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Abstract: Noise-induced, drug-related, and age-related disabling hearing loss is a major public health
problem and affect approximately 466 million people worldwide. In non-mammalian vertebrates,
the death of sensory hair cells (HCs) induces the proliferation and transdifferentiation of adjacent
supporting cells into new HCs; however, this capacity is lost in juvenile and adult mammalian
cochleae leading to permanent hearing loss. At present, cochlear implants and hearing devices are the
only available treatments and can help patients to a certain extent; however, no biological approach
or FDA-approved drug is effective to treat disabling hearing loss and restore hearing. Recently,
regeneration of mammalian cochlear HCs by modulating molecular pathways or transcription factors
has offered some promising results, although the immaturity of the regenerated HCs remains the
biggest concern. Furthermore, most of the research done is in neonates and not in adults. This review
focuses on critically summarizing the studies done in adult mammalian cochleae and discusses
various strategies to elucidate novel transcription factors for better therapeutics.

Keywords: hair cells; adult cochlea; regeneration; transcription factor; bioinformatics

1. Introduction

Noise-induced, drug-related, and age-related disabling hearing loss is a major public
health problem. Per a World Health Organization report, they affect nearly 5% of the
world population [1]. In non-mammalian vertebrates, sensory hair cell (HC) death induces
the proliferation and trans-differentiation of adjacent supporting cells (SCs) into new
HCs; however, this capacity is lost in juvenile and adult mammalian cochleae, leading to
permanent hearing loss [2,3]. Currently, no biological approach or FDA-approved drug is
available to treat disabling hearing loss or to regenerate the sensory HCs in mammalian
cochleae. Thus, it is crucial to develop strategies or drugs to either prevent HC loss or
promote regeneration in adult mammalian cochleae in vivo. HC regeneration can enhance
the number of HCs in the cochlea via two processes: (1) mitotic regeneration, where a SC
divides and then the daughter cells (one or both) transdifferentiate into HCs, or (2) direct
transdifferentiation where HCs are regenerated via direct phenotypic conversion of SCs
without undergoing mitosis [4]. Most of the studies on HC regeneration [3,5–12] have
been done either in neonatal cochlear explants (ex vivo) or neonatal mice (in vivo) and
only a few studies [5,8–11] have reported regeneration in juvenile and adult mice. Hearing
matures around three weeks postnatally in mice. In comparison, during human fetal
development hearing becomes mature by the late 2nd trimester and the fetus can hear
during the 3rd trimester [13]. It is therefore critical to study HC regeneration in juvenile and
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adult mice to better understand which approaches are likely to restore hearing in humans.
Further, the regenerated HCs in juvenile and adult mice are functionally immature and
very few. Improved strategies are needed to increase the number of regenerated HCs and
also to promote their maturation.

Recent studies suggest key roles for transcription factors (TFs) Atoh1 and Pou4f3 in HC
regeneration and that Atoh1, in particular, is a master regulator of HC differentiation [14]
and regeneration [3,8,10]. Further, enhanced regeneration of HCs via modulating the
expression of Gata3, Pou4f3, p27Kip1 [8], Islet 1 (Isl1) [10], and Gfi1/Pou4f3 [15] with Atoh1
suggests that modulating multiple TFs in combination with Atoh1 is a good strategy to
promote regeneration and increase the number of regenerated HCs. Targeting the Notch
and Wnt signaling pathways, which are involved in HC development, can also lead to
the regeneration of HCs from SCs [6,7,9,16,17]. These studies suggest that SCs have a
limited regenerative capacity and that regeneration via transdifferentiation of SCs to HCs
is possible, but a small yield of regenerated HCs and functional immaturity remain a
major concern. Thus, there is a need to develop strategies to regenerate an increased
number of HCs that are also functionally mature. This review focuses on recent literature
in sensory HC regeneration in adult mammalian cochleae and briefly discusses molecular
pathways, the role of TFs in regeneration, and the challenges and future perspectives of
HC regeneration.

2. Targeting Signaling Pathways for Hair Cell Regeneration

The Notch, Wingless-related integration site (Wnt), fibroblast growth factor (FGF), and
sonic hedgehog (Shh) pathways are involved in the development and differentiation of HCs
and are conserved between various species including zebrafish, birds, and mammals. The
crucial role of these pathways in HC development and their conservation among the species
are well characterized [18]. Briefly, Notch signaling regulates various cellular processes
such as proliferation, differentiation, and cell death in a context-dependent manner. During
HC development, Notch signaling is necessary and sufficient for regulating prosensory
specification via lateral inhibition, and this process is mediated by its ligands which include
jagged 1 (Jag1), Notch intracellular domain (NICD; which interacts with DNA-binding
protein and core effector of the canonical Notch pathway, RBPjk), jagged 2 (Jag2), and delta-
like 1 (Dll1). Wnt signaling (canonical and noncanonical) is involved in the maintenance
of the progenitor cells, cell proliferation, cell fate determination/cell differentiation, and
cellular polarization. The FGF signaling pathway plays a crucial role in the induction of
the otic placode, development of the otic vesicle, regulation of inner ear morphogenesis,
later stages of inner ear development, and HC formation. FGF signaling also helps in
regulating the specification of prosensory cells and their differentiation into HCs and
SCs during cochlear development [18]. The Shh signaling pathway is involved with
regulating prosensory domain formation and auditory function [19], HC formation and
differentiation [20], and the spatiotemporal pattern of HC differentiation via regulating the
expression of Hey1 and Hey2 [21]. Involvement of the Notch, Wnt, bone morphogenetic
protein (BMP), Shh, and fibroblast growth factor (FGF) pathways in the development,
differentiation, maturation, and proliferation of HCs in zebrafish, birds, and mice provides
strong evidence for significant conservation across species (Table 1). Wnt and Notch
signaling play a crucial role in HC regeneration (Figure 1); however, the role of Shh
and FGF signaling in regeneration remain unclear. The downstream signaling of these
pathways regulates the expression of Atoh1, the master regulator of HC differentiation
and regeneration [22]. Since ectopic overexpression of Atoh1 potentiates the regeneration
of HCs, it is imperative to hypothesize that targeting these pathways and the genes and
transcription factors regulating Atoh1 expression will be effective for the regeneration of
HCs (Figure 1). Additionally, if regeneration of HCs from SCs follows development [23],
targeting these pathways will be favorable for HC regeneration.
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Table 1. Comparative summary of signaling pathways, genes, and transcription factors involved
in the development, differentiation, proliferation, and regeneration of HCs among species. ATOH1
(atonal BHLH Transcription Factor 1); Shh (sonic hedgehog); HC (hair cell); SC (supporting cell);
OHC (outer hair cells); BP (basilar papilla); FGF (fibroblast growth factor); Fgfr (fibroblast growth
factor receptor).

Target Zebrafish Birds Mice Inference

Notch Atoh1

atoh1a is expressed in all
differentiating hair cells

[24] Addition of
exogenous atoh1a mRNA

results in HC
overproduction [25]

Atoh1 is immediately
upregulated in Sox2+
SCs of the avian BP

following HC loss [26];
Atoh1 protein expression

is not detectable in
mature HCs or SCs in the
absence of damage [26]

Math1-null mice fail to
develop cochlear and
vestibular HCs [27]

Atoh1 overexpression
can convert SCs into

HC-like cells in neonatal
mouse cochleae [12]

Atoh1 modulation
promotes regeneration in
juvenile and adult mice,
hence being a potential

therapeutic target

Notch Hes5

Does not affect atoh1a
expression [28] Hes5

morphants do not
generate supernumerary

HCs [28]

Notch signaling activates
Hes5 expression which

inhibits hair cell fate [29]
Hes5 is downregulated in

SCs following HC
damage and loss [30,31]

Beginning at postnatal
ages, Hes5 is restricted to

supporting cells [32],
Hes5 deletion results

primarily in
supernumerary OHC

formation, but also some
supernumerary IHC

formation [32]

Hes5 inhibition might be
a therapeutic target in

HC regeneration.

Notch
Hey1/Hey 2

Hey1 is downregulated
in hair cells [24]

Hey1 and Hey2 are
activated by Notch

signaling in the basilar
papilla and inhibit HC

fate [33]

Hey1 and Hey2
negatively regulate
Atoh1 to prevent

premature HC
differentiation [21]

Exogenous Shh increases
Hey1 and Hey2 mRNA

levels in cochlear
explants [21]

Hey1/2 inhibition may
help regenerate HC-like

cells to adopt a more
HC-like phenotype.

Wnt β-catenin

Wnt/β-catenin inhibition
in embryonic zebrafish
reduces proliferation of

sox2+ SCs in the
developing neuromast
[34]; Wnt/β-catenin is

upregulated in SCs
following HC loss [35]

but is not sufficient
for regeneration

Increases the
proliferation of SCs

following HC damage
and regulates the number
of HCs that form in the

embryonic basilar papilla
[36], Forced expression of
β-catenin and Wnt3a

results in the formation
of ectopic sensory
patches within the
embryonic basilar

papilla [37]

Activation of Wnt/β
-catenin results in

proliferation of Sox2+
SCs [17]; Lgr5+ SCs

exhibit increased
proliferation and

differentiation into HCs
in vivo in mice which
overexpress β-catenin

and Atoh1 [16]

β-catenin is a key
therapeutic target for
expansion of the HC

progenitor pool.
Wnt/β-catenin is

conserved between
species and plays a role

in HC development
and proliferation

Shh

Modifying hedgehog
signaling interferes with

axial patterning of the
zebrafish otic vesicle [38]

Ectopic Shh signaling
induces apical hair cell

identities in the basal and
middle regions of the

avian basilar papilla [39]

Constitutive activation of
Shh signaling hinders
HC differentiation in
developing murine

cochleae [20] Inhibition
of hedgehog signaling in
cochlear explants results
in an expanded sensory

domain and formation of
ectopic hair cells [19]

Modifying Shh signaling
does not seem to be an

effective strategy to
promote regeneration
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Table 1. Cont.

Target Zebrafish Birds Mice Inference

FGF

Fgf signaling is required
for Atoh1 expression and

hair cell development
[25] During development,

weak Fgf inhibition
expands the sox2+

prosensory domain while
strong Fgf inhibition

reduces the sox2+
prosensory domain [40]

While Fgf inhibition
hinders HC

differentiation, by
expanding the sox2+

prosensory domain, it
ultimately results in the

overproduction of
hair cells

Fgfr3 knockout results in
supernumerary HC
formation [40] Fgf8
knockout results in

reduced HC formation
[40] Fgf3 overexpression

results in reduced HC
number [40]

Inhibition of FGF
signaling in E5-E9 chicks
results in overproduction

of HCs through
non-proliferative
mechanisms. FGF

inhibition increases the
number of Sox2+ HCs in

the embryonic basilar
papilla, suggesting that
the formation of extra

hair cells is due to
transdifferentiation [41]

Fgfr3 is restricted to
supporting cells in the
mature basilar papilla
[42] Fgfr3 expression is
downregulated in the
mature basilar papilla

following damage to hair
cells [42]

Fgfr1 hypomorphs lack
3rd-row OHCs [43] Fgfr1
plays a role in prosensory
specification [44], In the

embryo, Fgfr3 is
expressed in the area of
the cochlear duct that

gives rise to pillar cells,
OHCs, and Deiter’s cells,
but Fgfr3 is confined to
pillar cells by birth [45],
Activation of Fgfr3 with

Fgf17 inhibits OHC
differentiation without
affecting IHCs [46], Pan
Fgf inhibition decreases
expression of Atoh1 in

murine cochlear explants
[47], Fgfr3-/- mice lack a

row of pillar cells, but
have an ectopic

additional row of Deiters
cells and an additional

row of OHCs which
appear to have normal

bundle morphology [48]

FGF signaling seems to be
important signaling to

modulate to promote HC
regeneration, however,
the results seem to be
receptor-specific and

different receptors have
different effects of

modulating FGF signaling
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Figure 1. Molecular pathways involved in the development and regeneration of hair cells. Notch 
and Wnt signaling play a crucial role in the development and differentiation of HCs. Various studies 
have demonstrated that these pathways can be targeted for HC regeneration. Similarly, targeting 
Hes1, Gfi1, Pax6, Isl1, Pou4f3, Atoh1, and GATA3 to promote HC regeneration has been reported 
(as discussed in the text). However, there is a need to find additional candidate genes and transcrip-
tion factors to promote HC regeneration. The network analysis on the published single-cell RNA-
seq data (Yamashita et al. 2018) predicted other potential targets, including Lhx2, Hes6, Caprin1, 
Nr2f2, and Lhx3, which may be targeted alone or in combination to promote regeneration of HCs. 
Atonal BHLH Transcription Factor 1 (Atoh1), frizzled (Fzd), islet 1 (Isl1), jagged 1 (Jag1), lipoprotein 
receptor-related protein (LPR), POU Class 4 Homeobox 3 (Pou4f3), sonic hedgehog (Shh), Wingless-
related integration site (Wnt). Black arrows show stimulatory while red arrows show inhibitory ef-
fect. 

3. Targeting Notch Signaling for Hair Cell Regeneration 
Both fate determination of prosensory epithelial cells into HCs and SCs through lat-

eral inhibition and the prevention of SC to HC conversion during HC development are 
regulated by active Notch signaling stimulated by ligands on adjacent HCs [49]. Thus, 
inhibiting Notch signaling might lead to the transdifferentiation of SCs to HCs. Increased 
number of myosin-VII-positive outer hair cells (OHCs) in vitro with γ-secretase inhibitor, 
LY411575 suggests that Notch inhibition promotes regeneration via transdifferentiation 
of SCs. Treatment with LY411575 depleted the supporting cell population, but the number 
of inner hair cells (IHCs) remained unchanged [9]. In vivo studies with systemic injection 
of LY411575 (50 mg/kg body weight) for 5 days in noise-deafened mice (4 weeks) showed 
decreased noise-induced threshold shifts and an increased number of OHCs with appar-
ently innervated stereociliary bundles [9]. A decreased expression of Hes5 and increased 
expression of Atoh1 associated with SC to HC transdifferentiation suggests an association 
of Notch inhibition with HC regeneration (apical to mid-apical turn). The regenerated 
HCs were lineage traced using Sox2-CreER; mT/mG mice with tamoxifen injection at post-
natal day 21, confirming their SC origin [9]. The systemic injection of LY411575 was asso-
ciated with toxicity and a lower dose was not therapeutically potent, however, local injec-
tion of LY411575 through the round window membrane showed significant transdiffer-
entiation of SCs to HCs. Note that 3-million-fold higher concentrations of LY411575 (4 
mM) than its IC50 (0.14 nM) were used [9]. Notch signaling in the cochlea becomes non-
responsive after the first postnatal week [50]. Additionally, >85% Sox2-CreER activity in 
SCs when induced at P21 compared to >50% when induced at P1 [51] makes Sox2 a good 
lineage marker when induction is performed in adult mice but not useful when induction 

Figure 1. Molecular pathways involved in the development and regeneration of hair cells. Notch
and Wnt signaling play a crucial role in the development and differentiation of HCs. Various studies
have demonstrated that these pathways can be targeted for HC regeneration. Similarly, targeting
Hes1, Gfi1, Pax6, Isl1, Pou4f3, Atoh1, and GATA3 to promote HC regeneration has been reported (as
discussed in the text). However, there is a need to find additional candidate genes and transcription
factors to promote HC regeneration. The network analysis on the published single-cell RNA-seq data
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(Yamashita et al. 2018) predicted other potential targets, including Lhx2, Hes6, Caprin1, Nr2f2, and
Lhx3, which may be targeted alone or in combination to promote regeneration of HCs. Atonal BHLH
Transcription Factor 1 (Atoh1), frizzled (Fzd), islet 1 (Isl1), jagged 1 (Jag1), lipoprotein receptor-related
protein (LPR), POU Class 4 Homeobox 3 (Pou4f3), sonic hedgehog (Shh), Wingless-related integration
site (Wnt). Black arrows show stimulatory while red arrows show inhibitory effect.

3. Targeting Notch Signaling for Hair Cell Regeneration

Both fate determination of prosensory epithelial cells into HCs and SCs through lat-
eral inhibition and the prevention of SC to HC conversion during HC development are
regulated by active Notch signaling stimulated by ligands on adjacent HCs [49]. Thus,
inhibiting Notch signaling might lead to the transdifferentiation of SCs to HCs. Increased
number of myosin-VII-positive outer hair cells (OHCs) in vitro with γ-secretase inhibitor,
LY411575 suggests that Notch inhibition promotes regeneration via transdifferentiation of
SCs. Treatment with LY411575 depleted the supporting cell population, but the number of
inner hair cells (IHCs) remained unchanged [9]. In vivo studies with systemic injection of
LY411575 (50 mg/kg body weight) for 5 days in noise-deafened mice (4 weeks) showed
decreased noise-induced threshold shifts and an increased number of OHCs with appar-
ently innervated stereociliary bundles [9]. A decreased expression of Hes5 and increased
expression of Atoh1 associated with SC to HC transdifferentiation suggests an association
of Notch inhibition with HC regeneration (apical to mid-apical turn). The regenerated HCs
were lineage traced using Sox2-CreER; mT/mG mice with tamoxifen injection at postnatal
day 21, confirming their SC origin [9]. The systemic injection of LY411575 was associated
with toxicity and a lower dose was not therapeutically potent, however, local injection of
LY411575 through the round window membrane showed significant transdifferentiation of
SCs to HCs. Note that 3-million-fold higher concentrations of LY411575 (4 mM) than its
IC50 (0.14 nM) were used [9]. Notch signaling in the cochlea becomes nonresponsive after
the first postnatal week [50]. Additionally, >85% Sox2-CreER activity in SCs when induced
at P21 compared to >50% when induced at P1 [51] makes Sox2 a good lineage marker
when induction is performed in adult mice but not useful when induction is performed
at birth. Additionally, a 92% reduction in the number of fate-mapped regenerated HCs
in ROSA-NICD neonatal (P0-P1) mice with NICD (Notch) overexpression compared to
the controls [52] supports the need for Notch inhibition in SC to HC transdifferentiation.
However, enhanced proliferation of sensory HCs with transient coactivation of cell cy-
cle activator Myc and Notch1 genes by injecting adenovirus (ad)-Myc/ad-Cre into the
cochleae of 6-week-old Rosa-NICD transgenic mice seemed contradictory [11]. However,
ad-Myc/ad-Cre injection could enable the SCs to proliferate and respond to Atoh1 and
transdifferentiate to HC-like cells, which might be due to the differences between direct
transdifferentiation vs. induced proliferative regeneration. Regeneration of HCs with
sustained release of Hes1 siRNA nanoparticles (siHes1 NPs) in the cochleae of noise-injured
adult guinea pigs supports Notch inhibition as a target for HC regeneration. The study
reported limited recovery of auditory function over a nine-week follow-up period as well
as HC regeneration, evident by the presence of both ectopic and immature HCs across a
broad tonotopic range with siHes1 NPs. One of the major limitations of this guinea pig
study is that no lineage tracing was performed to prove that newly regenerated HCs are
derived from SCs. The advantage of using poly-lactic-co-glycolic acid (PLGA)-mediated
siHes1 NPs delivery was its reversible modulation of Hes1 [5].

4. Targeting Wnt Signaling for Hair Cell Regeneration

Wnt signaling plays an important role in cochlear development and its role is context-
dependent. Active canonical Wnt/β-catenin signaling is needed for the initial differentia-
tion of HCs but not for maturation and maintenance. Overactive Wnt signaling results in
HC proliferation and the formation of ectopic HCs during early embryonic development.
This suggests that activating Wnt signaling will favor new HC formation through trans-
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differentiation or mitotic division [18,53]. The conserved nature of Wnt signaling among
species (Table 1) and increased Wnt expression following HC loss appends the notion that
increasing Wnt expression might promote SC-to-HC transdifferentiation. The association of
activated Wnt/β-catenin signaling with SC proliferation, a transient proliferation of Lgr5+
SCs [54], and HC regeneration [55] support Wnt-mediated transdifferentiation. However,
in these reports, it remains elusive whether the regeneration of HCs was due to either
activated Wnt signaling or Sox2 haploinsufficiency (loss of one allele of Sox2 due to knockin
of CreER in the Sox2 locus results in a haploinsufficient phenotype that produces extra
inner hair cells during development and enhances regeneration). Later, Atkinson et al.
showed that both β-cateninGOF (gain of function) and Sox2 haploinsufficiency enhance
mitotic regeneration in the apical turn whereas Sox2 haploinsufficiency-mediated mitotic
regeneration extends into the middle and basal turns [34]. Jan et al. [56] using lineage
tracing in P0-P3 Axin2lacZ Wnt reporter mice showed that Wnt responsive Axin-2-positive
tympanic border cells proliferate with Wnt activation and generate new HC- and SC-like
cells both in vitro and in vivo and can act as a precursor to sensory epithelial HCs. These
studies suggest that activation of Wnt signaling in neonatal mice potentiates regeneration
of HCs, however, no study has shown increased regeneration by activating Wnt signaling
in adults.

5. Combinational Approaches for Hair Cell Regeneration

The role of Wnt activation in SC proliferation and Notch inhibition in transdiffer-
entiation of SCs to HCs is evident by the above studies. Additionally, Wnt activation
alone fails to regenerate significant amounts of new HCs in adult mammals, and Notch
inhibition alone regenerates HCs at the cost of SCs, resulting in the death of regenerated
HCs. Thus, maintaining the population of SCs via proliferation along with SC-to-HC
transdifferentiation might enhance the regeneration process by sufficing the SC population
for differentiation. Ni et al. reported that Wnt activation with 6-Bromoindirubin-3′-oxime
(BIO), a glycogen synthase kinase 3 β (GSK3β) inhibitor, followed by Notch inhibition with
DAPT, a γ-secretase inhibitor, preserves the Lgr5+ SC number and strongly promotes the
mitotic regeneration of new HCs in both normal and neomycin-damaged cochlear explants
(P1; C57/BL6 mice) [17]. Similar findings were reported by Wu et al. [57] by simultaneously
inhibiting Notch signaling with DAPT and activating Wnt signaling with Wnt agonist QS11.
The first study used the explants from P1 mice while the second study showed it in the
utricle of neonatal mice, which itself has some regenerative capacity. Since Notch and Wnt
signaling have a reciprocal relationship during HC development, a combined modulation
of Notch and Wnt signaling might be a better approach for regeneration. Increased HC
regeneration using Notch inhibition followed by Wnt activation in adult and neonatal
mouse cochleae has been reported [17,58,59]. Romero-Carvajal et al. highlighted the role of
interactions between Notch and Wnt signaling for the regeneration of HCs in zebrafish and
demonstrated that inhibition of Notch signaling mimics the expression changes observed
during endogenous regeneration [60].

Targeting multiple pathways and factors involved in HC development and insight
from their involvement in other regenerative systems could be a promising approach to
enhance HC regeneration in the cochlea. Clonal expansion of Lgr5+ SCs isolated from a
neonatal cochlea showed that in a matrigel-based 3D culture system, a mixture of growth
factors (including epidermal growth factor, basic fibroblast growth factor, and insulin-like
growth factor 1), GSK3β inhibitor, histone deacetylase (HDAC) inhibitor, and Notch in-
hibition led to transcriptional activation, proliferation, and differentiation of SCs [6]. The
addition of a stable form of vitamin C and transforming growth factor β (TGF-β) receptor
(Alk5) inhibitor individually resulted in increased SC expansion by 2- to 3-fold, and the
addition of small molecules in combination with growth factors increased the expansion of
Lgr5+ SC numbers by >2000-fold compared to growth factors alone. The addition of these
small molecules and γ-secretase inhibitor resulted in the expansion and differentiation
of Lgr5+ SCs from a single mouse cochlea to nearly 11,500 HCs in culture organoid. The
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newly generated HCs in the organoid were myosin VIIa+ cells containing CtBP2+ ribbon
synapse-like puncta in the basal region and actin-rich protrusions within the inner lumen.
The colonies were both prestin-positive and negative; prestin-negative cells were vesicular
glutamate transporter 3 (vGlut3)-positive, reflecting the gene expression of terminally
differentiated OHCs and IHCs, respectively. The combination of these small molecules
generated a higher number of new HCs in culture and in neonatal cochlear explants com-
pared to the adult mouse Lgr5+ cells. There was no significant difference across the ages.
Similarly, the clonal expansion and differentiation of adult human inner ear tissue was also
limited [6]. The results of this study suggest that targeting a single gene, TF, or pathway
may not be sufficient for HC regeneration and that there is a need for multidimensional
approaches to promote transdifferentiation and regeneration. A recent study demonstrated
the conversion of mouse embryonic fibroblasts, adult tail-tip fibroblasts, and postnatal
supporting cells into induced hair cell-like cells (iHCs) showing HC-like morphology, tran-
scriptomic and epigenetic profiles, electrophysiological properties, and mechanosensory
channel expression using a combination of four transcription factors, Six1, Atoh1, Pou4f3,
and Gfi1 [61]. Similar results of an increased SC to HC conversion by modulating the
expression of p27kip1, GATA3, and Pou4f3 in combination with Atoh1 were reported in
adult mouse cochleae by Walters et al. [8]. These studies support the notion of using a
combinational approach to promote HC regeneration via direct reprogramming. Notch,
Wnt, and other signaling pathways play a crucial role in the development and proliferation
of HCs and are conserved among species including zebrafish, birds, and mice (Table 1);
targeting these pathways concomitantly might enhance HC regeneration in adult mammals
(Figure 1) [34].

6. Modulating Transcription Factors for Hair Cell Regeneration

Transcription factors (TFs) are the proteins initiating and regulating transcription of
target genes by binding to their specific regulatory DNA sequences. TFs play a crucial
role in the proliferation, differentiation, and survival of HCs. The role of TFs such as Pax2,
Sox9, Nor-1, Gbx-2, Neurod1, Neurog1, Fkh10, Tbx1, Brn4, Gata3, Sox2, Atoh1, Six1, Isl1,
Pou4f3, Gfi1, and their interactions with cellular and molecular signaling pathways in
prosensory cell specification, development, and fate determination of HCs in the inner
ear and vestibular apparatus have been described by other groups [62,63]. Since TFs play
an important role in HC development and fate determination, investigating their role
will help not only in understanding HC development but also in modifying regeneration
strategies for improved outcomes. TFs, individually or in combination, play a crucial role
in the regeneration of other organ systems [64–66]. Thus, it is necessary to investigate
the TFs which might be capable of potentiating the regeneration process in the cochlea
and to understand the underlying mechanisms. Costa et al. studied the role of three
TFs, namely, Gfi1, Atoh1, and Pou4f3 (GAP) in cell fate determination, and reported
that GAP (Figure 1) can induce direct genetic reprogramming of progenitors towards an
HC fate, both in vitro and in vivo in the chicken embryo [15]. Another study reported
that overexpression of Prox1 suppresses Atoh1 and Gfi1 expression and antagonizes the
differentiated HC phenotype; thus, Prox1 inhibition with Atoh1 upregulation might result
in a more complete phenotypic conversion [67]. These studies were performed in the
embryonic stage and whether SCs can be transdifferentiated to HCs, postnatally or in
adults, cannot be determined. These studies allude to Atoh1 as a common denominator
target for HC regeneration.

Atoh1 is a master regulator of HC differentiation that is conserved among fish (or-
tholog atoh1a), birds, and mice (Table 1). Liu et al. [12] investigated the effect of ectopic
expression ofAtoh1 on regeneration using EGFP reporter mice and reported that ectopic
expression of Atoh1 induces the conversion of mouse cochlear SCs (pillar and Deiters’
cells; PCs and DCs) to immature HCs, and that this conversion is age-dependent. Ectopic
Atoh1 expression was effective in converting PCs and DCs to HCs at neonatal and juvenile
ages, but it was insufficient for adult mice. It was found that newly formed HCs reside in
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the OHC region and survive for 2 months, and that heterogeneity in the reprogramming
efficiency among individual Atoh1+ PCs and DCs exists during the conversion process.
These studies suggest that transcriptional reprogramming affects the HC phenotype and
thus might favor regeneration, but the limitation is that these results were shown at neona-
tal and juvenile ages and Atoh1 overexpression alone was not effective in adult mice. To
address this issue, Walters et al. [8] investigated the role of various TFs in adult mice
and reported that ectopic Atoh1 overexpression with p27Kip1 deletion circumvents this
age-related decline in Atoh1 responsiveness and leads to transdifferentiation of SCs to
HCs in mature mouse cochleae after noise damage. Further, upregulation of an Atoh1
cofactor, GATA3, which is lost from SCs with aging, was associated with p27Kip1 deletion.
Overexpression of POU4F3 alone promoted the conversion of SCs to HCs to a greater
degree than Atoh1 alone, and overexpression of Atoh1 combined with POU4F3 or GATA3
resulted in increased conversion of SCs to HCs compared to Atoh1 alone in adult mice [8].
The study concluded that the mature PCs and DCs, which are typically nonresponsive to
Atoh1, can be made to respond to ectopic Atoh1 via modulation of additional TFs such as
p27Kip1, GATA3, or POU4F3 (Figures 1 and 2). However, the converted HCs were examined
only at 3 and 12 weeks following tamoxifen injection, and the long-term survival of these
cells was not extensively evaluated [68].
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Figure 2. Hair cell development and regeneration: During the embryonic stage of HC development,
Atoh1 expression increases, reaches a maximum (E17.5), and then declines (P6). The decline in Atoh1
is associated with increasing levels of Pou4f3 which remain high in adult HCs. During the embryonic
stage, autoregulation of Atoh1, Sox2, and cell cycle exit. Some cells have high levels of Sox2 without
Atoh1 expression and these cells are deemed to be SCs. Transdifferentiation of supporting cells (SCs)
to HCs is mediated by overexpression of transcription factors (TFs) as discussed in the text and shown
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here. However, TF-mediated transdifferentiation is not complete and converted HCs (cHCs) remain
immature. cHCs show only some features of mature HCs (shown in the middle of the trajectory of
conversion), and thus, there is a need to investigate novel targets to push these partially converted
cells to mature HCs. Pillar cells (PCs), Deiters’ cells (DCs), inner hair cells (IHC), outer hair cells
(OHC), postnatal day (P). cHCs are the cells evaluated for their transcriptome by single cells RNA
sequencing by Yamashita et al., 2018.

Increased conversion of SCs to HCs by activating Atoh1 conditionally with tamoxifen
and 51 differentially expressed TFs between endogenous OHCs, SCs, and converted HCs
(cHCs) in the adult cochlea with bulk-RNA sequencing, single-cell RNA sequencing, and
single-cell RT-PCR reported by Yamashita et al. [10] supports targeting Atoh1 for regen-
eration and warrants research for the role of these TFs in HC regeneration. Additionally,
a greater number of cHCs with combined overexpression of Atoh1 and Isl1 (one of the
differentially expressed TFs in RNA-seq analysis) compared to overexpression of Atoh1
alone both ex vivo and in vivo supports the hypothesis that the conversion process can
be pushed further to get a greater number of cHCs by targeting multiple TFs. However,
the study only reported the cHCs at two-time points of conversion and the cHCs were not
functionally mature (Figure 2).

Prolonged constitutive ectopic Atoh1 expression with tamoxifen using a Cre-inducible
mouse might be a cause of immaturity in cHCs because continued Atoh1 expression does
not correlate with endogenous HC development [69]. Controlled activation of Atoh1 using
tetracycline (e.g., dox)-inducible systems is difficult to achieve in juvenile or adult mice
due to the long-term residual activity of tetracycline in the cochlea [70,71]. However, these
studies give hope that a greater number of regenerated HCs can be achieved at an adult age.
Further, the role of TFs Insm1 [72] and Ikzf2 [73] in the fate determination and functional
maturation of OHCs suggests the possibility of other TFs having critical regulatory roles
in the regeneration of HCs. Recently, the role of TUB and ZNF532 in promoting Atoh1-
mediated hair cell regeneration in mouse cochleae was reported by Xu et al. [74]. Thus,
investigating novel TFs and targets upstream or downstream of Atoh1 is warranted, and
modulating their expression alone or in combination could provide better results (Figure 1).

7. SC Subpopulations and Hair Cell Regeneration

Transdifferentiation of SCs to HCs has been postulated as the main strategy to regener-
ate HCs, and most of the studies discussed above have targeted various signaling pathways
and TFs in order to do so. However, the debate on which subtype of SCs is more prone
to transdifferentiation still exists in the field. Walters et al. [8] reported the unresponsive-
ness of mature PCs and DCs to Atoh1 and, together with other evidence, concluded that
responsiveness to Atoh1 varies across SC subtypes. Thus, it is important to investigate
the differential responsiveness of SC subtypes to TFs to achieve a greater number of func-
tionally matured HCs through regeneration. Recently, Hoa et al. [75] reported that adult
cochlear SCs are transcriptionally different from perinatal SCs by conducting single-cell
RNA-Seq on FACS-sorted GFP expressing adult cochlear SCs from LfngEGFP adult mice.
The study found two different subpopulations of SCs (SC1 and SC2). The SC2 subpopula-
tion expresses transcripts associated with S phase (Mcm4) and G2/M phase (Birc5, Cdk1,
Mki67). Cheng et al. [76] also reported differential expression of various cell cycle and
signaling pathway genes and TFs in Sox2+ SCs at four different postnatal ages suggesting
the existence of age-related transcriptomic landscape changes. The different transcriptomic
landscape of the perinatal and postnatal SCs found in this study might be the reason for
the differential responsiveness of adult SCs in the study by Walters et al. [8]. Further, the
findings of strong expression of the SC genes involved in pathways regulating the cell
cycle [75] suggest that these pathways may be targeted to potentiate the transdifferentiation
of SCs to HCs by forcing the SCs out of quiescence. This notion is supported by DCs and
PCs contributing more to the spontaneously regenerated HCs but inner phalangeal (IPhs)
and inner border (IBs) cells having similar regenerative capacity in neonatal mice [77]. This
differential response may be because PCs and DCs lose the cell cycle inhibitor p27Kip1
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during postnatal development and are capable of mitotic HC regeneration. These findings
are supported by a previous study in juvenile mice where ectopic expression of Atoh1
induces SC-to-HC conversion and the newly regenerated HCs are mainly from PCs and
DCs [12]. Later, however, a higher, faster, and more complete conversion rate of IBs and
IPhs compared to DCs or PCs to IHC-like cells was observed in vivo, as evidenced by
straight line-shaped stereociliary bundles, expression of Fgf8 and otoferlin, and by ectopic
Atoh1 expression [78]. The study also reported that the conversion rate gradually increases
from neonate to adult ages in mice. Differential regenerative capacity of SCs might be
due to changing Sox2 expression over time. Changing Sox2 expression was reported by
Kempfle et al. [79] suggest that Sox2 is expressed in prosensory cells of the cochlea at E13,
in the developing sensory epithelium at E15 and E18, in newly formed IHCs at E15, and
its expression continues in newly formed IHCs and OHCs at E18 until P0 and becomes
undetectable at P2. Sox2 is strongly expressed in SCs at E18 and continues to be expressed
in SCs at P2. Sox2 is necessary for differentiation as deletion of Sox2 at E16 led to no further
differentiation of HCs.

The Lgr5+ subtype of SCs has been an attractive target for HC regeneration. Kuo et al.
reported an increased number of regenerated HCs via transdifferentiation of Lgr5+ SCs by
ectopically co-expressing a constitutively active form of β-catenin and Atoh1 in Lgr5+ cells
of the neonatal cochlea. This study suggests that combining proliferation and differentiation
of Lgr5+ SCs by coactivating β-catenin and Atoh1 acts synergistically to enhance the
process of regeneration, yielding an increased number of regenerated HCs [16]. Although
the tamoxifen induction was done at a neonatal age, the study reported the HCs had an
adult phenotype. Recently, Zhang et al. reported that activating Frizzled-9 (Fzd9)-positive
cells in neonatal mouse cochleae leads to regeneration of a similar number of HCs. Lineage
tracing of the tamoxifen-induced cells showed that inner phalangeal cells (IPhCs), inner
border cells (IBCs), and third-row Deiters’ cells (DCs) were both Fzd9+ and Lgr5+, while
pillar cells are Lgr5+ only [7]. The study concluded that the Fzd9+ cells have a similar
capacity for HC regeneration, proliferation, and differentiation compared to Lgr5+ cells.
These results demonstrate the potential of targeting Notch and Wnt signaling for HC
regeneration; however, there is a need to translate these findings to pre-clinical trials and
future studies are warranted. Collectively, these studies suggest there is heterogeneity and
a changing transcriptomic landscape of SCs over time. Additionally, there are no known
differences among different mammalian species in HC regeneration relative to the timing
of HC development. Thus, the strategies and timing of manipulating SCs for regeneration
are of the utmost importance and warrants further investigation.

8. Finding Additional Transcription Factors as Novel Targets for Hair
Cell Regeneration

Atoh1 regulates HC development and differentiation, and overexpression of Atoh1
regenerates HCs from SCs; however, the newly regenerated HCs are fewer, short-lived,
and not functionally mature, as evidenced by the absence of prestin, the marker for OHC
maturation [8]. Thus, the consensus is to find novel targets upstream or downstream of
Atoh1 whose modulation can potentiate regeneration so that increased numbers of func-
tionally mature HCs can be achieved. This notion is supported by the fact that co-activation
of Atoh1 with Pou4f3 [8], with Isl1 [10], and with both Pou4f3 and Gfi1 combined [15]
yielded a greater number of HCs compared to activation of Atoh1 alone. This suggests
that either post-transcriptional modification of Atoh1 targets, Atoh1 itself, or epigenetic
regulation of Atoh1 and its targets regulate the expression of various target genes and TFs,
and thus HC regeneration. To investigate the direct targets of Atoh1, Cai et al. [80] carried
out RNA-seq profiling of purified Atoh1 expressing HCs from neonatal mouse cochleae and
identified >600 enriched transcripts with 233 HC genes directly regulated by Atoh1. Atoh1
regulation was verified by the presence of Atoh1 binding sites in the regulatory regions of
these genes and by the cerebellum and small intestine Atoh1 ChIP-seq analysis. Anxa4,
Rasd2, Rbm24, Srrm4, Chrna10, Mgat5b, Mreg, Pcp4, Scn11a, and Atoh1 were found to
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be direct targets of Atoh1. The expression of Anxa4, Rasd2, Rbm24, and Srrm4 was com-
pletely downregulated within 24 h after knocking out Atoh1, but the expression of Chrna10,
Mgat5b, Mreg, Pcp4, and Scn11a were not affected. In the context of epigenetic regulation of
Atoh1, Jen et al. reported that the mouse vestibular apparatus has greater Atoh1-mediated
regeneration compared to the cochlea due to greater chromatin accessibility [81]. These
findings suggest that differential efficiency of Atoh1-mediated regeneration is due to the
non-availability of open chromatin in the cochlea and warrants further research using
ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) and ChIP-seq
to unravel the epigenetic regulation and to identify additional targets for regeneration.

9. Investigating Epigenetic Regulation of Hair Cell Development and Regeneration

Coordinated and structured gene expression is a must for cellular development, differ-
entiation, and survival, and epigenetics plays a crucial role in regulating gene transcription
and expression. Post-translational histone (basic proteins in the cell nucleus) modification
mechanisms include methylation (addition of a methyl group), acetylation (addition of an
acetyl group), phosphorylation, and ubiquitination, which regulate chromatin architecture
and gene expression. Methylation reduces gene expression by impairing the binding of
transcriptional activators whereas acetylation increases gene expression by transcription
activation. Histone acetylation is regulated by histone acetyltransferases (HATs) and hi-
stone deacetylases (HDACs); methylation and demethylation are regulated by histone
methyltransferases (HMTs), DNA methyltransferase (DNMTs), and histone demethylases.
Epigenetics play a role in hereditary or syndromic hearing loss by regulating gene ex-
pression and HC development [82–84]. Stojanova et al. [85] investigated the epigenetic
regulation of Atoh1 and found that progression of Atoh1 expression from poised, to active,
to repressive marks is controlled by dynamic changes in histone modifications via methyla-
tion and acetylation (H3K4me3/H3K27me3, H3K9ac, and H3K9me3) and correlates with
the onset and subsequent silencing of Atoh1 expression in HCs during the perinatal period.
The study reported that during HC differentiation, increased Atoh1 expression correlates
with increased levels of H3k9ac (H3K9 histone acetylation) and that during HC maturation
decreased levels of Atoh1 correlate with decreased levels of H3K9ac and increased levels of
H3K9me3. Further, increased expression of HC-related genes and proteins in mouse utricle
sensory epithelia-derived progenitor cells with DNMT inhibitor 5-azacytidine suggests an
important role for epigenetics in HC differentiation [86]. This notion is also supported by
the recent report by McLean et al. [6] where an HDAC inhibitor was used for the regen-
eration of HCs. However, Layman et al. [87] reported that suberoylanilide hydroxamic
acid (SAHA, an HDAC inhibitor) does not affect regeneration in adult cochleae but instead
activates pro-survival pathways via regulating the acetylation status of transcription factors
and controls the transcriptional activation of pro-survival pathways in response to ototoxic
insults. These surprising results suggest that HDAC inhibitors cannot effectively modulate
the already fixed epigenetic landscape of adult cochlear SCs and are thus ineffective in
reprogramming. HC fate determination and development are highly regulated processes
under the influence of various TFs and gene expression, and expression of this transcrip-
tomic landscape changes over time [83,84], with a dramatic change in the transcriptomic
landscape between post-natal day (P)5–P7. Thus, investigating the epigenetic regulation
of TFs and genes involved in HC development and rescripting the genetic landscape may
provide insights to promote HC regeneration.

10. In Silico Approaches to Finding Novel Gene Targets

In silico analysis and the use of the wealth of bioinformatics applications for the
acquisition of biological data and data mining have changed the paradigm of research in
the field of basic and applied science. In the auditory field, regeneration of HCs deals with
the modulation of genes and TFs, thus we can analyze the available databases to uncover
better targets to modulate and potentiate the process of regeneration. The binding of TFs to
their corresponding TF binding sites (TFBSs) is key to transcriptional regulation. Because
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information on experimentally validated functional TFBSs is limited, there is a need for
the prediction of TFBSs for gene annotation. TFBSs are generally recognized by scanning
a position weight matrix (PWM) against DNA sequences using one of several available
computer programs. There are also several curated databases of PWMs, applicable to a
wide range of species, including the commercial TRANSFAC database [88] and the open-
access JASPAR database [89]. Other recent databases include the HOMER motif (http:
//homer.salk.edu/homer/motif (accessed on 6 June 2020)) HOCOMOCO [90], and CIS-
BP [91]. There is a particularly useful program, the Cytoscape plugin iRegulon [92], which
can discover master regulators from co-expressed gene sets. Additionally, the methods of
inferring co-expression networks from single-cell RNA-seq data and workflow, such as
single-cell regulatory network inference and clustering (SCENIC) [34], have been developed
to exploit the genomic regulatory code (regulon), guiding the identification of master TFs
and revealing different cell states. Such predictions on the master regulators of different
cell types/states would be valuable to improve the conversion efficiency from SCs to HCs.
Further, network analysis using these tools might predict the master regulators whose
modulation, either alone or in combination with other TFs, may promote regeneration.

The network analysis done on an scRNA-seq data of cHCs [10] predicted Lhx3, Six2,
Hes2, Irf6, Hes6, and Ikzf2 along with Atoh1 as candidate targets to modulate. Ikzf2 has
recently been shown to be crucial for OHC fate and maturation, as prestin and oncomodulin
expression is lost in Ikzf2-mutant mice [73]; contrarily, overexpression of Ikzf2 in IHCs leads
to downregulation of IHC genes and upregulation of OHC genes. Transformation of adult
cochlear SCs into prestin-positive OHCs with concurrent stimulation if Athoh1 and Ikzf2
supports the role of Ikzf2 in transdifferentiation [93]. Hes6 has also been implicated in the
differentiation of mammalian HCs [94]. Interestingly, identification of the TFs such as Hes2,
Hes6, Irf6, and Atoh1, which have roles in neural development and differentiation [95–98],
by our network analysis suggests the feasibility and promising role of using bioinformatics
to identify novel targets. Another TF identified in our network analysis, Six2, appears to
play a role in regeneration in the mammalian kidney, as it is expressed in self-renewing
progenitor cells within this organ [99]. These results suggest that the TFs identified via
bioinformatics analysis of cochlear scRNA-seq data play a role in the regeneration and
development of other organ systems and hence should be investigated for cochlear HC
regeneration, and that further bioinformatics analysis of the existing cochlear scRNA-seq
or ATAC-seq data is warranted.

11. Conclusions

Modulating the expression of signaling pathways and genes involved in sensory
HC development, as discussed above, has given promising results in adult cochlear HC
regeneration; however, the small number and functional immaturity of regenerated HCs
remain a challenge. Targeting multiple factors has improved the outcome, but there is
still a need to investigate additional targets and to form novel strategies to promote HC
regeneration in adult mammals and then to translate these to clinics. The downstream
targets of Atoh1 and Pou4f3 might be viable targets for HC regeneration. If regeneration
follows development, unraveling the sequential targets for regeneration is of the utmost
importance. Similarly, the role of many TFs such as Lhx3, caprin1, Nr2f2, Lmo4, and others
in the regeneration process has not been investigated. Analyzing the existing cochlear
data using bioinformatics tools investigating endogenous regeneration in zebrafish and
birds might give the hearing field an overview and insight into what factors remain
to be modified to regenerate HCs that are greater in number and functionally mature.
Taken together, investigating the genes and TFs which either alone or in combination can
potentiate the transdifferentiation of SCs to HCs should be the focus of current research for
better therapeutics.

http://homer.salk.edu/homer/motif
http://homer.salk.edu/homer/motif
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