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Abstract

To explore whether stent procedure may influence transcriptional response of endothelium, we applied different physical
(flow changes) and/or mechanical (stent application) stimuli to human endothelial cells in a laminar flow bioreactor (LFB)
system. Gene expression analysis was then evaluated in each experimental condition. Human umbilical vein endothelial
cells (HUVECs) were submitted to low and physiological (1 and 10 dyne/cm2) shear stress in absence (AS) or presence (PS) of
stent positioning in a LFB system for 24 h. Different expressed genes, coming from Affymetrix results, were identified based
on one-way ANOVA analysis with p values ,0.01 and a fold changed .3 in modulus. Low shear stress was compared with
physiological one in AS and PS conditions. Two major groups include 32 probes commonly expressed in both 1AS versus
10AS and 1PS versus 10PS comparison, and 115 probes consisting of 83 in addition to the previous 32, expressed only in
1PS versus 10PS comparison. Genes related to cytoskeleton, extracellular matrix, and cholesterol transport/metabolism are
differently regulated in 1PS versus 10PS condition. Inflammatory and apoptotic mediators seems to be, instead, closely
modulated by changes in flow (1 versus 10), independently of stent application. Low shear stress together with stent
procedure are the experimental conditions that mainly modulate the highest number of genes in our human endothelial
model. Those genes belong to pathways specifically involved in the endothelial dysfunction.
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Introduction

Endothelial cells (EC) are steadily exposed to a range of

physical and biomechanical stimuli. Three primary hemodynam-

ic forces act on endothelium: a) the radial pressure created by the

hydrostatic blood forces, b) circumferential stretch or tension

resulting by intercellular connections between the endothelial

cells, and c) shear stress, the frictional force created by blood

flow. These forces have been shown to induce several cellular

events; in particular the presence of low shear, non-laminar flow

is able to induce changes in gene expression profile that pre-

dispose the endothelium to the initiation and development of

atherosclerotic lesions [1–3]. Non-laminar flow promotes changes

to endothelial gene expression, cytoskeletal arrangement, wound

repair, leukocyte adhesion as well as to the vasoreactive,

oxidative and inflammatory states of the artery wall. Disturbed

shear stress also influences the site selectivity of atherosclerotic

plaque formation as well as its associated vessel wall remodelling,

which can affect plaque vulnerability.

Recent studies have highlighted that the placement of a stent

against the artery wall may affect the arterial mechanical

environment in very profound way [4,5]. Stent application may

directly injured endothelium through a mechanical stretching

action that produces endothelial damage and denudation.

Moreover, changes in flow patterns after stent positioning have

been observed in experimental/computational flow study [5] and

include large-scale vortex formation and strut-spacing dependent

flow stagnation. The low shear stresses associated with flow

stagnation could likely induce, together with endothelial damage,

vascular changes that are responsible of intimal hyperplasia, a

leading cause of restenosis which occurs in 20–30% of patients

within 6–12 months after primary stenting [6].

Although several groups have reported that low shear stress

compared to physiological one may affect gene expression profile

of endothelial cells in different experimental systems [7–9], it is

still unclear whether an invasive intervention like stent procedure

may influence the transcriptional response of endothelium.

To study the simultaneous effects of both changes in shear stress

and stent application on endothelial gene expression, we have

developed an experimental model of laminar flow bioreactor (LFB)

system with human cultured endothelial cells exposed or not

exposed to stent procedure. RNA expression from different

experimental conditions has been evaluated through the Affyme-

trix platform.
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Materials and Methods

We used a bioreactor system, designed and realized at

Interdepartmental Research Centre ‘‘E. Piaggio’’ [10], that is a

‘‘natural’’ evolution of parallel and cone-plate systems but with a

high uniformity in terms of shear stress. The geometrical

configuration of flow chamber realized in polydimethylsiloxane,

a silicone biocompatible polymer, has been modified to obtain an

optimal laminar flow in the central zone (active region) of the cell

chamber (Figure 1). Its particular shape was obtained after

modelling analysis performed with finite element software for

simulation of fluid dynamic flow (FluentH). With this geometry, a

central region with laminar flow and high wall shear stress values is

obtained, which allows for simulating different regions of the

cardiovascular system by adjusting flow rates.

For the in vitro stent experiments, we used a Crome-Cobalt bare

metal stent ST 516 model (dimensions 261 cm) without any

eluting drug (CID Saluggia, Italy).

Endothelial cell culture
Fresh human umbilical cords were recovered from healthy

females at the Obstetrics and Gynecology Unit of the Azienda

Ospedaliera Universitaria Pisana, after obtaining written informed

consent for use of these samples in research approved by the Local

Ethics Committee of Area Vasta Nord Ovest. The umbilical cords

were stored in PBS at 4uC, sent to our laboratory within 1 hour of

delivery and treated anonymously conforming with the principles

outlined in the Declaration of Helsinki. Umbilical vein was

cannulated, washed with PBS solution and filled with 3 mg/ml

collagenase IV solution in PBS. After 20 minutes in incubator at

37uC, vein was washed again with ECGM medium (Promocell,

Heidelberg, Germany) to block action of collagenase and after

centrifugation (900 rpm for 5 minutes), pellet was recovered with

fresh complete media and seeded in gelatin 1% pre-treated flask

for cell adhesion. Every 2 days media culture was changed, until

the confluence. Then, cells were washed with Phosphate Buffer

Saline and treated with 0.5% Trypsin in 0.5 mM EDTA (Lonza,

Basel, Switzerland). Once detached from flask, endothelial cells

were centrifuged at 900 rpm for 5 minutes. The pellet was

suspended in a new fresh media, counted with haemocytometer;

cells were seeded (15000 cells/cm2) on fibronectin 3 mg/cm2 pre-

treated Thermanox slides (dimensions 266 cm) (NUNC, Roche-

ster, NY, USA). For bioreactor experiments, HUVECs between

2nd and 5th passage were used.

Experimental design and bioreactor apparatus
The experimental design was according the following scheme:

1. LFB with low shear stress without stent;

2. LFB with high shear stress without stent;

Figure 1. Flow chamber. The flow chamber is realized in polydimethylsiloxane and designed to enable cells to be subject to a large range of shear
stress (a). The geometrical configuration has been modified to obtain an optimal laminar flow in the central zone (b) of the chamber.
doi:10.1371/journal.pone.0090213.g001

Endothelial Gene Modulation after Stent

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e90213



3. LFB with low shear stress and with stent;

4. LFB with high shear stress and with stent.

The first two experimental set (1 and 2) without stent were

performed to mimic pathological (1 dyne/cm2 flow) and physio-

logical conditions (10 dyne/cm2 flow) and to evaluate the effect of

flow changes on endothelial cells. One and 10 dyne/cm2 values

represent the range of altered or normal shear stress in coronary

vessels [11]. The second set of experiments (3 and 4) with stent

were assessed in order to analyze the simultaneous action of flow

changes and stent application on endothelium. Low shear stress (1

dyne/cm2) in the presence of stent, may reproduce an altered flow

pattern that mimic the flow reduction and stagnation described by

fluid dynamic studies [4,5].

The LFB system was composed (Figure 2) by a mixing chamber,

filled with 12 ml of complete culture media supplemented with 5%

of Dextran (Sigma-Aldrich, St. Louis, MO, USA), a cell culture

chamber and a peristaltic pump: all the components were

connected in a closed loop and the assembled system was put in

incubator to preserve temperature (37uC) and CO2 concentration

in air (5%). In stent experiments, six stents were put over each cell

slide in order to cover the entire surface (266 cm); after that the

system was closed. As positive control for cytotoxicity, 10%

DMSO was added to medium [12].

When HUVECs covered the Thermanox slides, experiments

with bioreactor started. Experiments run for 24 hours, the time

necessary to reach a stable RNA expression modulation [13].

After that, slides were recovered and cell images acquired under

microscope.

Cell Viability assay
Endothelial cells were washed with PBS and trypsinised with

200 ml/slide. Trypsin action was blocked by 1 ml of medium

addition. An aliquot of 50 ml (equally to 15.000 cells) were placed

in 96-well plate with 150 ml of fresh medium and added with 20 ml
of CellTiter-BlueH Cell Viability Assay solution (Promega,

Madison, USA) to monitoring cell metabolic capacity, an index

of their viability. Viable cells retain the ability to reduce resazurin

into highly fluorescent resorufin (579Ex/584Em). The fluores-

cence produced is proportional to metabolic activity and cell

number and was calculated as (Ff – Fi/Tf-Ti), where Ff is the

fluorescence signal read at 150 minutes (Tf) after the injection of

dye, Fi is the fluorescence signal after 30 minutes (Ti) from

injection of dye.

Viable cells were finally collected in 50 ml of RNA later solution

(Qiagen, Hilden, Germany) and frozen at 280u.

Total RNA extraction
Total RNA has been extracted from HUVECs using the

standardized procedures RNeasyH Micro Kit QIAGEN for small

amounts of human cells (#56105cells), in accordance with the

manufacturer’s recommendations. Briefly, cell pellets were first

lysed and homogenized in a highly denaturing guanidine-

isothiocyanate–containing buffer and ethanol, which immediately

inactivates RNases to ensure isolation of intact RNA. The lysate

was then passed through a RNeasy MinElute spin column, where

Figure 2. Assembled laminar flow bioreactor (LFB). Composed by: a mixing chamber filled with a complete culture media with 5% of Dextran,
a cell culture chamber, and a peristaltic pump. All the components were connected in a closed loop and put in an incubator to preserve temperature
(37uC) and CO2 concentration in air (5%).
doi:10.1371/journal.pone.0090213.g002

Figure 3. Cell morphological aspect. Endothelial cell monolayers
exposed to low (1 dyne/cm2) and high (10 dyne/cm2) shear stress for
24 h, in absence (A, C) or presence (B, D) of stent positioning. As shown
in the picture, one of the effect of increase in flow rate from 1 to 10
dyne/cm2 is the cytoskeletal reorganization of cell shape, with a
morphological change from cobblestone (A) to elongated structure (C).
The stent application instead results in a loss of cell elongation and,
where cells are directly in contact with stent, in cellular destruction (B
and D).
doi:10.1371/journal.pone.0090213.g003
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total RNA binds to the membrane and contaminants were

efficiently washed away. Traces of DNA that may co-purify are

removed by a DNase treatment on the RNeasy MinElute spin

column.

RNA concentration was determined by UV (260 nm) spectro-

photometer and RNA quality control was than performed on the

Bioanalyzer 2100 system (Agilent Technologies) that separated

and subsequently detected RNA samples via laser induced

fluorescence detection.

Affymetrix gene chip processing
One hundred ng of total RNA from each experimental set,

have been amplified resulting in unlabeled cDNA. An in vitro

transcription reaction was performed in the presence of mixture

of biotin-labeled ribonucleotides to produce biotinylated cRNA

from the cDNA template, according to manufacturer’s protocols.

Biotinilated cRNA molecules were hybridized to their comple-

mentary sequences on the GeneChip surface. The high cost of

the procedure did not allow to use more than 2 microarrays

(HG-U133-Plus 2.0, Affymetrix, Santa Clara, CA, USA) for each

experimental condition. This approach, however, guarantees to

obtain the experimental reproducibility. Every array allows to

measure the expression level of over 47000 human transcripts,

representing 38573 gene clusters in the UniGene database plus

841 anonymous full-length transcripts and a number of

anonymous partial sequences of cDNA. The fluorescence data

were processed using MicroArray Suite software, version 5.0

(Affymetrix).

Microarray data analysis
Data from the gene microarray experiments were pre-processed

using the robust multiarray average (RMA) algorithms [14]

making adjustments for systematic errors introduced by differences

in procedures and dye intensity effects by collaboration of

COGENTECH (Consortium for Genomic Technologies, Milan,

Italy). After quantile normalization, genes were sorted for

differential expression based on one-way ANOVA. Differentially

expressed genes (DEG) were identified as those having adjusted p

values of ,0.01 with fold change (FC) of at least 3 in modulus. We

used a p value ,0.01 in order to reduce the false discovery rate to

7%. ANOVA has been performed including two variation factors

(Flow, Stent) and their interaction. Microarray data have been

submitted to the Gene Expression Omnibus (GEO) under

accession n. GSE45225.

To search for enrichment of specific biological processes, the

genes showing significantly differential expression between the two

groups were classified into functional groups with Database for

Annotation Visualization and Integrated Discovery (DAVID) [15]

according to Gene Ontology (GO). For each clustered process, this

results in an Enrichment Score, the -log value of the geometric

mean of the member’s p values. Only clusters with a p,0.05 were

presented in our results.

Results

Biological model: morphological aspect
Endothelial cells treated with a physiological shear stress of 10

dyne/cm2 in absence of stent are characterized by elongated cell

structure compared to those exposed to pathological shear stress of

1 dyne/cm2 that mainly appear as cobblestone (Figure 3 A and C).

The application of stent on the endothelial cells surface alters the

laminar flow profile in the bioreactor culture chamber avoiding

the stretch effect of medium flowing over cells and resulting in loss

of elongation (Figure 3 B and D).

Viability assay
Since stent seems to damage endothelial cells directly by contact

(Figure 3 B and D), cells were analyzed to evaluate their viability.

As shown in Figure 4, the metabolic rate of HUVECs submitted to

pathological flow was similar, independently of stent application

while the metabolic function of endothelial cells submitted to

physiological shear stress after stent positioning was higher than

that without stent. The positive control for cytotoxicity showed

that died cell have a metabolic rate not exceeding 10 in value.

Affymetrix analysis
One way ANOVA revealed 2761 genes of 40805 analyzed

that are modulate in the experimental conditions. After filtering

Figure 4. Viability assay. Metabolic rate of HUVECs submitted to 1 or 10 dyne/cm2 with and without stent application. The figure shows that
endothelial cell are healthy independently of flow rate and stent application. The positive control for cytotoxicity, obtained by treating endothelial
cells with a compound known to be toxic for cells, showed that died cell have a metabolic rate not exceeding 4–5 in value (data not shown).
doi:10.1371/journal.pone.0090213.g004
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(FC . |3|), we observed that 32 ID probes were differently

regulated by low shear stress compared to high flow (14 up- and

18 down-regulated) without stent positioning (Figure 5A). In

addition, the stent presence differently regulated 115 ID probes

(37 up- and 78 down-regulated) (Table 1 and Figure 5B). This

last group of 115 ID contains also the same 32 probes present

in low versus high flow comparison. Moreover, in physiological

condition (F10) stent versus non stent presence showed only 3

probes down-expressed and no up-regulated genes were

identified in our conditions.

Figure 5. Volcano blots of significance against the fold change of gene expression in different experimental conditions. A) Genes up
and down regulated in 1AS vs 10AS condition. B) Genes up and down regulated in 1PS vs 10PS condition. The fold change was$3 in modulus with p
values ,0.01, determined individually for each gene. Horizontal continuous line indicates negative log of p= 0.01. Vertical dashed lines indicate the
fold change cut-off.
doi:10.1371/journal.pone.0090213.g005

Table 1. Number of differentially regulated probes/genes among different experimental conditions.

Conditions
Factor
considered Probes/Genes Probes/Genes up-regulated Probes/Genes down-regulated

F1AS vs F10AS Flow 32/26 14/13 18/13

F1PS vs F10PS Flow + Stent 115/101 37/34 78/67

F10AS vs F10PS Stent 3/3 0/0 3/3

F1 = flow at 1 dyne/cm2; F10 = flow at 10 dyne/cm2; AS = without stent; PS = with stent.
doi:10.1371/journal.pone.0090213.t001
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Common genes (32 ID) regulated by flow
A complete list of 32 probes are reported in tables 2 (down-

regulated) and 3 (up-regulated). The ID probes coded 26 genes

involved in different pathways. Among these, chemokine (C-X-C

motif) receptor 4 (CXCR4), caspase recruitment domain-8

(CARD8) and apoptosis associated protein 2 (THPA2) which are

pro-inflammatory and apoptotic signaling mediators, were strong-

ly up-regulated at low with respect to high flow; instead, tumor

necrosis factor alpha-induced protein 3 (TNFAIP3) that inhibits

cytokine-induced activation of nuclear factor-kappa B (NF-kB) in
endothelial cells [16] was less expressed at low compared to

physiological shear stress. The acyl-CoA synthetase family

member 3 (ACSL3), that activates long-chain fatty acids for the

synthesis of cellular lipids, and the FUS interacting protein 1

(FUSIP1), a modulator of cholesterol homeostasis, were over-

expressed at low shear stress.

Genes involved in aminoacid metabolism such as DBT, PSPH

and PREPL were all over-expressed at low with respect to

physiological conditions (Table 2) while those involved in the

chromatin/chromosome organization and in transcription regu-

lation (HMGA2, HIST1H2BC, NR1D2, ZBTB24, KBTBD2,

RC3H2, KIAA1841, CCDC91, DCUN1D4, ZNF117), repre-

senting the largest group, were mostly down-regulated in the same

condition (Table 3).

Genes (115 ID) modulated by flow and stent application
When stent was applied, 83 more ID probes in addition of the

32 previously described, were differently modulated at low flow

with respect to high shear stress. DAVID Functional Annotation

clustering was used to group down-regulated and up-regulated

genes based on function. According to Gene Ontology, most of the

genes differently modulated by low shear stress and stent

application were associated to the intracellular non-membrane-

bounded organelle, blood vessel development and lipid metabolic

process (Tables 4 and 5). Two clusters of down-regulated genes

with significant enrichment scores were identified. Cluster 1

includes genes that are cellular component of cytoskeleton

(CKAP2, MYO5C, MYRIP, KLHL7, FGD6, PCGF5

SDCCAG8, SYNJ2) or member of chromosome structure and

function (C21orf45, HMGA2, RPS27L, PRIM1, PRIM2). Cluster

2 was composed by genes of extracellular matrix component or

involved in blood vessels development (COL1A1, FGF2, NRP2,

Table 2. Common 18 down-regulated probes.

ID Probe RefSeq ID Transcript products Gene Symbol Gene Name
F1AS vs
F10AS FC

F1PS vs
F10PS FC

1567224_at NM003483, NM003484 HMGA2 high mobility group
AT-hook 2

28,27 211,55

205534_at NM002589, NM032456, NM032457 PCDH7 protocadherin 7 24,82 25,22

236193_at NM003526 HIST1H2BC histone cluster 1, H2bc 24,67 26,34

205535_s_at NM002589, NM032456, NM032457 PCDH7 protocadherin 7 24,58 24,40

214022_s_at NM003641 IFITM1 interferon induced transmembrane
protein 1 (9227)

24,41 25,70

214455_at NM003518, NM003522, NM003523,
NM003525, NM003526

HIST1H2BC histone cluster 1, H2bc 24,23 27,89

202644_s_at NM006290 TNFAIP3 tumor necrosis factor,
alpha-induced protein 3

24,19 21,71

201601_x_at NM003641 IFITM1 interferon induced transmembrane
protein 1 (9–27)

23,86 23,35

1554237_at NM006642 SDCCAG8 serologically defined colon
cancer antigen 8

23,61 27,20

224453_s_at NM001039481//NM018638 ETNK1 ethanolamine kinase 1 23,50 214,07

210941_at NM002589//NM032456, NM032457 PCDH7 protocadherin 7 23,40 24,11

209750_at NM005126 NR1D2 nuclear receptor subfamily 1,
group D, member 2

23,40 23,28

202643_s_at NM006290 TNFAIP3 tumor necrosis factor,
alpha-induced protein 3

23,28 21,81

1554036_at NM014797 ZBTB24 zinc finger and BTB
domain containing 24

23,24 25,57

223584_s_at NM015483 KBTBD2 kelch repeat and BTB (POZ)
domain containing 2

23,15 25,21

230134_s_at NM001100588, NM_018835 RC3H2 ring finger and CCCH-type
zinc finger domains 2

23,08 24,57

1569136_at NM012214 MGAT4A mannosyl (alpha-1,3-)-
glycoprotein beta-1,4-N-
acetylglucosaminyltransferase, iso

23,05 26,30

222486_s_at NM006988 ADAMTS1 ADAM metallopeptidase
with thrombospondin
type 1 motif, 1

23,01 21.4

Fold change (FC) values were obtained by comparing low versus high flow without stent (F1AS versus F10AS) and low versus high flow with stent (F1PS versus F10PS).
F1 = flow at 1 dyne/cm2; F10 = flow at 10 dyne/cm2; AS = without stent; PS = with stent.
doi:10.1371/journal.pone.0090213.t002
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RECK). Conversely, several up-regulated genes are reported in

Table 5. These included member of lipid metabolism and genes

involved in the synthesis of cholesterol, steroids and cellular fatty

acids (CYP51A1, ACSL3, G6PD) or in cholesterol transport

(LDLR).

Genes regulated by stent procedure
In physiological condition with or without stent presence, we

observed only 3 genes differently modulated. These genes were all

down-expressed and are involved in reverse cholesterol transport

(ABCA1), in methyltransferase activity (METTL7A) and in

regulation of transcription (ZBTB24).

Discussion

The most relevant result of our work is that low shear stress in

presence of stent is the experimental condition that modulates the

highest number of genes. Indeed, we have observed that variations

on genetic expression caused by flow plus stent procedure (that we

defined by now as disturbed shear stress) are higher than those

caused by only flow or only stent application (Table 1). Previous

cellular model showed that physiological shear stress up-regulates

genes with anti-atherogenic potential effect and down-regulates

those with a pro-atherogenic behaviour [9], while the presence of

low shear non-laminar flow is sufficient to induce a gene

expression profile that pre-disposes the endothelium to the

initiation and development of atherosclerotic lesions [17,18].

However, it is unknown whether an invasive intervention like stent

procedure, that introduces new structural changes in vascular

compartment and in hemodynamic forces, may affect the

transcriptional response of endothelial cells. To approach this

lack of information, we studied the genetic expression profile of

HUVEC submitted to different mechanical stimuli (flow condition

with stent/no stent application) by Affymetrix technology search-

ing for differently regulated genes in human endothelial cells.

Using a bioinformatics tool, we found that genes involved in

cytoskeleton organization and extracellular matrix (structures and

functions) are significantly down-expressed in disturbed shear

stress. Most of them are linker proteins and regulators of

intracellular microfilaments (MYRIP, MYO5C, FGD6, SYNJ2)

that mediate local trafficking of organelles and play a role in

regulating the cell cytoskeleton and shape. Others are component

of extracellular matrix (COL1A1) or are regulators of its turnover

(FGF2, RECK).

Previous work [19] has reported that laminar shear stress up-

regulated genes directly involved with structural and contractile

properties of the cellular cytoskeleton strongly suggesting that an

active remodeling of cytoskeletal elements is induced in physio-

logical flow. In our experiments, instead, we observed that

disturbed shear stress prevents cytoskeletal reorganization by

suppressing target genes, contributing in this way, to the

modification of endothelial cell morphology and alignment as

shown by cell microscopical images. Because cytoskeleton is also

important in the maintenance of endothelial barrier function and

integrity [20], the alteration in this intracellular structure may

therefore contribute to change endothelium permeability [21].

Moreover, the loss of interstitial collagen and the modulation of

collagen turnover (see table 4 and 5) may produce endothelial cell

Table 3. Common 14 up-regulated genes.

ID Probe
RefSeq ID Transcript
products Gene Symbol Gene Name

F1AS vs
F10AS FC

F1PS vs
F10PS FC

243539_at NM00112999, NM032506 KIAA1841 KIAA1841 3,07 4,49

218545_at NM018318 CCDC91 coiled-coil domain containing 91 3,08 4,54

212851_at NM001040402, NM015115 DCUN1D4 DCN1, defective in cullin
neddylation 1, domain
containing 4 (S. cerevisiae)

3,09 4,61

231919_at NM001918 DBT dihydrolipoamide branched
chain transacylase E2

3,16 3,61

223588_at NM031435 THAP2 THAP domain containing,
apoptosis associated protein 2

3,16 5,82

201660_at NM004457, NM203372 ACSL3 acyl-CoA synthetase long-chain
family member 3

3,18 4,52

225484_at NM018718 TSGA14 testis specific, 14 3,26 3,45

205194_at NM004577 PSPH phosphoserine phosphatase 3,61 2.39

212215_at NM001042385, NM001042386,
NM006036

PREPL prolyl endopeptidase-like 3,65 4,05

235408_x_at NM015852 ZNF117 zinc finger protein 117 3,78 3.00

225348_at NM006625, NM054016 FUSIP1 FUS interacting protein
(serine/arginine-rich) 1

3,93 4,11

1554479_a_at NM014959 CARD8 caspase recruitment domain
family, member 8

4,68 7,01

209201_x_at NM001008540, NM003467 CXCR4 chemokine (C-X-C motif)
receptor 4

5,42 3,88

217028_at NM001008540, NM003467 CXCR4 chemokine (C-X-C motif)
receptor 4

5,54 5,79

Fold change (FC) value obtained by comparing low versus high flow without stent (F1AS vs F10AS) and low versus high flow with stent (F1PS vs F10PS). TP = transcript
products; F1 = flow at 1 dyne/cm2; F10 = flow at 10 dyne/cm2; AS = without stent; PS = with stent.
doi:10.1371/journal.pone.0090213.t003
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disaggregation that is another early step in the endothelium

dysfunction and activation [22,23].

Genes encoding chromosome elements are instead involved in

regulation of cell cycle and cell proliferation (HMGA2, ETV6,

RPS27L, C21orf45) or in DNA metabolic process, such as

chromatin reorganization (HIST1H2BC, PRIM1, PRIM2). Con-

versely by the expected, these mediators are down-expressed in

our experimental model of disturbed shear stress. Although several

evidences underlined that low flow up-regulates cell cycle

mediators to increase endothelial cell turnover rate within the

vasculature wall [7,8,24] our finding suggests that a stent

implantation may affect negatively the expression levels of

proliferative related genes. A speculative explanation of this result

comes from Punchard et al. who claim that stent strut geometry

itself can create small adverse flow disturbances that inhibit re-

endothelialization and promote conditions that favor thrombus

formation [25].

We found that HUVECs, submitted to low flow and stent, over-

expressed more genes involved both in cholesterol transport and in

lipid synthesis/metabolism with respect to those that are

modulated by the only low flow in the absence of stent

(Figure 6A). Previous work [26] observed that low endothelial

shear stress may cause a sustained endothelial activation of sterol

regulatory elements binding proteins (SREBPs), a family of

endoplasmic reticulum-bound transcriptional factors that regulate

the expression of genes encoding LDL receptor, cholesterol and

fatty acid synthases. We did not find a variation in these

transcriptional factors levels, but we observed a direct changes in

the expression of their target genes.

The modulation of inflammatory and apoptotic mediators

seems to be, instead, closely related to changes in flow rather than

stent application (Figure 6B). CXCR4 and CARD8 are in fact

over-expressed while TNFAIP3 was down-regulated at patholog-

ical shear stress, independently on the absence or presence of stent.

CXCR4 is a potent mediator of T cell recruitment and chemokine

response to endothelial damage by interacting to cytokine

macrophage migration inhibitory factor (MIF) that induces

integrin-dependent arrest and transmigration of monocytes,

important mechanisms involved in lesion progression and plaque

inflammation [27,28]. CARD8 is implicated as a co-regulator of

several pro-inflammatory and apoptotic signaling pathways [29].

TNFAIP3 is an inhibitor of TNF-a inflammatory response via NF-

kB and protects cells from TNF-induced apoptosis, through

inhibition of the caspase cascade and by prevents endothelial cell

Table 4. Clusterization of down-regulated genes: clusters 1 and 2.

Cluster 1– GO Term: Intracellular non-membrane-bounded organelle – Enrichment Score 1.18

Cytoskeleton RefSeq ID Transcript products Gene Symbol Gene Name FC

1555137_a_at; 219901_at NM018351 FGD6 FYVE, RhoGEF and PH domain containing 6 26,80

214156_at NM015460 MYRIP myosin VIIA and Rab interacting protein 25.47

216180_s_at NM003898 SYNJ2 synaptojanin 2 24.18

227935_s_at NM032373 PCGF5 polycomb group ring finger 5 24.02

218966_at NM018728 MYO5C myosin VC 23.30

220238_s_at NM001031710, NM018846 KLHL7 kelch-like 7 (Drosophila) 23.08

218252_at NM001098525, NM018204 CKAP2 cytoskeleton associated protein 2 23.04

Chromosome elements RefSeq ID Transcript products Gene Symbol Gene Name FC

1567224_at NM003483, NM003484 HMGA2 high mobility group AT-hook 2 211.55

236193_at; 214455_at NM00351, NM003522,
NM003523, NM003525,
NM003526

HIST1H2BC histone cluster 1, H2bi; histone cluster 1,
H2bg; histone cluster 1, H2be; histone cluster
1, H2bf; histone cluster 1, H2bc

26.34

239802_at NM001131062, NM001131063,
NM024632, NR024084

SAP30L SAP30-like 23.96

215708_s_at NM000947 PRIM2 primase, DNA, polypeptide 2 (58kDa) 23.57

235056_at NM001987 ETV6 ets variant 6 23.14

205053_at NM000946 PRIM1 primase, DNA, polypeptide 1 (49kDa) 23.12

238935_at NM015920 RPS27L ribosomal protein S27-like 23.10

228597_at NM018944 C21orf45 chromosome 21 open reading frame 45 23.07

Cluster 2– GO Term: Blood vessels development – Enrichment Score 1.00

ECM regulators RefSeq ID Transcript products Gene Symbol Gene Name FC

210842_at; 210841_s_at NM003872, NM018534,
NM201264, NM201266,
NM201267, NM201279

NRP2 neuropilin 2 27,82

1556499_s_at NM000088 COL1A1 collagen, type I, alpha 1 26,55

1558115_at NM021111 RECK reversion-inducing-cysteine-rich
protein with kazal motifs

24,50

204422_s_at NM002006 FGF2 fibroblast growth factor 2 (basic) 23,09

Two functional groups were identified by DAVID Bioinformatics, according to Gene Ontology (GO Term) by comparing low versus high shear stress in presence of stent.
TP = transcript products; FC = Fold change; ECM, extracellular matrix.
doi:10.1371/journal.pone.0090213.t004
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activation [30]. Moreover, it has been showed that TNFAIP3

prevents neointimal hyperplasia by affecting endothelial cell and

smooth muscle cell responses to injury [31]. The recruitment of

circulating inflammatory cells into the intima together with the

activation of endothelium apoptosis constitute one of the major

pathogenetic components in the atherosclerotic process [32].

The results of the study, although confined to a strictly

experimental field, may contribute for shaping an updated

speculative strategy of the interventional coronary procedures. In

the ‘‘restenosis era’’, the strategy of the interventional cardiologist

focused attention on the need to reach the largest possible

diameter of the coronary lumen to reduce the negative effects of

excessive intima proliferation. Today, drug-eluting stents have

virtually defeated restenosis occurrence, showing the hidden limits

of percutaneous coronary interventions. The results of this study

may open a scenario in which the strategy of coronary

Figure 6. Effect of different mechanical stimuli on endothelial gene expression. A) Low flow plus stent application (disturbed shear stress)
induce down-expression of genes involved in cytoskeleton organization and extracellular matrix and an up- regulation of genes that are involved in
cholesterol synthesis and transport. B) Low flow instead increases the expression of inflammatory and apoptotic mediators.
doi:10.1371/journal.pone.0090213.g006

Table 5. Clusterization of up-regulated genes.

Cluster 3– GO Term: Cholesterol metabolic process – Enrichment score: 1.70

Lipid process RefSeq TP Gene Symbol Gene Name FC

201660_at NM004457, NM203372 ACSL3 acyl-CoA synthetase long-chain
family member 3

4,52

202067_sat; 202068_s_at NM000527 LDLR low density lipoprotein receptor 3,77

202275_at NM000402, NM001042351 G6PD glucose-6-phosphate dehydrogenase 3,40

216607_s_at NM000786 CYP51A1 cytochrome P450, family 51,
subfamily A, polypeptide 1

3,08

One functional group was identified by DAVID Bioinformatics, according to Gene Ontology (GO Term) by comparing low versus high shear stress in presence of stent.
TP = transcript products; FC = Fold change.
doi:10.1371/journal.pone.0090213.t005

Endothelial Gene Modulation after Stent

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e90213



revascularization should tend to restore a physiological shape of

the vessel and a laminar flow in order to reduce the risk of

triggering local effects such as inflammation, apoptosis, synthesis of

lipids and cholesterol that may lead to atherosclerosis progression.

We are aware that the most relevant limitation of our study is

the lack of gene validation through RT-PCR analysis, due to small

RNA amounts collected after bioreactor experiments. However,

our effort aimed to identify, first of all, biological patterns of

interest that must be subsequently reconfirmed.

Conclusions

Low shear stress together with stent procedure are the

experimental conditions that mainly modulate the highest number

of genes in human endothelial model. Despite the large amount of

evidence that support smooth muscle cells hyperplasia and

proliferation as the main cause of in-stent restenosis, changes in

endothelium permeability and increase in cholesterol transport

across cells seem to be the endothelial contribution to vascular

injury post stent implantation. Our data add new items that need

to be validated in human model by searching, for instance, for

genetic variations in those genes that we have identified.
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