Rf 0.56), (14)
mogroside II A2 (Rf 0.60), (15) mogroside II A1 (Rf 0.69), and (16) mogroside II E (Rf 0.73).
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FIGURE 3 | (A) Principal component analysis (PCA) score plot, (B) orthogonal partial least square-discriminant analysis (OPLS–DA) score plot, and (C) OPLS–DA
S-plot of HT and LT samples based on the data extracted from the whole HPTLC chromatograms. The variables contributing most to the differences were
highlighted with red-filled circles.
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FIGURE 4 | Peak areas of selected mogrosides and sugars in HT and LT samples by HPTLC-scanning.

fell within the Hotelling T2 (0.95) ellipse, where the model fit
parameters were 0.699 of R2X, 0.974 of R2Y, and 0.929 of Q2,
indicating that the OPLS-DA model established in this study has
high goodness-of-fit and predictive ability.

An S-plot was constructed following the OPLS-DA to reveal
the chemical components contributing mostly to the differences
between the HT and LT groups. In this plot, the data points at the
two ends of the S-shaped curve made the greatest contribution
to the two-group separation with the highest confidence, which
were highlighted in red in Figure 3C. The bands of Rf 0.11–
0.16 and Rf 0.97–0.99 at the bottom-left corner and the bands
of Rf 0.57–0.59 and Rf 0.22 at the top-right corner of the
S-shaped curve were considered as the characteristic components
contributing most to the distinction of HT and LT groups.
Compared with the reference standards, the bands of Rf 0.10,
0.15, and 0.22 contained mogroside V and 11-oxo-mogroside V,
isomogroside V, and mogroside IV and sucrose are not separated
by the HPTLC method and they correspond to the band of Rf
0.22, respectively.

PCA and OPLS-DA based on the HPTLC data of the 16
compounds with reference standards were also conducted. As
shown in Supplementary Figure 3, the two types of monk fruit

samples were also clearly separated, and mogroside V, 11-oxo-
mogroside V, and isomogroside V were the most discriminating
between the two groups. Compared with the analysis based on
the 16 compounds, the results based on the data from the whole
chromatograms could reflect the differences between groups
more comprehensively, and more discriminating variables could
be found. However, it was difficult to identify the unknown bands
under the current HPTLC condition due to the low contents or
the poor separation. Further isolation and identification by other
chromatographic and detection techniques should be performed
in the future.

Semi-Quantification by
High-Performance Thin-Layer
Chromatography-Scanning
Based on the above results, mogroside V, 11-oxo-mogroside
V, isomogroside V, mogroside IV and sucrose were found to
be the characteristic compounds to distinguish the two types
of monk fruits. Furthermore, fructose and glucose were also
important nutritional ingredients in monk fruit. Therefore, these
compounds were semi-quantified by HPTLC-scanning to verify
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their differences in HT and LT monk fruit samples. Due to
the poor resolution, the bands were scanned in four groups,
i.e., mogroside V and 11-oxo-mogroside V; isomogroside V;
mogroside IV and sucrose were scanned as one group; as
well as fructose and glucose. As shown in Figure 4, the peak
areas of all the investigated compounds in LT samples were
significantly higher than those in HT samples, which further
confirmed the influence of different drying methods on the
chemical components of monk fruit samples.

Possible Factors Affecting the Chemical
Compositions of the Processed Monk
Fruit
During the drying process, many factors, such as temperature,
enzymes, and intermediate products may affect the chemical
compositions of the processed monk fruit. It was reported
that several enzymes, such as squalene epoxidase, triterpenoid
synthases, epoxide hydrolases, cytochrome P450s, and UDP-
glucosyltransferases, were involved in the biosynthesis of
mogrosides, such as mogroside V, 11-oxo-mogroside V, and
isomogroside V (24, 25). These enzymes may be inhibited at
high temperature, which may decrease the content of these
mogrosides in HT samples (26). While for the sugars, on the one
hand, high temperature may lead to the degradation of sucrose,
oligosaccharides, and polysaccharides, resulting in a decrease of
sucrose levels and an increase in glucose and fructose contents.
On the other hand, the Maillard reaction, a type of non-enzymatic
browning, may take place between the reducing sugars and amino
acids that are rich in monk fruit. The reaction may proceed more
rapidly at high temperatures, thus decreasing the levels of glucose
and fructose in HT samples (27). Under the influences of these
effects, the contents of the glucose and fructose in HT samples
were lower than those in LT samples. However, how the drying
methods influence the chemical components of monk fruit is still
not clear, which needs further exploration in the future.

CONCLUSION

In this study, HPTLC combined with chemometric approaches
were used to compare the chemical components of monk fruit

products dried at high and low temperatures, respectively. As
a result, the contents of mogroside V, 11-oxo-mogroside V,
isomogroside V, mogroside IV and sucrose in monk fruits dried
at low temperature were higher than those in traditional hot-
air drying samples. In the future, laboratory simulated studies
should be conducted to explore the relationships between the
drying methods and the chemical compositions of monk fruit.
In addition, the bioactivities of monk fruit processed by different
drying methods should be further studied as well.
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