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Abstract

Oncolytic viruses are viruses that specifically infect cancer cells and kill them, while leaving healthy cells largely intact. Their
ability to spread through the tumor makes them an attractive therapy approach. While promising results have been
observed in clinical trials, solid success remains elusive since we lack understanding of the basic principles that govern the
dynamical interactions between the virus and the cancer. In this respect, computational models can help experimental
research at optimizing treatment regimes. Although preliminary mathematical work has been performed, this suffers from
the fact that individual models are largely arbitrary and based on biologically uncertain assumptions. Here, we present a
general framework to study the dynamics of oncolytic viruses that is independent of uncertain and arbitrary mathematical
formulations. We find two categories of dynamics, depending on the assumptions about spatial constraints that govern that
spread of the virus from cell to cell. If infected cells are mixed among uninfected cells, there exists a viral replication rate
threshold beyond which tumor control is the only outcome. On the other hand, if infected cells are clustered together (e.g.
in a solid tumor), then we observe more complicated dynamics in which the outcome of therapy might go either way,
depending on the initial number of cells and viruses. We fit our models to previously published experimental data and
discuss aspects of model validation, selection, and experimental design. This framework can be used as a basis for model
selection and validation in the context of future, more detailed experimental studies. It can further serve as the basis for
future, more complex models that take into account other clinically relevant factors such as immune responses.

Citation: Wodarz D, Komarova N (2009) Towards Predictive Computational Models of Oncolytic Virus Therapy: Basis for Experimental Validation and Model
Selection. PLoS ONE 4(1): e4271. doi:10.1371/journal.pone.0004271

Editor: Mark Isalan, Center for Genomic Regulation, Spain

Received June 26, 2008; Accepted November 17, 2008; Published January 30, 2009

Copyright: � 2009 Wodarz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: NIH Grant: 1R01AI058153-04 and Institutional funding from Dr. Wodarz’s university. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dwodarz@uci.edu

Introduction

Oncolytic viruses are live replicating viruses that selectively

infect cancer cells and kill them [1–14]. Healthy cells are largely

spared. The idea is to inoculate the virus into a cancer patient, and

let the virus spread throughout the tumor, thereby driving it into

remission. Selectivity for cancer cells occurs because cancer cells

tend to lack important genes that normally shut down the

replication cycle of the virus. For example, the adenovirus ONYX-

015 has been engineered such that it only replicates in p532/2

cells, a characteristic of many cancers [10]. Certain animal viruses

by chance have the ability to replicate in human cancer cells, while

healthy human cells are not permissive. An example is Newcastle

disease virus, which can replicate in tumor cells that lack

interferons [7,15]. In general, a wide array of viruses is being

explored as potential oncolytic viruses.

Oncolytic viruses have shown promising results in clinical trials

[16]. Cancers have been found to respond to treatment, leading to

tumor remission in some cases. Consistent and sustained

eradication or control of cancers has, however, been very difficult

to achieve. This is caused in part by our lack of understanding

regarding the dynamics that underlie the spread of oncolytic

viruses through tumors. Without such a rigorous understanding,

much of the work is based on trial and error. In such scenarios,

mathematical models can be very useful to complement empirical

work. Mathematical analysis allows us to see the whole spectrum

of possible outcomes, and provides a means to logically suggest

ways to optimize treatment. Limited mathematical analysis of

oncolytic virus therapy has been performed in the past [17–21].

This work is largely qualitative in nature, examining how variation

in viral and host parameters influences the outcome of treatment.

For example, it has been suggested that maximizing the virus-

induced rate of tumor cell killing is not going to lead to the best

treatment outcomes. Instead, an intermediate and optimal rate of

virus-induced cell death optimizes treatment success [17,18]. This

work was based on the analysis of the equilibrium properties of the

model. That is, the lower the total number of cancer cells that

remain as the dynamics converge to steady state, the better the

predicted outcome of therapy.

While such steady state analysis can provide some valuable

qualitative insights, it has limitations. The main problem is that in

such infection dynamics models, the population of cells and viruses

can show extensive oscillations before converging to a steady state.

During these oscillations, the populations of cells and viruses can

potentially go extinct, and the system might never reach

equilibrium. Therefore, it is important to understand these
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oscillatory dynamics, and how they relate to the chances that the

cancer cell population is driven extinct.

This paper aims to analyze these dynamics in detail in an

attempt to provide a more realistic description of oncolytic virus

dynamics. This is a difficult task because these infection dynamics,

and in particular the occurrence of population oscillations, can be

dependent on particular details of the models that are of a

biologically uncertain nature. To address this issue, we avoid

concentrating on a particular model, but take a more general

approach. Through specific restrictions about biological assump-

tions, we analyze a class of mathematical models that aim to

describe viral spread through a tumor in different settings. We seek

to determine conditions under which the virus is successful at

eliminating the tumor, and the conditions when virus therapy fails.

In order to underline the insights that we gain from this general

framework, we also consider specific models that are examples of

the general framework. This modeling framework provides the

basis for experimental validation and testing procedures, which

will allow us to accurately predict the time course of cells and

viruses at least in relatively simple scenarios, such as in vitro

experiments or simple in vivo scenarios. In this context, we fit the

models to previously published experimental data and discuss

implications for model testing, model selection, and experimental

work. A predictive model of a complex in vivo situation (e.g.

including immune responses) will obviously be more difficult to

attain, but can arise from a thorough understanding of the simpler

in vitro scenario that we examine here.

Results

The modeling framework
We will model the dynamics of oncolytic virus replication by

ordinary differential equations that describe the development of

the average population sizes of cells and viruses over time. This

approach is based on very well established mathematical models

that describe the general dynamics of virus spread both in vivo and

on an epidemiological level [22,23]. Instead of considering a

specific model, however, we will take a generalized approach and

consider a class of models. The general modeling framework used

in our study is as follows. We take into account two populations:

uninfected tumor cells, x; and infected tumor cells, y. The

population of free viruses is not modeled explicitly. Because the

turnover of free viruses is much faster than that of infected cells, we

simply assume that the free virus population is in a quasi-steady

state and proportional to the number of infected cells. The basic

model is given as follows:

_xx~xF x,yð Þ{byG x,yð Þ, ð1Þ

_yy~byG x,yð Þ{ay: ð2Þ

The function F describes the growth properties of the uninfected

tumor cells, x, and the function G describes the rate at which

tumor cells become infected by the virus. These functions are

unknown and can potentially take a variety of forms, which will be

discussed below. The coefficient b in front of the infection term

represents the infectivity of the virus. Finally, virus-infected cells

die with a rate ay. We will not include immune responses in our

considerations. While immune responses will certainly be an

important factor for oncolytic virus dynamics in vivo, our goal is to

first understand those dynamics in a simpler setting without the

presence of immune responses. These models would be suitable to

describe the growth of oncolytic viruses in relatively simple in vitro

or in vivo settings. Once an understanding of such simple systems

has been achieved, additional biological complexities (such as the

presence of immune responses) can be added to the model.

This class of models is characterized by the existence of

equilibria, the number and nature of which depends on the tumor

growth term F and the infection term G. In the most general sense,

the equilibria of the system are defined by the following two

equations:

xF x,yð Þ~ay, ð3Þ

G x,yð Þ~ a

b
: ð4Þ

We will explore the equilibria and their properties depending on

the tumor growth term, F, and the infection term, G.

The term F reflects the growth properties of an uninfected

tumor. It comprises both division and death rates. The simplest

assumption that can be made about the term F is that growth is

exponential (or, more precisely, the division and death happen

according to an exponential law, and the division rate is higher

than the death rate). While this can be true during early stages of

tumor growth, tumor growth certainly deviates from an exponen-

tial pattern at larger sizes for a variety of reasons, for example

space or nutrient limitations. Therefore, more complicated tumor

growth terms involving some form of saturation must be

considered [24]. In this respect, we can distinguish between two

basic scenarios: First, while the rate of tumor growth saturates and

slows down at higher tumor sizes, the tumor has the potential to

keep growing towards infinity. Growth would stop once the tumor

has reached a lethal size. Second, it can be assumed that growth

not only slows down, but comes to a halt as the tumor size reaches

a critical level, which can be called the carrying capacity of the

tumor. This could happen when the division rate equals the death

rate of the cells.

Regarding the infection term, the assumption used most often in

mathematical models is that it is directly proportional to the

number of infected and uninfected cells [25,26]. This, however,

assumes mass action or perfect mixing of populations, which is

unrealistic, especially in the context of tumors. Instead, virus

spread is likely to be slower, limited by spatial constraints. Since

the virus released from one infected cell cannot reach all

susceptible tumor cells in the population, the infection rate must

be a saturating function of the number of susceptible tumor cells.

Similarly, not all infected cells present in the population will be

able to contribute to the generation of newly infected cells, for

example if they are spatially separated from susceptible cells.

In the following section, we will define different classes of

infection terms that have biologically reasonable characteristics,

and investigate how they influence the properties of the model.

These are based in part on mathematical work done in the context

of infectious disease epidemiology [25,26]. Subsequently, we will

examine how changing the tumor growth term influences the

model predictions.

Different classes of infection terms and their properties
Let us consider two different classes of viral growth, see

figure 1(a,b). Tumor-virus systems belonging to class I are

characterized by the following property: if the number of

uninfected tumor cells is high relative to the number of infected

cells, virus growth does not slow down as the number of infected
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cells rises. Virus growth is exponential. Biologically, this can be

interpreted as virus replication in a non-solid tumor where cells

mix relatively freely. In other words, infected cells are not clustered

together in a mass but are interspersed among uninfected cells.

This is shown schematically at the top of figure 1(a) (the white

circles represent uninfected cells, and the black circles - infected

cells). In this case, if the number of uninfected cells is relatively

large, then every infected cell is likely to be surrounded by

uninfected cells to which the virus can be passed on. Alternatively,

a similar picture can be achieved by a very high motility of the

virus. In either case, all infected cells contribute to viral spread and

growth is exponential. We call this ‘‘fast virus spread’’. On the

other hand, with tumor-virus systems that belong to class II, the

virus growth rate decreases as the number of infected cells rises,

even if the number of uninfected cells is very large. The biological

interpretation is that infected tumor cells are clustered together,

figure 1(b). This can occur in solid tumors, which typically show a

high degree of spatial arrangement. In this case, as the number of

infected tumor cells increases, most infected cells will be

surrounded by other infected cells and not by uninfected cells.

Hence, they cannot pass on the virus and cannot contribute to

virus spread. Only cells at the periphery of the infected cell mass

have uninfected cells in the neighborhood and can contribute to

new infection events. We refer to this model of infection as ‘‘slow

virus spread’’.

Next let us connect this classification with the mathematical

model, and in particular, with the infection term, byG(x,y). The

function G(x,y) is related to the proportion of the total population

of the infected cells which participates in the infection process. It is

plotted in figure 1 as a function of the number of tumor cells, x,

and we examine the shape of these plots. Let us take a closer look

at the schematic at the top of figure 1(b). Because of the

geometrical arrangement of the cells in this case, only the infected

cells on the surface of the black core will be able to infect other

cells (it is 6 out of the 7 cells in the smaller colony presented). Now,

let us increase the system size, such that the number of infected

and uninfected cells grows in the same proportion. Again, only the

infected cells close to the surface of the infected core will

participate in the infection process. However, now the proportion

of the surface cells is much smaller (11 out of 20 cells). As the size

of the system increases, the proportion of such ‘‘active’’ cells (that

is, cells capable of infecting other cells) decreases. This is what is

depicted in the graph in figure 1(b), where the function G(x,y)

declines following the peak. (For very small system sizes, the

proportion of cells participating in infection is formally zero

because of the lack of uninfected cells, therefore the graph of the

function G starts at zero, reaches a peak, and then declines for high

values of x). Next, we take a look at the cell arrangement at the top

of figure 1(a). Here, the populations are well-mixed, and as the

system grows, a constant fraction of infected cells will be able to

infect new cells. This is reflected in the corresponding graph of

G(x,x/a), which reaches an asymptote and does not decline. In

Table 1 we list several examples of fast and slow growth laws.

In general, we can prove that the two scenarios above are the

only possible outcomes, given the biological requirements imposed

on the function G. As x increases, this function increases, and can

either approach zero or a nonzero level. If it approaches a non-

zero level, this does not necessarily need to occur via a monotonic

approach to the asymptote. It is possible that the function G first

increases, peaks, and then converges to a non-zero asymptote. For

intermediate values of x the function G may have a more

complicated structure than that shown in figure 1, but in the

absence of any biological evidence of that it is a safe bet to assume

the simplest shape with a minimal number of local extrema.

Figure 1. Two classes of virus growth captured by the mathematical models. (a) According to class I or fast virus growth, virus growth is
exponential as long as the number of uninfected cells is significantly larger than the number of infected cells. This can correspond to a high degree of
mixing between infected and uninfected cells. As the virus population grows, the number of cells that contribute to virus spread remains constant
because most infected cells will have an uninfected cell in their vicinity. (b) According to class II or slow virus growth, virus growth slows down and
saturates as the virus population increase in size, even if the number of uninfected cells is relatively large. This can correspond to spatial clustering of
the infected cells. Only infected cells at the surface have uninfected cells in their neighborhood and can thus contribute to virus transmission. As the
number of infected cells rises, the number of ‘‘active’’ cells that can contribute to virus transmission declines.
doi:10.1371/journal.pone.0004271.g001
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How does the shape of G help us draw meaningful conclusions

about the behavior of the biological system? It turns out that the

function G is essential in determining the number and the stability

properties of the equilibria of the system, and thus it will help us

reason about long-term predictions on the treatment outcome.

Equations (3–4) can be combined in a single equation,

G x,y xð Þð Þ~a=b, ð5Þ

where the function y(x) is a relationship between the number of

infected and uninfected cells at equilibrium as the total system size

grows; it is obtained from equation (3) and depends on the exact

rate of cancer growth, F. If the cancer growth is exponential

(F = 1), we have y(x) = x/a, that is, at equilibrium, the infected cells

comprise a fixed fraction of uninfected cells. Thus the function

G(x,x/a) depicted in figure 1 is just the left hand side of the

equation for the equilibria, equation (5). The right hand side is

represented by horizontal dashed lines, whose level decreases with

the viral replication rate b. The number of intersections

corresponds to the number of equilibria in the system.

We can see that the two graphs in figure 1 exhibit different

numbers of equilibria. First we consider figure 1(a), fast virus

spread. In this case, the model always contains a parameter region

in which exactly one equilibrium exists. If the viral replication rate,

b, lies below a threshold (b,bc) then no equilibrium exists. If the

viral replication rate lies above that threshold, the following is

observed. As shown in figure 1(a) exactly one equilibrium is found.

In other cases, it is possible that there are two or more equilibria

for intermediate viral replication rates. (For example, if the

function G(x,x/a) first rises and achieves a maximum before

descending to its horizontal asymptote, or if it goes through a

number of local extrema before approaching a horizontal

asymptote.) The most important universal feature in all fast

growth scenarios is that for sufficiently high values of b, there is

exactly one equilibrium. Next, consider Figure 1(b), slow virus

spread. Again, for an equilibrium to exist, the viral replication rate

needs to lie above the threshold b.bc. If this is the case, the system

is always characterized by the presence of not one, but two

equilibria. Again, in some cases, it is possible that the intermediate

values of b correspond to more than two equilibria.

The biological interpretation of this analysis is as follows. We

saw that for both modes of infection, if the values of the viral

replication rate b are small, no equilibria exist. This translates into

an uncontrolled cancer growth. This is an intuitive result: for low

viral replication rates, treatment is impossible. A less intuitive

result is connected with the number of equilibria once b is above

its threshold value.

The cancer-virus system displays a fundamentally different

behavior depending on whether it is characterized by one or two

equilibria. If there is only one equilibrium, then the dynamics will

be governed by the properties of this equilibrium only. Because the

number of tumor cells is relatively low at this equilibrium, this

outcome corresponds to containment of the tumor by the virus.

For convenience, we call this internal equilibrium EI. On the other

hand, the situation is more complicated if the system is

characterized by two equilibria. The first equilibrium, at which

the number of tumor cells is lower, is again the internal

equilibrium, EI, and can be interpreted as containment of the

tumor by the virus. The second equilibrium can be shown to be an

unstable saddle node equilibrium, call it ES. The presence of the

saddle equilibrium means that the dynamics are qualitatively

different depending on the initial conditions. If the initial number

of tumor cells is relatively low and close to the internal

equilibrium, then the dynamics are governed by this internal

equilibrium, EI, leading to a degree of tumor control. If the initial

number of tumor cells is higher and around or above the saddle

node equilibrium ES, then the number of tumor cells increases in

an uncontrolled fashion. Hence, in this regime, uncontrolled

cancer growth is always a possible outcome.

We conclude that our biologically defined modes of virus spread

correspond to very different mathematical properties. Models of class

I (fast virus spread) contain a parameter region (of high enough b) in

which only a single equilibrium is observed. In this case, the model

contains a parameter region in which uncontrolled cancer growth is

impossible. Models of class II (slow spread) never have only one

equilibrium and the saddle node equilibrium ES is present whenever

the internal equilibrium EI exists. In this class of models, no matter

how high b is, uncontrolled cancer growth is always a possibility.

Effect of the tumor growth term
For the purposes of classification of the virus spread terms, we

looked at the changes in G as the number of infected and uninfected

cells grew in the same proportion. This led to a direct evaluation of

the number of equilibria for exponential cancer growth (F = 1).

While mathematically the simplest scenario, exponential growth is

an unrealistic assumption, because the growth of cells is bound to

saturate as the tumor grows. Our methods allow to study any

reasonable cancer growth law in a very natural way.

Let us model a slow-down of the tumor growth rate as the

number of tumor cells increases. This can be done in two different

ways. On the one hand, we can assume that while tumor growth

slows down, it never stops, such that the tumor can grow towards

infinity over time. That is, there is no upper limit to the number of

tumor cells; in practical terms growth will stop when the organism

dies. An example is what we call ‘‘surface growth’’, where only the

cells around the surface of the tumor can give rise to viable daughter

cells and can contribute to tumor spread. This can apply to solid

tumors that have a high degree of spatial structure. Surface growth

in 2D and 3D are listed in Table 2. The parameter g determines the

tumor size at which saturation comes into play. Another possibility

that falls into this category is that the rate of tumor growth becomes

linear as the number of tumor cells increases. In this case, tumor

growth is even slower; we refer to it as ‘‘linear growth’’.

On the other hand, it is possible that there is a natural limit or

carrying capacity, W, that limits tumor growth [27]. Thus, we will

assume that growth slows down and eventually stops as the

number of tumor cells increases. This can occur in a variety of

ways. Tumor growth can be exponential until the number of cells

approaches carrying capacity and the rate of tumor cell growth

Table 1. Examples of different virus spread terms, G(x,y).

G(x,y) Law of virus spread

ez1ð Þx= xzyzeð Þ Fast (frequency dependent)

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xzyze1
p ffiffiffi

x
p

z
ffiffiffi
y
p

ze2

� � Fast

x

xy1=3ze
Slow

e1z1ð Þ e2z1ð Þx
xze1ð Þ yze2ð Þ

Slow

xffiffiffiffiffiffi
xy
p

ze1

� � ffiffiffi
x
p

z
ffiffiffi
y
p

ze2

� � Slow

xffiffiffi
x
p

yzcð Þzxze
Slow

doi:10.1371/journal.pone.0004271.t001
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becomes zero. For example, this can be described by the logistic

growth term (see Table 2) [27]. Alternatively, we can assume that

tumor growth first saturates according to the surface growth or

linear growth patterns described above, and only reaches the

carrying capacity once the tumor has grown to a significantly

larger number of cells. Another example of a growth with a

carrying capacity is a Gompertzian type growth [27], Table 2.

As mentioned before, the term F reflects implicitly both division

and death properties of uninfected tumor cells. For example, an

exponential growth is characterized by a net expansion rate

resulting from exponential division and death processes. The

logistic growth is a consequence of saturation of the division rate

while the (exponential) death rate remains constant. In fact, any

process with a sub-exponential division rate and an exponential

death will be characterized by a finite carrying capacity. On the

other hand, an unlimited (but saturated) growth (such as surface

growth) implicitly includes death which happens slower than

exponentially. If we were to add an exponential death term to a

surface growth, it would lead to a limited growth with a carrying

capacity. Our framework includes all these and any other

reasonable functional forms of cellular growth.

In the following, we will examine the effect of different types of

tumor growth terms on the properties of the model. We will do this

first in the context of the faster virus infection terms that belong to

class I, and then in the context of the slower infection terms that

belong to class II. Note that our analysis is quite general and the

particular growth laws listed in Table 2 are merely an illustration;

the results are not restricted to these particular growth laws.

Effect on fast virus growth. With this class of virus infection

term, we found that in the context of exponential tumor growth,

G(x,y(x)) with y(x) = x/a approaches a nonzero asymptote for large

values of x (note that it can either rise monotonically to the

asymptote, or first go through one or more local maxima before

declining towards the asymptote). In either case, for any

equilibrium to exist, the viral replication rate needs to lie above

a threshold b.bc, and there exists a parameter region

(characterized by values of b greater than a threshold) in which

only the internal equilibrium EI is present. In this parameter

region, tumor control is the only outcome.

Introducing saturated tumor growth (or changing the function F

in any way) will lead to a different functional form of y(x) in

equation (5). A universal feature is that any tumor growth slower

than straight exponential growth will lead to smaller values of y(x)

and thus to higher values of G. Therefore, as a result of tumor

growth saturation, the asymptote becomes higher for slower tumor

growth terms. This means that only the internal equilibrium EI

can exist, as with exponential growth. The only difference lies in

the viral replication rate threshold beyond which this equilibrium

can exist and beyond which tumor control is possible. The slower

the tumor growth, the lower the viral replication rate threshold

required for virus-mediated control.

If we assume saturated but limited tumor growth (i.e. growth

stops at carrying capacity W), then the picture is similar for the

most part, with one difference. After the term G(x,y(x)) has

approached the asymptote, the curve G takes an upward turn in

the vicinity of x = W, i.e. when the number of cells approaches

carrying capacity. This means that the model acquires an

additional equilibrium, which corresponds to the cancer growing

to its carrying capacity W. In the systems with unrestrictive

growth, this was equivalent to unlimited growth of the cell

population to infinitely large sizes. This is illustrated with the

dotted line in Figure 2(a). We can see that for x%W, the curves for

limited and unlimited growth laws look identical, and near the

carrying capacity W they deviate.

So far, we have concentrated on the case where G(x,y(x))

increases monotonically towards an asymptote. Alternatively, the

term G(x,y(x)) can rise to a peak and then decline toward a non-

zero asymptote. In this case, including saturation into the tumor

growth term F(x,y) leads to similar consequences. However, the

hump in the function can disappear, eliminating any parameter

region in which both equilibria can exist. In other words, with

slower tumor growth, there is no parameter region anymore in

which the tumor can escape the effect of the virus and grow out of

control. Whether this occurs or not depends on the relative size of

the two spatial scales involved. The first scale is defined by the

tumor size at which the virus infection function G saturates and

peaks in the context of exponential growth; this is entirely

dependent on the properties of the viral growth term. Let us call

this scale sv, where the subscript refers to ‘‘viral’’. The second scale

is given by the colony size at which the tumor growth law starts to

deviate from exponential; we will call this scale st (where the

subscript refers to ‘‘tumor’’). When xt#sv, the asymptotic value of

G becomes sufficiently large such that the hump disappears. The

disappearance of the hump makes treatment easier, and this

occurs if tumor growth slows down before virus growth does.

Effect on slow virus growth. Here, we assume slower virus

growth terms that belong to class II. In the context of exponential

growth, the function G(x,y(x)) first increases, and then declines

towards zero. This means that if equilibria exist, both the internal

equilibrium EI and the saddle node equilibrium ES are aways

present. Consequently, the possibility always exists that the tumor

can out-run the virus infection and grow uncontrolled. Taking into

account saturated tumor growth has the following effect

(Figure 2(b)). (i) The function G can remain qualitatively the

same; that is, it rises to a peak and then declines towards zero. (ii)

Alternatively, the picture can change such that it does not decline

towards zero, but towards a non-zero asymptote, while remaining

a one-humped function. (iii) Finally, the picture can change

further such that the function G increases monotonically towards

an asymptote. Which outcome is observed depends on the exact

nature of the functions F and G and also the relative size of the two

spatial scales involved: the tumor size at which the virus infection

term G saturates and peaks (sv), and the size st at which the pattern

of tumor growth starts to deviate from exponential. Lowering the

value of st relative to sv shifts the outcome from scenario (i) to (iii).

As the value of st becomes similar to the value of sv, the model

contains parameter regions in which only the internal equilibrium

EI exists and in which uncontrolled tumor growth is impossible. If

st%sv, then the hump in the function G disappears, and the saddle

node equilibrium ES is never present. In this case, virus-induced

tumor control is the only outcome, and uncontrolled tumor

growth cannot be observed. In biological terms, saturation of

Table 2. Examples of different tumor growth terms, F(x+y).

F(x+y) Growth Law

1 Exponential

g= gzxzyð Þ Linear

g= gzxzyð Þð Þ{1=2 Surface growth in 2D

g= gzxzyð Þð Þ{1=3 Surface growth in 3D

1{ xzyð Þ=W Logistic

log
Wzg

xzyzg
log

Wzg

g

� �{1 Gompertzian

doi:10.1371/journal.pone.0004271.t002
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tumor growth at lower sizes promotes successful virus therapy.

These arguments apply to all saturated tumor growth scenarios.

With saturated but unlimited tumor growth, the function G

approaches an asymptote for large tumor sizes x. For tumor

growth that is limited by a carrying capacity W, the function G

eventually deviates from the asymptote and rises again, indicating

the presence of an equilibrium that describes tumor growth

towards carrying capacity rather than towards infinity. Lowering

the carrying capacity W has the same effect as lowering the

parameter st that determines the tumor size at which growth starts

to saturate: it shifts the outcome from scenario (i) to (iii).

Summary of model properties
In summary this analysis has provided the following insights.

We examined two types of infection terms and found that they

strongly influence the dynamics of oncolytic virus spread. In the

first class of models, virus spread was fast because infected cells are

mixed among uninfected cells. In this case, tumor control is always

observed if the viral replication rate lies above a threshold. In these

parameter regions, loss of tumor control is not observed. In the

second class of models, virus spread was assumed to be slow,

because infected cells are clustered together in space. In this

situation, the model can be characterized by bistability. If the

initial number of tumor cells lies below a threshold, tumor control

is observed. If the initial number of tumor cells lies above this

threshold, uncontrolled tumor growth is observed. If tumor growth

only saturates at high numbers of tumor cells or not at all, then

uncontrolled tumor growth is always possible in parameter regions

in which tumor control is possible. If tumor growth saturates at

lower levels, there are parameter regions in which only the tumor

control outcome is observed and in which uncontrolled tumor

growth is not possible. If tumor growth saturates at even lower

levels, then the bistability and the dependence on initial conditions

vanishes completely.

Properties of the internal equilibrium
The above analysis concentrated on the equilibria. By

examining which equilibria exist under different conditions, we

can obtain information about the ability of the virus to control the

cancer, and about the possibility that the cancer grows despite the

presence of the virus. If the dynamics are governed by the internal

equilibrium EI, then the virus keeps the tumor cell population at

relatively low levels and prevents uncontrolled tumor growth. We

have discussed the conditions under which this can be achieved

and interpreted these conditions from a biological angle. If the

virus does control the tumor, however, additional questions arise.

The virus can either control a persisting tumor at low levels, or the

virus can drive the tumor cell population extinct.

Because we are considering ordinary differential equations that

describe the average behavior of the cell and virus populations,

true extinction cannot occur in this model. The number of cells

can, however, drop to very low levels. If the average number of

cells is below one, we can assume that tumor extinction is a likely

event. Therefore, if the number of tumor cells at equilibrium lies

below one, we can say that the virus is likely to drive the tumor

extinct. However, even if the equilibrium number of cells lies

above one, the tumor cell population can still go extinct during

oscillatory dynamics that can occur before the dynamics reach

equilibrium. Therefore, we need to understand the properties of

the internal equilibrium in more detail. We will examine this in the

context of both fast and slow virus growth. We will only assume

saturated tumor growth and not consider straight exponential

tumor growth.

Fast virus growth. One of the most important parameters

that influence the properties of the internal equilibrium is the

replication rate of the virus b. In general, the faster the replication

rate of the virus, the lower is the equilibrium number of tumor

cells. Further, it can be shown that if the viral replication rate b
crosses a threshold, the behavior near the equilibrium becomes

oscillatory. Both promote the eradication of the cancer. In general,

the internal equilibrium can either be stable or unstable,

depending on the particular model under consideration as well

as parameter values.

Let us first consider the case where the equilibrium is stable.

Then we can distinguish between two parameter regions. Denote

the size at which tumor growth slows down and deviates from

exponential by st. In the first parameter region, the value of st is

large compared to a value related to the virus scale, sv (for the exact

Figure 2. The effect of a carrying capacity. The function G(x,y(x)) is plotted for two particular choices of the virus spread law and three different
laws of cancer growth: exponential, surface growth and linear growth. (a) Fast virus spread, G(x,y) = x/(x+y+1) and (b) slow virus spread, G = x/(x+1)/
(y+1). The solid lines correspond to the unlimited cancer growth; the dotted lines - to a growth up to a given size, W. The parameters are: a = 1, g = 10
and W = 104.
doi:10.1371/journal.pone.0004271.g002
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definition see the Supporting information S1). In this parameter

region, we observe a viral replication rate threshold, at which the

equilibrium number of tumor cells drops sharply from relatively

high values to values of the order 1 (figure 3a). This replication

rate threshold can be defined for individual models that belong to

this class and defines the condition for cancer eradication. If the

tumor size at equilibrium drops to small values (of the order of 1

cell), stochastic effects are very likely to lead to extinction. This is

further supported by changes in the oscillatory approach to the

equilibrium, which we have investigated in the context of

individual models (figure 3 b). At this viral replication rate

threshold, the amplitude of the initial oscillations can increase

sharply, as can the time it takes for the dynamics to approach the

stable equilibrium (the real part of the eigenvalues of the Jacobian

matrix rapidly approaches zero). Since pronounced oscillations

reduce the number of tumor cells well below one, tumor

eradication is the likely outcome. Note, however, that this drastic

change in the oscillatory pattern is not observed in all models that

belong to this class. The sharp drop in the equilibrium value is,

however, a universal feature of models that belong to this class.

Now assume the other parameter region in which the scale st is

small. In this case, no such viral replication rate threshold exists.

Instead, the equilibrium number of tumor cells declines propor-

tional to the viral replication rate b. Numerical simulation of

individual models, however, indicates that the minimum number

of tumor cells can decline exponentially with an increase in the

viral replication rate, although this could not be proved in general.

Taken together, these findings indicate that in the parameter

regions where virus replication is fast enough such that there is an

oscillatory approach to the equilibrium, tumor eradication is the

likely outcome.

As mentioned above, it is also possible that the internal

equilibrium EI is unstable. In this case, we observe oscillations that

diverge away from the equilibrium if the viral replication rate b is

sufficiently fast. That is the amplitude of the oscillations increases

over time. This is likely to correlate with extinction of the tumor,

Figure 3. (a) The equilibrium number of uninfected cancer cells as a function of the viral replication rate b for fast virus growth. There is a threshold
viral replication rate at which the number of cancer cells drops sharply from relatively high values to values of the order of one. This can be
considered a tumor extinction threshold. (b) Dynamics of the uninfected cancer cells if the viral replication rate lies below (left) and above (right) this
threshold. If the viral replication rate lies below the threshold, limited oscillations are observed that dampen out quickly. If the viral replication rate
lies above the threshold, extensive oscillations are observed that reduce the cancer cell population to very low levels, and that dampen out very
slowly (dampening not observed on time scale shown here). These plots were made by using a specific model from the fast virus growth category,
that is G = (e+1) x/(x+y+e). Note that the transition in oscillations is not a universal feature of all models in this class. Parameters were chosen as
follows: r1 = 1; a = 0.1; e = 10; g = 108; x0 = 100; y0 = 10; For (b), b = 0.07 and b = 0.13, respectively.
doi:10.1371/journal.pone.0004271.g003
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especially if the number of tumor cells at equilibrium is relatively

low. This is because the oscillations will reduce the number of

tumor cells well below the equilibrium value over time. Thus we

conclude that for sufficiently large values of b, the cancer will be

driven extinct by the virus through (convergent or divergent)

oscillations.

Slow virus growth. In this case, the tumor size at the internal

equilibrium is again negatively correlated with the viral replication

rate b. Similarly to fast virus growth, the internal equilibrium can

be stable or unstable depending on the individual model and on

the parameter values. The dynamics will be discussed for both

stable and unstable equilibria EI.

If the equilibrium is stable, the approach is again oscillatory if the

viral replication rate is sufficiently large (Figure 4a and 5a). Numerical

simulations of individual models indicate that the minimum tumor

size during these oscillations can decline exponentially with the viral

replication rate b, although again this could not be proved in a

general setting. These results indicate, however, that if oscillations are

observed it is likely that the cancer is eradicated by the virus (Figure 5).

Note that this assumes that the initial number of tumor cells is

sufficiently small such that the population is in the region of attraction

of the internal equilibrium. If this is not the case, the virus fails and

unlimited virus growth occurs because the long-term outcome

depends on the initial conditions as discussed above (Figure 5 a). In

addition to these dynamics, the following can occur (Figure 4(a)).

Assume that the tumor cell population is reduced to low levels during

the initial oscillations, but not to extinction. As the tumor cell

population rises again, it can actually cross over to values larger than

the saddle equilibrium ES. Consequently, the cancer will grow

uncontrolled and virus therapy will fail.

Figure 4. The phase portrait for a system with a slow virus propagation term. (a) The intermediate equilibrium, EI, is stable (the basin of
attraction is shaded), (b) EI is unstable.
doi:10.1371/journal.pone.0004271.g004

Figure 5. Dynamics in fast virus growth models assuming that the internal equilibrium EI is (a) stable and (b) unstable. (a) If the
internal equilibrium is stable, then the dynamics can converge to this equilibrium via damped oscillation if the initial number of cancer cells is
relatively low. On the other hand, if the initial number of cancer cells is relatively high, then uncontrolled cancer growth is observed. (b) If the internal
equilibrium is unstable, then diverging oscillations are observed. Eventually, these diverging oscillations take the populations beyond the saddle
node equilibrium, leading to unlimited cancer growth. Before that occurs, however, it is most likely that the cancer has been driven extinct in a
stochastic setting because the diverging oscillations drive the tumor size to ever decreasing values. These plots were obtained from a specific model
that belongs to the slow virus growth class, i.e. G~

e1z1ð Þ e2z1ð Þx
xze1ð Þ yze2ð Þ . Parameters were chosen as follows: (a) r = 1; b = 0.8; a = 0.5; e1 = 20; e2 = 10; g = 108;

x0 = 100 and 10,000, respectively; y0 = 10. For (b) r = 1; b = 1; a = 0.5; e1 = 10; e2 = 11$; g = 108; x0 = 10; y0 = 1.
doi:10.1371/journal.pone.0004271.g005
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On the other hand, if the internal equilibrium is unstable, then

the following is observed (Figure 4b and 5b). If the viral replication

rate is fast enough, the populations show diverging oscillations

away from the equilibrium (Figure 4b), i.e. the amplitude of the

oscillations increases over time. During these diverging oscillations,

the minimum number of tumor cells declines over time. Hence,

the tumor is likely to hit extinction. Again, there is the possibility

that during the oscillations the tumor cell population crosses over

to values larger than the saddle equilibrium ES. In this case, the

tumor cell population would grow uncontrolled to ever increasing

levels.

To summarize, for slow virus growth oscillations around the

internal equilibrium have the potential to drive the tumor cell

population extinct. However, the bi-stability of this system causes

problems since there is always the possibility that the populations

can escape to large numbers, leading to uncontrolled tumor

growth.

Application of models to experimental data
Here we fit our models to previously published experimental

data and discuss implications for model validation, model

selection, and further experimental work. We examined data

published by [28]. This study considered A549 human lung cancer

nude mouse xenografts, and infected them with the wild-type

adenovirus Ad309 and a mutant virus Ad337 (characterized by a

deletion in the E1b-19kD gene). The resulting dynamics were

investigated under two conditions. (i) Under the first condition, the

cancer cells were used to establish subcutaneous tumors in the

mice. When the tumors reached a certain size, the virus was

injected into the tumor. (ii) In a second scenario, infected cells

were first mixed with uninfected cells, and the mixture was

injected into the mice. The first scenario corresponds to spatially

more restricted virus growth, while in the second scenario there is

a higher degree of mixing between infected and uninfected tumor

cells due to the experimental protocol. For both scenarios, we

fitted models that differ in the infection term G and the tumor

growth term F. We performed non-linear least squares regression,

using standard software. The exact models that were used are

provided in Figures 6 and 7. The parameter estimates obtained for

all fits are tabulated in the Supporting Information S1.

We first fitted the control tumor growth in the absence of the

virus (Figure 6(a)). Both exponential growth and saturated growth

models (logistic, gompertzian, surface and linear, see table 2) were

applied. The saturated growth models fit the data better than

exponential growth. All saturated growth models fit the data well,

the logistic growth yielding the lowest (by a small margin) root

mean square (RMS) error. For convenience, we chose logistic

tumor growth as the basis for analyzing the effect of virus infection.

First, consider experimental condition (i), where the tumor was

allowed to grow in the mice before the virus was inoculated. Only

the wild-type virus Ad309 is considered. In this experiment, tumor

growth was significantly reduced by the virus. However, tumor

size reached a plateau by day 50, despite the persistence of the

virus, leading to the conclusion that the virus failed to eradicate the

tumor cell population. For fitting purposes we considered one fast

and one slow virus spread term, the first and the third in table 1.

Figure 6(b) shows that both a fast and a slow virus growth model

can fit the data. However, extrapolating beyond the experimental

time frame, very different long term outcomes are observed. The

fast model predicts that the tumor remains at relatively low levels,

controlled by the persisting virus infection. With the slow model,

we show two parameter combinations which both fit the data well,

but which are characterized by different long term outcomes. For

one parameter combination (slow 1), damped oscillations are

observed that lead to persistence of both the tumor and the virus at

relatively low levels. For the second parameter combination (slow

2), the tumor cell population escapes control and grows to high

levels. The virus population persists at low and ineffective levels

Figure 6. (a) Data on the growth of A549 human lung cancer nude mouse xenografts in the absence of the virus [28]. Different tumor growth
models were fitted, see Table 2. The parameter values and the root mean square values are summarized in the Supporting Information S1. The graph
on the right plots the predicted long-term growth curves. (b) Growth dynamics in the presence of the wild-type virus Ad309, which was injected into
an established tumor. Both a slow model and a fast model were fitted. For the slow model, G = x/(x y1/3+e). For the fast model, G = x/(x+y+e). Tumor
growth was assumed to be logistic, F = 12(x+y)/W. For the slow model, different parameter combinations are shown that fit the data to a similar
degree (slow1, slow2). The graph on the right shows the predicted long term dynamics. Parameter values and root mean square values are given in
the Supporting Information S1.
doi:10.1371/journal.pone.0004271.g006
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(not shown). Therefore, not only do different models predict

different long term dynamics; within one model, different

parameter combinations that describe the data equally well can

give rise to different predictions regarding the long-term dynamics.

Our discussion of this and other results is postponed until the end

of this section.

Next consider experimental condition (ii), in which infected cells

were mixed with uninfected cells at a ratio of 1:1000 before the

tumor was injected into the mice. In this case, the viruses were

generally more effective. Tumor growth was prevented, and the

number of tumor cells declined to low levels. Figure 7 fits a slow

and a fast model to data that document infection with the wild

type virus Ad309 (Figure 7a) and the mutant virus Ad337

(Figure 7b). Consider the wild type As309 virus first (Figure 7a). All

models fit the data well. Again, the predictions about the long-

term dynamics vary, not only between models, but between

different parameter combinations of the same model. Two

qualitatively different outcomes are depicted in Figure 7a. On

the one hand, the cancer can grow out of control following the

initial reduction in the number of cancer cells. On the other hand,

the virus maintains control of the cancer, which persists but is

suppressed to relatively low levels. Thus, the encouraging but

limited trend shown by the data cannot be used to conclude

efficient virus-mediated tumor control. Longer experimental

studies are needed in order gain insights into the eventual

outcome of treatment, and to differentiate between the various

model predictions. Figure 7b shows the same analysis for the

mutant virus Ad337. As before, the slow and fast model can both

fit the data well, and within one model, different parameter

combinations are possible. The long-term dynamics show different

outcomes, depending on the model and the parameter combina-

tions. They include long term virus-mediated cancer control, as

well as uncontrolled cancer growth. In the context of the

experimental data, however, these long-term dynamics will not

be observed, as the cancers regressed completely in the

experiments. During the initial decline of the cancer cell

population in the model, the number of cells drops to such low

levels that extinction is actually the likely outcome in practical

terms. However, what this tells us is that if by chance the cancer

cell population does not hit extinction in the experiments, it is

entirely possible that the cancer cell population rebounds and

grows to high levels, depending on the model and its parameters.

As mentioned above, the experiments include both a highly

spatial setting where the virus was inoculated into an already

established tumor, and a mixed setting where infected and

uninfected cells were mixed before the tumor cells were placed

into the mouse. Therefore, it can be tempting to examine whether

the relative goodness of fit for the fast and slow models is different

in these two situations. As explained, however, each model can fit

the data with several alternative parameter combinations. There

are many more solutions to the least squares regression than

shown here. Therefore, it does not make sense to compare the

goodness of fit for slow and fast models. For instance if the fits

obtained for the slow model are slightly better than those obtained

for the fast model, it is quite possible that there exists another

parameter combination in the fast model that is better yet, and

that has not been encountered so far. This brings us to the

fundamental problem of nonlinear data fitting and model

validation, which is an interesting issue in itself and will be

discussed briefly here.

As with many (and perhaps most) other nonlinear models, the

parameter space where the minimization of the RMS error is

performed, is multidimensional and is characterized by many

shallow local minima. Most standard fitting routines get ‘‘stuck’’ at

local minima, and even more sophisticated algorithms aimed at

finding the global minimum are not very useful, because the

difference between the global minimum and many runner-ups is

usually insignificant and cannot serve as an indicator of the ‘‘right’’

Figure 7. (a) Data on the growth of A549 human lung cancer nude mouse xenografts in the presence of the wild-type virus Ad309, assuming that
infected and uninfected cells were mixed before the tumor cells were injected into the mouse [28]. A slow and a fast model were fitted. For each
model, different parameter combinations were found that fit the model comparably (slow1, slow2, fast1, fast2).The graph on the right side shows the
predicted long term dynamics for the different models and parameter combinations. (b) Infection with the mutant As337 virus, where again the
infected and uninfected cells were mixed before the tumor was injected into the mice. Again, a slow and a fast model were fitted, and with each
model different parameter combinations were found that provided a comparable fit to the data. As before, the graph on the right hand side shows
the predicted long-term dynamics. For the slow model, G = x/(x y1/3+e). For the fast model, G = x/(x+y+e). Tumor growth was assumed to be logistic,
F = 12(x+y)/W. Parameter values and root mean square values are given in the Supporting Information S1.
doi:10.1371/journal.pone.0004271.g007
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or ‘‘best’’ fit. Therefore, to attack the fitting problem, one is

required to repeat the minimization procedure multiple times,

either by performing an exhaustive span of the space of the initial

guesses, or by implementing a Monte-Carlo method. The statistics

of the outcomes are then analyzed in the hope to find clusters of

good fits, which are then assumed to be indicative of the solution

of interest.

The unfortunate part is that most of the times, these

sophisticated statistical techniques are not very useful because

the data sets that the fitting is applied to are simply too sparse, and

they probably do not contain enough information to distinguish

between models. Some of the deficiencies of experimental data sets

are (i) an insufficient number of time-points, (ii) a very large

experimental error at each time point, due to the experimental

difficulties as well as a small sample size, and (iii) the long-term

dynamics is often not captured due to the time-constraints of the

experiment. In other words, no sophisticated statistical data

manipulation can help distinguish between models if the data set is

too sparse, short and contains large scatter.

What can we conclude from these considerations and our own

attempts to validate the models based on published experimental

data? The good news is that at least some of the models contain

parameter combinations which describe the existing data reason-

ably well. The bad news is that model validation/rejection was not

possible in the particular system that we used. If data were

collected over longer periods of time, and with a larger sample

size, then the number of parameter combinations that can fit the

data would be significantly reduced, and allow for more

meaningful model comparison.

Discussion

In this paper we presented the first modeling approach that tries

to analyze the dynamics of oncolytic viruses in a general setting,

going beyond particular models in which results can easily depend

on mathematical terms chosen. Previous approaches to modeling

oncolytic virus dynamics, and virus dynamics in general, have

been based on particular models that include uncertain and

unrealistic assumptions. The most striking is the assumption about

the infection term, which usually assumes perfect mixing of

populations, and which is certainly violated in any biologically

realistic setting.

Our method can be considered a hybrid between such space-

free, mass-action approaches, and much more complex methods

involving spatial network ideas, e.g. [29–36]. The former

approach fails to capture spatial and geometric constraints which

play an important role in infection spread. The latter approach is

only analytically tractable to a certain degree; also, it usually relies

on a particular, given, set of rules that govern the infection spread.

Our investigation aims to capture general trends that arise from

different assumptions on the infection mechanism. It combines the

analytical tractability of simple dynamical systems with a more

realistic modeling of infection spread.

We found that based on the infection term, we can divide

models into two categories with fundamentally different behavior.

In one group, virus growth is relatively fast because the infected

cells are dispersed among the uninfected cells rather than being

clustered together. In this case most infected cells contribute to

virus spread. In these models, there is a clear viral replication rate

threshold beyond which the number of cancer cells drops to levels

of the order of one or less, corresponding to extinction in practical

terms. Under this parameter region, this is the only outcome in

this class of model. In the other category, infected cells are

assumed to be clustered together to some degree in a mass, which

might be realistic for solid tumors. In this case, only the infected

cells located at the surface of the cluster contribute to virus spread

because they are in the vicinity of uninfected cells. The infected

cells located in the center of the cluster are surrounded only by

other infected cells and therefore do not contribute to virus

replication. The larger the number of infected cells, the smaller the

proportion of cells that can pass on the virus. In this scenario, virus

therapy is more difficult. If tumor growth saturates only at

relatively large sizes or does not saturate, then even in the

parameter regions where the dynamics can converge to tumor

control or eradication, there can be the possibility that the cancer

can outrun the virus if the number of cancer cells lies above a

threshold at the start of virus therapy. This is because of the

existence of the saddle node equilibrium which ensures depen-

dence of the outcome on initial conditions. This might be

problematic in clinical settings, because there is only a relatively

small window between the size at which the tumor becomes

detectable (about 1010 cells) and the size at which it can induce

mortality (around 1013 cells).Tumor growth saturation at lower

levels introduces a parameter region in which only the tumor

control outcome is possible. A further reduction in the number of

tumor cells at which growth saturation occurs can abolish the

existence of the saddle node equilibrium altogether. In this case,

the only outcome is tumor control. This result makes intuitive

sense: earlier saturation of tumor growth slows down the cancer,

and makes it easier for the virus to gain the upper hand. It also

means that if the tumor is found early, it might be possible to slow

down tumor growth by means of more conventional drug therapy,

enabling the virus to control the cancer and to prevent runaway

growth. There is indication in clinical data that a combination of

chemotherapy and oncolytic virus therapy leads to better results

than either approach alone [37].

Another important finding of our study is that the basic results

regarding the outcome of oncolytic virus therapy do not depend

on the particular tumor growth terms used in the model. The

exact kinetics of tumor growth are still poorly understood and a

source of uncertainty. We examined straight exponential growth,

as well as a number of more realistic options, including saturated

but continued growth at high numbers of cancer cells, as well as

cessation of growth as the number of tumor cells approaches an

upper limit. While there are minor differences (such as the

existence of a stable equilibrium at large tumor sizes vs continues

slow growth), the properties of the tumor control equilibrium are

largely independent from the exact way in which tumor growth is

modeled.

Throughout this paper we discussed the ability of the virus to

eradicate the tumor in the context of our mathematical model that

aims to describe oncolytic virus growth in relatively simple settings.

It is important to point out that even simple scenarios could be

characterized by complicating conditions which are not captured

in the model and which make actual tumor extinction difficult to

achieve. For example, tumor cells might become resistant to the

virus by for example down-regulating the receptor required for

viral entry [38]. Related to this, cells could temporarily become

resistant to virus-induced effects depending on the stage of the cell

cycle [39]. Such effects can be easily incorporated into our

framework, if data suggest that they play a role in determining the

dynamics of oncolytic virus growth.

The framework presented here aims to bring us closer towards

predictive computational models of oncolytic virus replication in

vitro. Both additional computational and experimental work will

be necessary to advance this framework. On the theoretical side, it

will be important to also explore spatially explicit and stochastic

models. The ordinary differential equations are desirable because
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they can be applied to experimental data in a relatively

straightforward way. At the same time, however, spatial aspects

of population growth can only be captured in a phenomenological

way. Hence, it will be important to consider a spatially explicit

model and to compare its properties to the results obtained here.

On the empirical side, it will be important to run experiments that

document the growth of specific oncolytic viruses e.g. in a culture

of specific tumor cells. These data can be fitted to the various

models explored here to determine which model describes the data

best and which models can be rejected. This can be done in a

variety of setting: a culture where cells and viruses can mix well; a

2D tissue culture which imposes a degree of spatial constraints;

and a 3D tissue culture which can impose further spatial

constraints. Different models will apply to these different scenarios.

This will allow us to test the theoretical notions presented here,

and to obtain a set of models that are predictive for the relevant

scenarios.

Of course, for clinical relevance, oncolytic virus replication

needs to be considered in the context of more complex settings.

Most importantly, the virus is immunogenic, and immune

responses can inhibit the spread of the virus and can even drive

it extinct. Such components will have to be incorporated into a

mathematical model that describes the replication of an oncolytic

virus in vivo. However, before we have obtained a solid

understanding of the principles that govern the dynamics of

oncolytic viruses in simpler settings, it is unlikely that modeling can

contribute much to understanding the more complicated in vivo

scenario. The modeling framework discussed here provides a basis

to incorporate increasing amounts of biological complexity in the

future, and thus to gradually improve our understanding of the key

factors that determine the outcome of oncolytic virus therapy.

Materials and Methods

The results described in this paper are based on the analysis of

ordinary differential equations. Extensive mathematical details are

provided in the Supporting Information S1.

Supporting Information

Supporting Information S1

Found at: doi:10.1371/journal.pone.0004271.s001 (0.11 MB

PDF)
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