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Abstract: Multiple Sclerosis (MS) is a chronic demyelinating autoimmune disease primarily affecting
young adults. Despite an unclear causal factor, symptoms and pathology arise from the infiltration of
peripheral immune cells across the blood brain barrier. Accounting for the largest fraction of this
infiltrate, macrophages are functionally heterogeneous innate immune cells capable of adopting either
a pro or an anti-inflammatory phenotype, a phenomenon dependent upon cytokine milieu in the CNS.
This functional plasticity is of key relevance in MS, where the pro-inflammatory state dominates the
early stage, instructing demyelination and axonal loss while the later anti-inflammatory state holds
a key role in promoting tissue repair and regeneration in later remission. This review highlights a
potential therapeutic benefit of modulating macrophage polarisation to harness the anti-inflammatory
and reparative state in MS. Here, we outline the role of macrophages in MS and look at the role of
current FDA approved therapeutics in macrophage polarisation. Moreover, we explore the potential
of particulate carriers as a novel strategy to manipulate polarisation states in macrophages, whilst
examining how optimising macrophage uptake via nanoparticle size and functionalisation could
offer a novel therapeutic approach for MS.

Keywords: multiple sclerosis; experimental autoimmune encephalomyelitis; macrophage
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1. Introduction

Multiple Sclerosis (MS) is a chronic inflammatory disease of the Central Nervous System (CNS),
affecting an estimated 2.3 million people worldwide [1]. On average, disease onset and diagnosis
occurs between the ages of 20 and 40, with occurrence 2–3 times higher in females than males, making
MS the most common neurologically disabling disease in young adults [2]. Pathologically, the disease
is characterised by the appearance of focal lesions in white and grey matter of the brain and spinal cord,
indicative of extensive loss of oligodendrocytes and myelin sheath. Owing to the distribution of such
lesions, clinical presentation is variable among patients and can include impairments in motor, sensory
and cognitive functions, as well as pain and fatigue [3]. MS is a complex disease with incompletely
understood aetiology with contribution from genetic predisposition [4], as well as environmental
risk factors, including geographical location, Epstein Barr virus infection, human cytomegalovirus,
lack of vitamin D and circadian rhythm disruption [5,6]. In 80–85% of newly diagnosed individuals,
symptoms occur on a relapsing remitting basis (RRMS), with roughly two thirds of these go on to
develop secondary progressive disease (SPMS) [7]. Primary progressive disease (PPMS) occurs in a
smaller proportion of individuals [8].

Despite the fact the instigating factor in disease pathogenesis of MS remains elusive, plaque
formation and disease symptoms are widely accepted as the result of immune cell infiltration, with
the release of cytokines and inflammatory mediators leading to inflammation, myelin destruction,
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oligodendrocyte loss and eventual axonal degeneration [9]. While there is a complex immune pathology
at play with contributions from many immune cell types, MS has been traditionally viewed as a T-cell
mediated disease [10–12]. While initial discussion centred on CD4+ T-cells subsets, the essential role
of CD8+ T cells has been more recently discussed [11–13], as well as that of B lymphocytes [14,15].
However, emerging and accumulating evidence has highlighted a role for infiltrating monocytes and
macrophages in human MS pathology, as comprehensively discussed in [16] and as further discussed
in this review. These cells are the most predominant cell type in patient lesions [17–20], with their
presence correlating with both demyelination [21,22] and axonal damage and degeneration [20,22–24].

Experimental autoimmune encephalomyelitis (EAE) is among the most frequently used models
to study the demyelinating and immune pathology of MS [25]. EAE can be induced by direct
immunization of myelin antigens PLP, MOG or MBP in Complete Freunds Adjuvant, or by the transfer
of isolated activated CD4+ T cells [26], or less commonly by CD8+T cells to a naïve animal [27,28],
which avoids the immunological consequences of adjuvant administration [29]. While disease course
is variable, dependent upon both animal species and strain, and on the inoculating myelin antigen [26],
overall pathology in this model is largely driven by CD4+ T helper (Th)1 and Th17 T cell subsets [25,30].
This, coupled with the fact that demyelination and lesion formation occur predominantly in the spinal
cord rather than the CNS, indicates that EAE does not fully recapitulate human MS pathology [25,29,31].
Nonetheless, the utility of the EAE model is exemplified in the discovery and development of some of
the current approved therapies, namely Glatiramer Acetate [32], Natalizumab [33], Fingolimod [34]
and has been used to further elucidate the mechanism of action of others, including Alemtuzumab and
Dimethyl Fumarate [35]. Moreover, the use of toxin induced models such as lysolecithin, cuprizone
and ethidium bromide (EtBr) are seeing increased popularity, enabling different aspects of MS disease
pathology to be addressed [35]. While there is no model available that can recapitulate the entirety of
the molecular and cellular events involved in MS, the use of animal models has been invaluable to our
current knowledge of mechanisms at play in MS, including understanding the role of macrophages in
disease pathology, and are essential for use in preclinical models [36].

In this review, we examine this role played by macrophages in MS and MS animal models, and
explore the potential for the use of nanotechnology in developing macrophage-centred therapeutics
for preclinical efficacy in MS.

2. Macrophages in MS

2.1. Resident vs Infiltrating Macrophages

Macrophages are a highly plastic, highly diverse population of cells, with a multifaceted role in
the normal immune response as well as in disease. Macrophages are professional phagocytes, and are
the most numerous cells found in CNS lesions in both human MS and EAE models [17,21,37]. In the
context of disease, these macrophages are a mixed population in terms of lineage, capable of arising
from both CNS resident glial cells and infiltrating monocytes. Belonging to the former, microglia are
the resident macrophages in the CNS parenchyma, with an essential role in neurological function and
immunosurveillance under homeostatic conditions [38]. CNS resident macrophages are notable among
myeloid populations; they arise from a distinct embryonic yolk sac population that enter the CNS prior
to blood-brain barrier (BBB) closure and do not undergo replacement by hematopoietic precursors
throughout life [39–41]. Non-parenchymal CNS resident macrophages, which include perivascular,
meningeal and choroid plexus macrophages, also arise from embryonic populations and, with the
exception of those in the choroid plexus, undergo little replacement by blood borne monocytes [42].
Monocytes and macrophages of peripheral origin are normally not present in the parenchyma of the
healthy CNS, but are recruited in response to EAE induction and can be found in lesions in both EAE
and MS pathology [17,21,37].

There is substantial evidence that the infiltrating monocytes, rather than resident microglia, play
a more prominent role in driving disease pathogenesis. For example, microglial activation appears
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to be a key early feature, distinct from monocyte entry, and does not ensure disease onset. In a
model where reduced sensitivity to pharmacogenetic depletion resulted in microglial paralysis, EAE
onset was delayed, with reduced clinical scoring, diminished monocyte infiltration and reduced
myelin and axon destruction [43]. In other studies, microglial activation can be identified both prior
to peripheral infiltration and appearance of symptoms, as well as in animals that fail to progress
beyond the initial stage of EAE [44,45]. This suggests that although microglia play an important
role in the initiation of disease in EAE, the continued progression of the disease is largely due to
their role in monocyte recruitment. Monocyte depletion prior to symptom development delayed
EAE onset and resulted in less severe clinical scoring [46–48] while depletion post-onset showed
inhibited disease progression [46,49]. Furthermore, it has been demonstrated that in early disease,
rising numbers of peripheral monocytes correlate with the severity of clinical scoring [45,50], with this
infiltration correlating with progression to paralysis [45]. Moreover, observations from histological
studies of human samples point to a role for microglia at similar early stages of lesion formation,
noting their activation in normal appearing white matter prior to peripheral infiltration and myelin
destruction [51–54]. The remainder of this review will focus on infiltrating monocytes and how they
contribute to disease progression as well as to its resolution. We illustrate how this dual capacity of
infiltrating monocytes could be manipulated as a novel therapeutic approach for MS.

2.2. A Dual Role for Macrophages in MS

Monocytes are mobilised by chemokine signalling and traverse the blood brain barrier in response
to the induction of EAE, with the chemokine receptor CCR2 and ligand CCL2 particularly well explored
in this context. A number of studies have demonstrated that the absence of CCR2, or one of its major
ligands, CCL2, results in diminished or absent EAE development [55–58]. Crucially, this effect has been
shown to be most prominently mediated through CCR2 engagement in the myeloid compartment [59].
CCR2 expression in monocytes occurs in a population primarily defined by high expression of Ly6c
in mice that traffic to sites of inflammation [60]. Antibody mediated targeting of the CCR2+Ly6Chi

monocytes in the periphery during peak disease resulted in markedly reduced clinical scoring, while
had no observable effect during the ‘priming’ phase of disease between EAE induction and onset [59].
In a relapsing model of EAE, this CCR2+Ly6Chi population increase markedly in the blood prior to
relapse in a GM-CSF dependent manner [61]. GM-CSF is a cytokine produced by Th subsets, and
is essential to disease development [62,63]. Interestingly, a conditional receptor deletion strategy by
Croxford and colleagues has shown the CCR2+ monocyte population to be the crucial facet of GM-CSF
mediated pathogenesis in EAE [64].

While monocyte populations are somewhat differently defined in humans, consisting of
CD14++CD16− classical monocytes, CD14+CD16++ non classical monocytes and CD14++CD16+

intermediate subsets (outlined in [65]), changes to the monocyte populations in MS patients has been
described. Increases in the non-classical populations in circulation have been shown in both RRMS
and PPMS [66–68]. While this CD14+CD16++ population is normally low in CCR2 expression [69],
its expression has been shown to be significantly upregulated in this population of monocytes from the
PBMC’s of MS patients [68]. CCL2 expression has also been noted in both MS plaques and in the CSF
of patients with ongoing disease [70–73]. There is ongoing debate as to whether this CCR2 mediated
chemotaxis is as important in MS as it is in animal disease models [74–76], nonetheless, the potential
for a therapeutic CCR2 targeting antibody is under investigation [77].

Following tissue entry into the spinal cord or CNS parenchyma, monocytes become activated,
differentiate, becoming myeloid dendritic cells (DCs) or macrophages. With regard to macrophages,
because this activation occurs in response to a variety of signals, there is considerable functional
heterogeneity [78]. In EAE, T cell produced GM-CSF, IFNγ and TNFα cause polarisation to a
pro-inflammatory phenotype or M1-like phenotype, with cells arising from CCR2+Ly6Chi monocytes
expressing high levels of MHCII, IL-6, IL-12p40, iNOS and inflammasome products IL-1α and
IL-1β [59,61,64] (Figure 1). These macrophages facilitate damage to the CNS in a number of ways,
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for example, MHCII, CD86 and CD40, as well as IL-12 are essential for antigen presentation and
persistent T-cell activation in EAE [79,80]. The release of other pro-inflammatory cytokines, including
TNFα, IFNγ and IL-6, as well as proteases, reactive oxygen species (ROS), reactive nitrogen species
(RNS) establishes an inflammatory microenvironment that facilitates damage to the myelin sheath and
the surrounding cells [81]. As well as their general role in the inflammatory cascade, there is strong
evidence that macrophages directly mediate axon damage, an aspect of MS pathology that is attributed
to permanent, progressive symptoms [82]. ROS and RNS of macrophage/microglial origin have been
implicitly shown to cause axonal degeneration in EAE [83], with monocyte-derived macrophages in
particular associated with direct axon contact [84]. Similarly, in human disease, axon loss in lesions is
most prominently correlated with pro-inflammatory activity in macrophages [19,22–24], evident in
both relapsing, primary progressive and secondary progressive disease [20]. Higher iNOS expression
and activity is evidenced in both circulating patient monocytes as well as MS brain tissue versus
healthy controls [85,86], and is significantly correlated with axon densities in lesions [19]. Crucially,
iNOS expression in the CNS co-localises with CD64+ macrophages and is associated with the presence
of nitrotyrosine and MBP fragments, highlighting the contribution of NO mediated damage at these
sites [22].
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Figure 1. Schematic illustrating canonical M1 and M2 polarised macrophages that result in tissue
destruction and tissue repair in the CNS in MS and experimental autoimmune encephalomyelitis (EAE).
Agonists, cell surface markers, receptors and typical cytokines released are also highlighted.

While the pro-inflammatory population predominates in early disease, a gradual shift occurs
through intermediate activation states [54,87,88]. By the remission phase of EAE, cells have a more
alternatively activated or M2-like phenotype as clearly evidenced by an elegant fate tracing study
labelling cells expressing iNOS and Arginase-1, canonical markers of M1-like and M2-like function,
respectively [87]. Importantly, this functional shift can also be observed in MS patient lesions, with
myelin-laden macrophages expressing high levels of M2 associated CD163 and CD206 [54], with a
recent study highlighting the presence of CD206+ cells in inactive lesion centres, while iNOS expression
was associated with areas of active pathology at lesion edges [88].

M2 polarisation can be driven by IL-4/IL-13 and IL-10 in vitro, with the latter driving a distinct
transcriptional signature and overall, a more profound inhibition of pro-inflammatory processes [78,89].
IL-10 upregulation in the CNS in the recovery phase of the EAE model has been demonstrated [90,91],
while the administration of IL-10 expressing mesenchymal stem cells is suppressive to disease
development, with a capacity to suppress bone-marrow derived dendritic cell (BMDC) antigen
presentation in vitro [92]. Macrophage IL-10 production is a general characteristic of alternative
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activation, with autocrine signalling resulting in downregulation of MHCII and co-stimulatory
molecules, suppressing antigen presentation and hampering CD4 T cell responses [89,93,94].
Suppression of the iNOS mediated respiratory burst also occurs, with the IL-4 driven upregulation of
Arginase-1 [89], which depletes NO precursor arginine and drives the polyamine pathway, associated
with collagen synthesis and tissue repair in the damaged CNS in animal models [95]. IL-4 is also
associated with upregulation of scavenger receptors and enhanced endocytotic ability [89], facilitating
clearance of myelin debris as evidenced in human MS lesions [96]. Moreover, IL-10 and IL-4
immunoreactivity has been shown in human MS brain tissue in active demyelinating lesions and at the
rim in chronic active lesions, with receptors for these cytokines highly expressed by macrophages in
parenchymal and perivascular areas [97].

This tissue reparative role, coupled with their inflammation limiting capacity, positions M2-like
macrophages as key effectors in disease remission. Supporting this, the adoptive transfer of M2
polarised cells is beneficial in preventing EAE development [98,99]. There is evidence of a pro-repair
action that can be mediated without CNS entry of adoptively transferred cells, suggesting that this effect
may be mediated in the peripheral environment [100]. A more direct effect of the M2 phenotype on
remyelination within CNS lesions has also been indicated. In toxin-induced demyelination, decreased
oligodendrocyte precursors were linked to the loss of macrophage secreted growth factors as a result of
depletion [101]. Additionally, Miron and colleagues have demonstrated a role for M2 macrophages in
murine oligodendrocyte differentiation that is diminished by M2-specific depletion within lesions and
highly dependent on M2-associated TGF-β family signalling molecule, Activin-A [102]. Interestingly,
increased TGF-β is observed in blood cell cultures and in CSF of patients in remission compared to
those with active disease [103,104]. The studies in animal models implicating macrophages in repair
are additionally complemented by observations in human MS patients, where in resolving lesions
with remyelination, macrophages persist, coexisting with this repair process and displaying different
morphology and staining patterns than those observed in acute disease [105].

As outlined, we clearly see a dual role for macrophages in MS models and human disease owing
to their polarisation potential, at the outset contributing substantially to disease pathogenesis, while
studies in animal models highlight an essential reparative role, with evidence to support similar
mechanisms in human MS. Some of the aforementioned studies illustrate that by depleting or increasing
these populations experimentally, the outcome of EAE can be substantially altered. Thus, modulating
these populations to minimise pro-inflammatory or M1-like and favour M2-like polarisation may hold
potential for therapeutic translation in MS.

2.3. Current Therapeautics and Their Impact on Monocytes and Macrophages

While MS remains incurable, there has been considerable development over the last 25 years in
terms of available disease modifying therapies (DMTs). First introduced in the mid-1990s, there are
over 10 FDA approved treatments presently available (summarised in Table 1) which show efficacy in
reducing disease relapses in RRMS patients [106]. Despite the advancement, Interferon Beta (IFNβ)
and Glatiramer Acetate (GA), the first two drugs to be introduced, remain the “first line” therapies
for MS owing to their relative safety and proven efficacy [106,107]. Both drugs are administered
by self-injection and function in an immunomodulatory capacity. Oral DMTs available for RRMS
include immunosuppressives Fingolimod and Teriflunomide (TFM), as well as immunomodulatory
Dimethyl fumarate (DMF). In addition, a number of monoclonal antibody-based therapeutics
for RRMS have emerged, including natalizumab and alemtuzumab. While highly efficacious in
preventing relapse and disability, these newer treatments carry high risk side effects including
progressive multifocal leukoencephalopathy (PML) and development of secondary autoimmune
diseases, respectively [108,109]. Moreover, Daclizumab, a monoclonal antibody against the alpha
subunit of the IL-2 receptor has been recently removed from the market due to reports of encephalitis
development [110].
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Table 1. Approved Disease Modifying Treatments for Multiple Sclerosis (MS) and evidence for their effects on monocytes and/or macrophages.

Type FDA
Approval

Format
(Oral/Injectable) Mechanism of Action Studies in Monocytes/Macrophages Adverse Effects

Interferon β Cytokine 1993 Injection
(SC or IM)

- Type 1 Interferon
- Effect in B and T cells
- Reduction in BBB

disruption [111,112]

- IL-27 production by myeloid cells
suppresses Th17 differentiation in
EAE [113,114]

- Increased response to IL10 in human
monocytes [115]

Flu-like symptoms
[116]

Glatiramer
Acetate

Synthetic
Copolymer
[E,K,A,Y]n

1995 Injection (SC)

- Shift from Th1 to
Th2 responses

- Increased foxp3+ Tregs
- [117,118]

- Shift treated patient monocytes to type
II antigen presenting cells—Th2 T cell
responses [119–121]

- Increased phagocytosis in rat
microglia and human
monocytes [122,123]

Injection site reaction
[111]

Natalizumab Anti-alpha-4
integrin 2003 IV infusion

- Prevent α4 integrin
mediated T cell migration
and CNS infiltration

- Reduced CNS accumulation of
activated microglia and macrophages
with early therapy in EAE [124]

- Reduced pro-inflammatory mir-155 in
patient monocytes [125]

PML risk, Allergic
Reactions [108]

Fingolimod

Antagonist of
sphingosine 1

phosphate
receptor

2010 Oral
- Suppress lymphocyte

migration from
lymph nodes

- Microglial M2 polarisation in stroke
model [126]

- Alteration cytokine production in
patient monocytes [127–129]

- Reduced pro-inflammatory mir-155 in
patient monocytes [125]

Cardiovascular
complications [130]

Teriflunomide
dihydroorotate
dehydrogenase

inhibitor
2012 Oral

- Suppress rapid expansion
of lymphocytes by
inhibition of the
pyrimidine de novo
synthesis pathway

-

abnormal liver
enzymes,

gastrointestinal
symptoms [131]
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Table 1. Cont.

Type FDA
Approval

Format
(Oral/Injectable) Mechanism of Action Studies in Monocytes/Macrophages Adverse Effects

Dimethyl
Fumarate

Fumaric Acid
Ester 2013 Oral

- reduction of
Th1 responses

- Nrf2 activator
- NfkB inhibitor

- Decreased monocyte infiltration in
EAE [132,133]

- Glycolysis inhibition in murine
macrophages [134]

- Decreased pro-inflammatory
cytokines in EAE [135,136]

- Decreased pro-inflammatory
cytokines and mir-155 in patient
monocytes [125]

gastrointestinal
symptoms,

abnormal liver
enzymes, flushing [137]

Alemtuzumab Anti-CD52 2014 IV infusion

- Depletion of mainly
mature T and B
lymphocytes, to a lesser
extent monocytes and
dendritic cells

-

Development of other
autoimmune disease,

Intracerebral
haemorrhage

(rare) [109,138]

Mitoxantrone Chemotherapeutic
agent 2003 IV infusion

- DNA
topoisomerase inhibitor

- Suppressed
cell proliferation

- Impaired antigen
presentation [139]

- Reduced ex vivo migration capacity of
patient monocytes [140] Leucopoenia [141]

Ocrelizumab Anti CD-20 2017 IV infusion
- Depletion of B cells
- Note: the only FDA

approved DMT for PPMS
-

Infusion related
reaction,

infections [142]
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Broadly, these therapies act by either altering T-cell responses (IFNβ, GA, DMF),
inhibiting lymphocyte trafficking (Fingolimod, Natalizumab) or depleting lymphocyte populations
(Alemtuzumab, Ocrelizumab, TFM, Mitoxantrone). How these therapies impact on monocyte and
macrophages, however, has been less explored. Below and in Table 1 we consider evidence of any direct
action of DMTs on monocyte and macrophage populations, which may contribute to their respective
therapeutic efficacies.

2.3.1. Interferon-β

IFNβ, a type 1 interferon, is an anti-inflammatory cytokine and was the first available DMT
for the treatment of MS. In addition to affecting T and B lymphocyte function and reducing BBB
transmigration [111,112], IFNβ exerts effects cells of the innate immune system in the context of
MS. Of note, two studies demonstrate a key role of IL-27 production by DCs and macrophages in
suppressing Th17 T cell mediated responses in EAE models [113,114]. An effect of IFNβ treatment on
human monocytes has also been documented, with monocytes from treated patients shifting towards
a CD14++CD16+ intermediate phenotype [66]. Notably, patient monocytes produce less IL-1β in
response to inflammatory stimuli [143], and show significantly reduced production of IL-8 and CCL2
after ex vivo T cell activation [144]. In terms of IFNβ on macrophage and monocyte polarisation, a
study by Liu and colleagues show enhanced sensitivity to IL-10, a driver of the M2 phenotype, through
upregulation of the IL-10 receptor in both human monocytes and macrophages [115]. In conjunction
with the increased serum IL-10 levels seen in IFNβ treated MS patients [145,146], this indicates IL-10
modulation of macrophages and their monocyte precursors may occur in response to IFNβ treatment.

2.3.2. Glatiramer Acetate

GA is a synthetic copolymer of lengths 50 to 90 residues of randomly arranged L-tyrosine (Y),
L-glutamic acid (E), L-lysine (K), L-alanine (A), with its efficacy chiefly credited to its ability to modulate
peripheral T cells towards a Th2 phenotype and increase the Treg population [117,118]. The effects
of GA on the myeloid cell population are also believed to contribute to its therapeutic efficacy. This
effect was initially demonstrated on human and animal cells in vitro, with GA treated monocytes
showing decreased TNFα and cathepsin B levels in response to inflammatory stimuli, as well as
increased production of anti-inflammatory IL-10 [147,148]. Similar findings were recapitulated in a
number of studies utilising isolated monocytes from GA treated patients, showing decreased TNFα,
IL-12 and IL-1β in conjunction with increased IL-10, TGF-β and IL-1 receptor antagonist [119–121].
This cytokine shift in GA-treated monocytes is primarily explored in terms of the effects of antigen
presentation by myeloid lineage cells on the T-cell response. The effects seen are consistent with type
2 antigen presenting cells, which induce development of Th2 responses. Interestingly, GA has been
shown to increase phagocytosis in both rat microglia and MS patient monocytes [122,123] with debris
clearance necessary for remyelination [149]. Monocyte modulation may be among the most long-lived
responses to GA treatment, with a study showing increased anti-inflammatory monocytes as one of
two significant changes in the leukocyte population that prevail following treatment periods of up to
16 years in MS patients [150].

2.3.3. Dimethyl Fumarate

DMF is an immunomodulatory drug originally used for psoriasis treatment, but is also
therapeutically useful in the treatment of RRMS, resulting in diminished Th1 responses [151]. It is
a known activator of the anti-inflammatory transcription factor Nrf2, as well as interfering in TLR
signalling pathways upstream of NFkB activation [152–155]. The immunomodulatory function of
DMF extends to cells of the myeloid lineage, in EAE resulting in reduced monocyte infiltration and
microglia with a more alternatively or ‘M2′ activated phenotype [132,133]. In murine monocytes, DMF
treatment increases myeloid derived suppressor cells and results in an alternative activation profile in
monocytes consistent with Type II APCs, while in macrophages decreases iNOS and TNFα expression,
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with concomitant increases in Arg1 and IL-10 [135,136]. Similar effects on monocyte populations
have been demonstrated in DMF treated MS patients, with peripheral monocytes showing reduced
levels of mir-155, a micro-RNA associated with major pro-inflammatory effect [125], while in vitro
treated human monocytes showed suppressed TNFα, IL-6 and IL-10 responses to a pro-inflammatory
stimulus [125]. Furthermore, it has been shown the DMF treatment results in reduced expression of
MHCII molecules and NFkB in human myeloid DCs and a concomitant reduction in their capacity
to activate T cells [156]. Interestingly, it has recently been shown that DMF has a profound effect
on cell metabolism, blocking the glycolysis pathway by inhibition of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) in murine macrophages [134]. This may contribute to the mechanism by
which DMF promotes M2-like macrophages, as a preference for glycolysis is associated with M1
macrophages, while M2 macrophages see higher levels of oxidative phosphorylation [134,157].

2.3.4. Fingolimod

Fingolimod is an antagonist of sphingosine 1 phosphate receptor, which functions to inhibit
leukocyte passage out of the lymph nodes. In monocytes isolated from Fingolimod treated patients,
alteration in cytokine production has been observed with a reduction in pro-inflammatory cytokines
such as TNFα, IL-1β and IL-6 [127–129]. In addition, the capacity of fingolimod treatment to result in an
M2 polarisation of microglia has been demonstrated in a murine model of stroke [126]. Similarly to MS
patients treated with DMF and Natalizumab, Fingolimod also results in a reduction of pro-inflammatory
mir-155 in circulating monocytes [125].

3. Nanoparticles and Microparticles in MS

The goal of most current MS therapies is dampening the immune response in the CNS, reducing
the number and the severity of relapses and lesions in MS patients. Such treatment raises concerns
due to the associated chronic, non-specific immunosuppression, which may pose a serious risk in
the medium/long term [158]. Coupled with the fact that DMTs are not effective in all patients, this
underlies an urgent need for the development of novel therapeutic strategies to overcome these issues.
In recent years, nanotechnology has emerged as a promising method of drug delivery offering many
advantages over conventional delivery mechanisms. Nanoparticle and microparticle carriers are
colloidal particles, where sizes ranging from 10–1000 nm are generally designated nanoparticles (NPs),
while those ranging from 1–250 µm are designated microparticles (MPs) [159]. NPs and MPs can
be prepared from a wide range of materials; among the most popular are lipid and polymer-based
nanoparticles including poly-lactide co glycolic acid (PLGA) and chitosan [160]. Such carrier systems
offer the ability to deliver otherwise challenging molecules, such as nucleic acid and low bioavailability
drugs and facilitate controlled release. In addition, nanotechnology can mediate cell specific delivery
and passage across biological barriers like the BBB through targeting by carrier type, size, surface
charge, and conjugation of specific targeting ligands. This minimizes interaction with non-target
cell types and can reduce the amount of drug required for sufficient accumulation in target cells.
As outlined above, macrophage manipulation may offer novel opportunities in the treatment and
management of MS. Macrophages are attractive targets for NP/MP -mediated delivery, usually seeing
high uptake due to their phagocytic nature. In the following sections, we will give an insight on
the role that NPs/MPs could play in either improving the efficacy of existing drugs or helping the
delivery of newly developed therapeutics in preclinical models of MS, with particular emphasis on
targeting macrophages. Although the majority of studies were performed in animal studies, it holds
much promise for their translation in MS; as it was previously mentioned that many of the approved
MS drugs have been tested for safety and efficacy in EAE models, as is recommended by preclinical
guidelines [36]. A number of NP/MP based studies in MS models with impact in macrophages are
explored in Table 2.
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Table 2. NP/MP strategies in MS models with impact in macrophages.

Reference NP/MP Chemistry Size Cargo Functionalised Route of
Delivery Model Target Cells Additional Points

[161] PEG-PLL-PLLeu
copolymers not reported c-Rel siRNA - IP EAE Macrophage

[162] inorganic-organic
hybrid NP 60–80 nm glucocorticoids - IP and IV(more

effective) EAE Macrophage

[163] PEGylated liposome <100 nm Prednisolone PEG IV EAE not specified
liposomes were found mostly in
macrophages, microglia and
astrocytes

[164] liposome <100 nm methylprednisolone - IV EAE not specified
Compared with free drug, only
liposomal formulation resulted in
significantly decreased CD68+ cells

[165] liposome not reported methylprednisolone
short peptide
fragments of ApoE or
of β-amyloid

IV EAE not specified

[166] PEGylated liposome 95–120 nm methylprednisolone PEG + Glutathione IV EAE non specified
Bigger reduction in disease score
with the targeted vs non targeted
liposome

[167] PLGA 540 nm (tNP) PLP (coated) - IV EAE APCs Taken up by macrophages and DCs,
most antigen presentation by DCs

[168] PLGA not reported (tNP) PLP +
rapamycin - SC prophylactic,

IV peak disease EAE APCs

in vivo trafficking—IV
-accumulation in liver and spleen
most localisation to Macrophages
and DCs in the spleen, but SC goes
to the draining lymphnodes

[169] PLGA 350–835 nm (tNP) PLP - IV EAE APCs
(Macrophage)

Immunofluorescence staining
showing co localisation with F4/80
positive macrophages, lungs, spleen,
lymph nodes

[170] PLGA 80nm, 400 nm (tNP) PLP - IV EAE APC’s (DCs) Larger particles show better uptake
in BMDCs

[171] PLGA 400–1500 nm (tNP) MOG (coated) - IV or SC EAE APCs
SC admin not effective,
non-significant trend to bring on
disease more quickly
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Table 2. Cont.

Reference NP/MP Chemistry Size Cargo Functionalised Route of
Delivery Model Target Cells Additional Points

[172] Au 60 nm (tNP) MOG + small
molecule (ITE) PEG(to stabilize) IV or IP EAE DC

ITE ligand activates the aryl
hydrocarbon receptor (Ahr), which
can induce tolerogenic DCs.
Observed Ahr activation in
Macrophages in vivo

[173] poly(ε-caprolactone) 300–600 nm
range

(tNP) Recombinant
human MBP - SC EAE APCs

Histological observation of no
macrophage or T cell infiltration in
treated animals

[174] PLGA 200 nm (tNP) MOG and
IL-10 - SC EAE APCs

Authors suggest that observed T cell
anergy and inhibited lymphocyte
proliferation is due to induction of
tolerance in macrophages

[175] Acetalated Dextran not reported (tNP) MOG and
Dexamethasone - SC APC’s

(Macrophage)
Reduced macrophage GM-CSF and
IL-17

[176] PLGA not reported (tNP) MOG, Vitamin
D3, TGFb, GM-CSF - SC EAE APCs

Macrophages have second highest
MP uptake in axillary lymph after
DC’s, while these cells show equal
uptake in inguinal lymph nodes.
Treatment results in decreases
numbers of activated macrophages
in CNS

[177] PLGA 400–500 nm (tNP) PLP - IV EAE
Localisation to spleen, liver, and
lung at 3, 6, and 18 h post injection,
cleared by 24 h

[178] polystyrene, PLGA 500 nm (tNP) PLP - IV EAE Macrophage

SC did not work as well as IV admin,
NP show localisation to spleen
marginal zone macrophages and
uptake via MARCO receptor
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3.1. Monocyte and Macrophage Depletion

The first studies to demonstrate NP/MP uptake by macrophages and efficiency in EAE were
conducted as early as 1981, where intraperitoneal (IP) injections of silica quartz dust in rats
was successful in lowering the clinical score in the EAE model by depletion of the peritoneal
macrophage population [46]. Similar results were obtained by Huitinga and co-authors shortly after,
where intravenous (IV) administration of mannosylated liposomes containing dichloromethylene
diphosphonate (Cl2MDP) in rats selectively depleted circulating monocytes and macrophages in the
spleen and the liver [47]. This was accompanied by a lower infiltration rate of monocytes in the
CNS and subsequent improvement of the clinical score in EAE model. Further research provided
more details about the mechanisms of action of the CI2MDP-liposomes, showing that the myelin
sheath of treated mice was not affected, with the expression of iNOS and TNFα by macrophages
dramatically inhibited [48]. Importantly, the authors showed that the liposomes impede the CNS
infiltration specifically of monocytes but not T-cells, suggesting again a key role of these innate immune
cells in the onset and progression of the disease in the EAE model [48].

In line with these early findings, Getts and colleagues have shown that empty carboxylated
PLGA and other negatively-charged MPs injected IV were taken up specifically by monocytes
and monocyte-derived macrophages via the macrophage receptor with collagenous structure
(MARCO) [179]. These cells were then less able to migrate into the brain and accumulated for
a short period in the spleen, where they underwent apoptosis, accompanied by a reduction in the
clinical score of the EAE. However, the authors did raise concerns about using this drastic approach
in disorders where monocyte-derived macrophages are important also for disease resolution, as is
indicated in MS, underpinning the limitation of total depletion as a viable therapeutic strategy.

3.2. NP/MP and Antigen Specific Tolerance Induction

Tolerogenic nanoparticles (tNPs) are typically packaged with the antigen that elicits the abnormal
immune response in autoimmune disorders. They exert their immunomodulatory function by
selectively targeting professional antigen-presenting cells (APCs), such as macrophages and DCs,
due to their intrinsic ability to internalise tNPs via endocytosis. APCs loaded with tNPs are then
able to elicit an effective antigen-specific immune response, as elegantly reviewed in Kishimoto &
Maldonado [180]. In the context of MS, tNPs are prepared by encapsulating myelin antigens into
different carriers, where they are taken up by APCs which then efficiently trigger tolerance induction
in autoreactive T cells in in vivo models. The typical cargo is the myelin antigen in one of its different
forms, including myelin oligodendrocyte glycoprotein (MOG) [171,172,174–176], myelin basic protein
(MBP) [173] and proteolipid protein (PLP) [168,178,181]. The carriers vary from study to study, and
they include PLGA [168,171,174,178,181], acetalated dextran [175], poly(ε-caprolactone) [173] and
gold [172], among others. Interestingly, coupling the myelin antigen with immunomodulatory agents
like dexamethasone [175], IL-10 [174], 2-(1′Hindole-3′-carbonyl)-thiazole-4-carboxylic acid methyl
ester (ITE) [172], or rapamycin [168,181] has shown efficacy in the EAE model.

Considering APCs are essential for mediating the tNP effect, it is not surprising that some studies
have shown a reduction in EAE clinical score after tNPs administration, due to the specific contribution
of macrophages. For example, IV injection of PLGA and polystyrene PLP-tNPs in EAE mice models
were taken up specifically by macrophages via interaction with the scavenger receptor MARCO
and delayed the onset or improved the progression of the disease [178]. Similarly, PLGA PLP-tNPs
administered with rapamycin were shown to co-localise with macrophages in the spleen, although the
precise effects of tNPs on macrophages were not fully elucidated [168]. Functionally, treatment of PLGA
MOG-tNPs in EAE mice dramatically reduced the number of activated macrophages and microglia in
the CNS and this contributed to the overall decreased disease severity, while also reducing the number
of CD86+MHCII+ DCs in lymph nodes [176]. Collectively, these works show that macrophages
play a fundamental role in the uptake of tNPs, improving clinical progression in the EAE model and
illustrating a promising NP-mediated, macrophage directed therapeutic approach.
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3.3. Cortiocsteroid Delivery

Although not considered DMTs, steroids (including methylprednisolone, dexamethasone and
prednisolone) are often used as first line response to treat acute relapses in MS patients due to their
potent and quick ability to close the damaged blood brain barrier and reduce inflammation in the
CNS. However, they are characterised by side-effects due to high doses and systemic administration.
This issue can be addressed by administering them as liposomal drugs, which lead to higher tissue
concentrations in the inflamed target organ compared to an equivalent dose of the free drug. Several
research groups showed evidence of this advantage by using different carriers to enhance the efficacy
of steroids in the EAE model, with macrophages frequently shown to be the primary effectors of this
response [162–165,182].

IV administration of Prednisolone (PL) and methylprednisolone (MPL) encapsulated in PEGylated
liposomes has been investigated in EAE, resulting in improved clinical score when compared to free
drug [163,164]. Interestingly, liposomes in these studies were shown to be taken up mainly by
macrophages in the spinal cord of injured animals, and by microglia and astrocytes. The therapeutic
efficacy of the PL and MPL liposomes was coupled with decreased blood brain barrier disruption,
decreased macrophage and T-cell infiltration in the CNS, and reduced demyelination and axonal
loss [163,164]. Similarly, an inorganic-organic hybrid NP loaded with glucocorticoid betamethasone
(BMP-NP) was shown in vitro to be preferentially taken up by macrophages rather than T cells or B
cells [162]. In vivo, macrophages from BMP-NPs treated mice polarised towards an anti-inflammatory
phenotype to the same extent as free glucocorticoid drug dexamethasone (DEX), as shown by a
reduction in MHCII and CD86 positive cells and in TNFα secretion [162]. While the number of
infiltrating T cells did not change between empty-NP and BMP-NPs treated mice, the number of
macrophages in the spinal cord were significantly reduced, suggesting again that these cells are the
primary target of this therapy. As a proof of concept for human translation, the authors treated
peripheral blood monocytes from healthy individuals with BMP-NPs and observed an increased
expression of anti-inflammatory genes and lower levels of pro-inflammatory genes in qRT-PCR [162].
This work strongly supports the notion that polarisation of macrophages towards an anti-inflammatory
state could be of therapeutic benefit in MS.

3.4. NPs/MPs and Current MS Disease Modifying Therapies

In order to improve their bioavailability and lower their adverse effect, recent studies have
investigated encapsulation of orally administered DMTs into NP/MPs. For example, Kumar and
collaborators have shown that the formulation of DMF-loaded nanolipidic carriers (NLCs) coated with
vitamin-based neuroprotective molecules like tocopherol acetate cholecalciferol and retinol acetate
improved the clinical score in a cuprizone-induced demyelination mouse model when given once daily
orally [183]. Treatment with DMF-NLCs, especially when coated with the vitamin-based compounds,
showed improved locomotor activity, motor coordination and balance compared to free DMF treated
mice. Myelination status was also measured in brain slices, again with the DMF-loaded vitamin NLCs
showing higher remyelination compared to free DMF [183]. Further histopathological analyses showed
none of the stomach tissue damage in DMF-NLC treated mice that was observed in those treated with
free DMF.

TFM, an orally administered DMT for MS, is often associated with hepatotoxicity, possibly due
to its delivery route which leads to higher exposure of the drug within the systemic circulation [184].
TFM was loaded into NLCs subsequently combined with mucoadhesive and gelling agents in order
to overcome mucociliary clearance and achieve efficient delivery via the nose to brain route [185].
TFM-NCL and mucoadhesive TFM-NCL (TFM-MNLC) were given orally and intranasally to rats in a
cuprizone-induced demyelination model and recovery was assessed by an exteroceptive behavioural
model. Although very preliminary, the results showed a trend of improved neurological function in
rats treated intranasally versus orally without hepatic or renal biomarker elevation [185].
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These studies illustrate the potential for the use of nanocarriers to improve efficacy and specificity
of existing DMTs for MS. Given that DMTs can produce effects in monocytes and macrophages, coupled
with the high NP/MP uptake generally seen in these cells, macrophages could play an unexplored role
in the reduced disease severity in these models, which may be worth further investigation.

3.5. NPs/MPs and Novel Drugs

Besides the use of NPs/MPs as carriers for existing drugs and tolerogenic molecules, many
research groups have exploited the typical features of NPs/MPs (low cell toxicity, longer bioavailability,
ability to cross the blood brain barrier among others) to design and test novel therapeutic strategies
in in vivo models. This has been evidenced in targeting a number of cell populations in MS. For
example, the pro-remyelination factor leukaemia inhibitory factor (LIF) was encapsulated in PLGA
NPs, and specifically targeted oligodendrocyte precursor cells (OPCs) by conjugating the NPs with
NG2 chondroitin sulphate proteoglycan antibodies [186]. NG2-targeted LIF-NPs were able to induce
significantly higher percentage of remyelinated fibres and to increase the myelin thickness per axon
compared to non-targeted LIF-NPs, suggesting that the conjugation of LIF-NPs with NG2 antibodies,
and thus the OPC-specific targeting, was critical for the observed therapeutic effect [186]. Similarly,
another group investigated delivery to OPCs, this time intranasally administering short-interfering
RNA (siRNA) in chitosan NPs in ethidium bromide induced demyelination [187]. The target, LINGO-1
is a transmembrane protein that suppresses myelination and axonal regeneration and the antibody
Opicinumab/BIIB033 directed towards this mediator has been tested in clinical trials for MS with
limited effectiveness, potentially due to low CNS penetration [188,189]. Rats treated with LINGO-1
siRNAs NPs showed overall better motor activity and coordination and a more compact myelin
sheath histologically, illustrating the effectiveness of this approach [187]. Drug repurposing has also
been explored, with anti-inflammatory cancer drug lenalidomide delivered in combination with in
anti-oxidant cerium oxide NPs, and antibiotic minocycline was encapsulated in PEG liposomes, both
of which result in improved clinical scores in EAE, although the cellular target in these studies was not
further investigated [190,191].

Moreover, the specific targeting of macrophages for siRNA delivery has been investigated in a
recent study where the pathologic crosstalk between pro-inflammatory macrophages and auto-reactive
Th1/Th17 T cells was tackled by silencing the transcription factor c-Rel [161]. C-Rel plays a key
role in inducing pro-inflammatory cytokine secretion by macrophages and therefore in controlling
the T cell response, with a siRNA encapsulated into PEG-PLL-PLLeu MPs and tested in vitro on
macrophages [161]. Decreased levels of secreted IL-1β among others were observed, suggesting that
c-Rel silenced macrophages might be less able to induce Th1 and/or Th17 responses. Intraperitoneal
(IP) injections of PEG-PLL-PLLeu-c-Rel MPs reduced the clinical score in the EAE model, and the fact
that the MPs were preferentially localised in macrophages suggested that they played a crucial role
in this phenotypic effect. Moreover, this was associated with a decrease of the number of infiltrating
macrophages in the spinal cord and brain and lower serum levels of both IFNγ and IL-17A, suggesting
that these MPs are able to dampen the Th1/Th17 response [161]. Together these studies illustrate the
utility of nanotechnology for the delivery of novel therapeutics in MS models, with the latter showing
the successful targeting of macrophages to induce a therapeutic response.

4. Optimising Delivery and NP/MP Uptake in Macrophages

As discussed, macrophages offer untapped potential in terms of therapeutic manipulation in
MS, with nanotechnology as a promising means to realise this. While it is clear that macrophages are
highly receptive to NP/MP mediated delivery, it is desirable to maximise the specificity of targeting to
a therapeutically relevant population of cells, thus maximising the NP/MP payload and minimizing
off target effects. In the functional modulation of macrophages in MS, specific targeting to M1-like
macrophages in the CNS or their peripheral precursors could minimize the effects of this treatment
on peripheral and other tissue macrophages, which are required in normal innate and adaptive
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immune defence. Here we explore the enhancement of macrophage targeting through particle size and
functionalisation, which could prove useful in the development of strategies for macrophage targeting
in MS and associated models.

4.1. Size

Particle size is a key biophysical characteristic affecting cellular targeting and uptake. While
endocytosis and pinocytosis facilitate the entry of NP around 200 nm or smaller into most cell types,
phagocytosis can accommodate the uptake of particles up to 10µm in diameter. This process is restricted
to professional APCs, and thus larger particle sizes can be used to passively target macrophages, as
reviewed extensively in [192]. In addition to restricting particle entry to phagocytosing cells, uptake
studies show a trend for preferential uptake of larger NPs and MPs in macrophages compared with
smaller NPs. In vivo studies with liposomes in both alveolar macrophages and in an atherosclerosis
model show increased uptake with increasing size up to 2 µm and 500 nm respectively [193,194].
A similar trend is observed in vitro with PLGA and chitosan particles, with an optimal size at
approximately 2 µm, and the latter study showing a second peak at 430 nm [195,196].

Despite the preference for larger NP/MP sizes, particles of smaller size are still frequently used
for macrophage delivery [162,197–200], and may be more appropriate for a number of reasons.
Administration route can factor in; nanomedicines delivered intravenously (IV) are restricted by small
capillary size to avoid embolism [201], while small sizes are also preferred for intranasal administration
for local CNS delivery (the nose to brain (NTB) route),which are restricted by axon diameter [202,203].
Additionally, for CNS entry from systemic circulation, smaller particles may have easier access across the
BBB [201]. It is worth considering in designing strategies to target pro-inflammatory macrophages, that
there is evidence that polarisation both contributes to size related uptake preferences of macrophages
and can itself be influenced by NP/MP uptake. The investigation of silica NP (26 and 41 nm) and
latex MP (1.75 µm) uptake by polarised cells indicates that while there is no significant difference
in MP uptake, M1-like cells show significantly lower NP uptake than M2-like cells, proposed as a
result of a higher endocytic capacity of M2-like cells [204]. Furthermore, there is evidence that smaller
particles can increase the production of pro-inflammatory cytokines to a greater extent than larger
particles [196].

4.2. Functionalisation

Enhancement of macrophage specific delivery can be achieved by the conjugation of ligands or
antibodies to target highly expressed surface receptors on these cells. Mannose and galactose ligands
have been exploited for their ability to bind the mannose receptor (CD206) and the galacto-type lectin,
respectively. These receptors are highly expressed on macrophages and have been demonstrated for
macrophage targeting in many disease contexts, among them infection [205,206], inflammatory bowel
disease [207,208], cancerous tumours [209,210] tuberculosis [211] and atherosclerosis [212]. Notably,
the use of mannose functionalised NPs has been demonstrated for the delivery of an antiretroviral drug
targeted to macrophages in the CNS of rats, showing increased CNS drug concentrations following IV
delivery compared with unmodified NPs or free drug [197].

The CD11b integrin is present on many leukocytes and is highly expressed in macrophages, their
monocyte precursors, and microglia. A proof of concept study encapsulating leukaemia inhibitory
factor (LIF) showed significantly increased therapeutic impact with anti-CD11b functionalisation
in a myeloid cell line with M1-like characteristics, indicative of increased uptake [213]. In terms
of microglial targeting, in a mixed glial culture model, anti-CD11b conjugation has been shown
to maximise microglial uptake, while reducing the proportions of astrocytes and oligodendrocytes
internalising NPs [214]. A separate study comparing anti-CD11b conjugation to that of non-specific
IgG conjugation, showed that in vitro transfection efficiency of microglia with a microRNA cargo was
increased from ~52% (IgG) to ~71% (CD11b) [200].
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Additionally, CD64 may represent a promising candidate for mediating specific NP/MP delivery.
CD64 or Fc γ receptor I (FcγRI) is constitutively expressed on monocytes and macrophages and
inducible in neutrophils, but has shown to be substantially upregulated in macrophages with a
pro-inflammatory or M1-like phenotype [215,216]. CD64 is also an MS relevant target, evidenced by its
upregulation in macrophages of human disease samples [54]. As an NP/MP targeting ligand, in vitro
macrophage uptake following conjugation of a CD64 antibody to solid lipid and PLGA NPs has been
demonstrated, intended for future use in rheumatoid arthritis models [217,218]. Furthermore, Yong et
al. demonstrate the utility of CD64 as a monocyte specific targeting ligand in a study delivering siRNA
cargo to human peripheral blood mononuclear cells [219].

4.3. Macrophage Modulation: A Peripheral or CNS Centric Approach?

Worth considering in MS is the most pertinent location for targeted drug delivery to macrophages
and how this relates to NP/MP design and administration. While macrophages that enter as monocytes
in the hallmark immune infiltrate are capable of directly inflicting pathogenic damage as outlined
above, peripheral monocytes also have a significant role in shaping the overarching immune landscape
in which disease occurs, contributing to the cytokine environment and the shaping of T cell responses.
An outstanding question thus remains as to whether targeting macrophages in the CNS or focusing
delivery to peripheral monocyte precursors is the more appropriate therapeutic approach.

Peripheral monocyte uptake is readily achieved following systemic administration, which sees
substantial NP uptake by circulating monocytes and DCs of the mononuclear phagocyte system (MPS)
and potential accumulation in the spleen, liver, and kidneys owing to high numbers of those cells
therein [220]. Manipulation of these cells may impact MS/EAE outcome by altering the immune response
in the periphery, as evidenced in the aforementioned immune tolerance approaches [168,169,179] as
well as in preventing CNS accumulation as a consequence of depletion [46–48]. Outside of immune
tolerance approaches, however, peripheral modulation is not without concern owing to the potential for
global immunosuppression. Directly targeting macrophages that have been mobilised to the CNS has
the potential to avoid this complication, however, it represents a more complex target for drug delivery.

Systemically administered nanomedicines face two major hurdles before even considering
their function in the brain; they typically must avoid uptake by peripheral macrophages in order
to reach the CNS and also contend with the BBB, a highly selective barrier effected through the
presence of tight junctions, degradative enzymes and selective transport proteins present where
CNS microvessels interface with astrocytes [221]. With liposomes and hydrophobic carriers like
PLGA, peripheral phagocyte evasion is most commonly achieved by polyethylene glycol (PEG)
modification. PEG prolongs NP circulation by forming a hydrophilic layer around the NP and
reducing opsonisation [220]. After overcoming peripheral uptake, most NP carriers, including PLGA,
still cannot enter the CNS without the conjugation of ligands that exploit existing BBB transport
mechanisms. Adsorptive-mediated transcytosis offers passage through the BBB by charge mediated
binding of ligands to the negatively charged brain endothelial surface. PEG and also TAT, the HIV
cell-penetrating peptide, have been used as ligands NP/MP targeted to macrophages within the
CNS [222,223]. Receptor-mediated transcytosis offers a highly specific transport mechanism through
the binding of conjugated ligands to specific receptors. With respect to CNS macrophage targeting,
lactoferrin [222], transferrin receptor binding peptide [224], rabies virus glycoprotein [225], and
mannose [197] are among those that have been explored.

Alternatively, localised CNS delivery can be achieved through the more recently investigated
NTB route (fully reviewed in [226–228]), which notably bypasses the BBB. This may avoid the
seeming contradiction in systemic delivery associated with trying to avoid phagocytosis in the
periphery, while trying to target this property in CNS. NTB is not without challenges, however, and
small administration volumes, restricted particle size and NP mucoadhesive properties must all be
considered. Promisingly, respective targeting of microglia and macrophages by NTB administered
NP/MPs has been demonstrated in both an LPS induced neuroinflammation model of Parkinson’s
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Disease and HIV infection [198,229]. Regarding MS and associated animal models, the NTB route
is under investigation in terms of both naked [230,231] and NP encapsulated therapeutics for both
existing and novel therapautics, as explored above [185,187,232], and could offer a novel avenue for
MS centric therapeutics.

5. Concluding Remarks

In conclusion, peripherally derived macrophages play a dominant role in MS onset, progression
and repair. The aforementioned studies suggest that modulating the polarisation status of macrophages
with NP/MP-loaded drugs to enhance an M2-“switched” state could represent a valid and partially
unexplored area of research. It is worth noting that future studies embarking in NP/MP administration
in MS should seriously consider assessing the macrophage uptake and polarisation states as it is highly
likely that this phenomenon contributes to overall efficacy in disease progression.
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