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ABSTRACT Douda Bensasson uses the population genomics of model yeast spe-
cies to understand how wild yeast colonize new environments, such as humans
or their food. In this mSphere of Influence article, she reflects on how the discov-
ery of “Surprisingly diverged populations of Saccharomyces cerevisiae in natural envi-
ronments remote from human activity” (Q.-M. Wang, W.-Q. Liu, G. Liti, S.-A. Wang,
and F.-Y. Bai, Mol Ecol 21:5404 –5417, 2012, https://doi.org/10.1111/j.1365-294X.2012
.05732.x) showed that a field survey and population genetic analysis of old growth
forests could “unveil the hidden part of the iceberg” of natural variation in S. cerevisiae
that went unnoticed for over a hundred years of yeast research.
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Wang et al. (1) searched the primeval forests of China for the yeast species that
humans used to make food and drink for millennia and discovered “Surprisingly

diverged populations of Saccharomyces cerevisiae in natural environments remote from
human activity.” This came at a time when we knew that S. cerevisiae lived wild on the
bark of oak trees (2, 3), but there was a world shortage of environmental isolates. Wang
et al. (1) showed that the genetic diversity of forest S. cerevisiae isolates on a single
Chinese island smaller than Belgium exceeded the genetic diversity seen across all
other continents or habitats. This enormous diversity implied that old-growth trees
represent the ancestral habitat of S. cerevisiae and finally dispelled the concern that it
is too domesticated to be useful as a model for ecology and evolution.

The tropics have always been poorly sampled for yeast (4, 5), and Wang et al. closed
this gap by comparing S. cerevisiae isolation frequencies among 11 provinces in
tropical, subtropical, and temperate regions (1). By coupling fieldwork with population
genetics, they noticed that genetic diversity centered in hot climates, while known
domesticated lineages clustered around Chinese cities in temperate regions and could
be feral. They therefore proposed that S. cerevisiae is tropical and subtropical. Leaving
no loose ends, they also generated mutants for crossing experiments and showed that
the new lineages are S. cerevisiae and not new species. Seven years on, the known
genetic diversity of S. cerevisiae in Far East Asia has grown and remains unsurpassed
despite the discovery of large-scale diversity in Brazilian rainforests (6). The East Asian
origin for S. cerevisiae that Wang et al. proposed is probably true (7).

If correct, Wang et al.’s proposal that S. cerevisiae is tropical and subtropical would
explain why generations of yeast biologists living in temperate regions believed that S.
cerevisiae was a domesticated species with no natural conspecifics. It also would explain
why yeast labs in cool temperate climates found few wild S. cerevisiae isolates in their
large field surveys (8–11). When Wang et al. published, I realized that my lab had
sampled woodlands in the wrong climate. Most immediately, this paper inspired me to
develop climate envelope models using field data on the closest relative of S. cerevisiae.
The labs in temperate climates (including mine) had no trouble isolating the sister
species, Saccharomyces paradoxus (8–11), which prefers cooler temperatures in the lab
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(12). We used our European S. paradoxus data and the known species difference in
thermal preference to show that S. cerevisiae is indeed subtropical and tropical and to
correctly predict the temperate locations where only feral S. cerevisiae strains occur in
China (11). Unsurprisingly, the interdisciplinary work of Wang et al. influenced me in
other ways. It inspired me to combine population genomic analyses with ecological
data to show that old oak trees provide a natural habitat for Candida albicans,
previously considered an obligate commensal (13). There was also a sociological lesson:
despite over a hundred years of research into “man’s best (micro) friend” (14), most of
the natural diversity of the model S. cerevisiae remained unnoticed until Wang et al.’s
exciting discovery.
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