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ORIGINAL ARTICLE

DNA methylation and substance-use risk: a prospective,
genome-wide study spanning gestation to adolescence

CAM Cecil', E Walton™?, RG Smith?, E Viding®, EJ McCrory®, CL Relton®, M Suderman?®, J-B Pingault*, W McArdle®, TR Gaunt?, J Mill* and

ED Barker’

Epigenetic processes have been implicated in addiction; yet, it remains unclear whether these represent a risk factor and/or a
consequence of substance use. Here, we believe we conducted the first genome-wide, longitudinal study to investigate whether
DNA methylation patterns in early life prospectively associate with substance use in adolescence. The sample comprised of 244
youth (51% female) from the Avon Longitudinal Study of Parents and Children (ALSPAC), with repeated assessments of DNA
methylation (lllumina 450k array; cord blood at birth, whole blood at age 7) and substance use (tobacco, alcohol and cannabis use;
age 14-18). We found that, at birth, epigenetic variation across a tightly interconnected genetic network (n=65 loci; g < 0.05)
associated with greater levels of substance use during adolescence, as well as an earlier age of onset amongst users. Associations
were specific to the neonatal period and not observed at age 7. Key annotated genes included PACSIN1, NEUROD4 and NTRK2,
implicated in neurodevelopmental processes. Several of the identified loci were associated with known methylation quantitative
trait loci, and consequently likely to be under significant genetic control. Collectively, these 65 loci were also found to partially
mediate the effect of prenatal maternal tobacco smoking on adolescent substance use. Together, findings lend novel insights into
epigenetic correlates of substance use, highlight birth as a potentially sensitive window of biological vulnerability and provide
preliminary evidence of an indirect epigenetic pathway linking prenatal tobacco exposure and adolescent substance use.
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INTRODUCTION

Substance abuse is a major public health concern that incurs
heavy costs to individuals, their families and wider society.
Collectively, it is estimated that one in ten of all fatalities result
from harmful use of alcohol, tobacco and illicit drugs, representing
one of the leading preventable causes of death worldwide.' In
addition, substance abuse is associated with a range of negative
outcomes that compromise quality of life and long-term
productivity, including psychiatric illness, disability, criminality
and unemployment.*® Consequently, a key challenge for research
is to identify factors that drive individual susceptibility to
substance abuse, to inform effective prevention and early
intervention strategies.*

Like most complex phenotypes, substance abuse results from a
dynamic interplay of genetic and environmental influences.
Studies have shown that the heritability of substance-use
disorders is moderate to high (~49-70%)° and that this genetic
vulnerability interacts with environmental risk exposure. Indeed,
epidemiological studies have identified a number of pre- and
postnatal factors associated with substance abuse risk, including
substance exposure during pregnancy, parental psychopathology
and criminality, low socioeconomic status, childhood maltreat-
ment and affiliation with delinquent peers.® However, the
biological mechanisms through which these effects are mediated
are poorly understood.

In recent years, epigenetic processes that regulate gene
expression’ have emerged as a potential mechanism of interest.

One of these processes, DNA methylation (DNAm), has received
increasing attention. DNAm modulates transcription via to the
addition of a methyl group to DNA base pairs, primarily in the
context of cytosine-guanine (CpG) dinucleotides.” Studies have
shown that (i) DNAm is affected by genetic variability, as
demonstrated by the discovery of a large number of methylation
quantitative trait loci (mQTLs);®° (i) DNAm is also sensitive to pre-
and postnatal environmental influences, including nutritional,
chemical and psychosocial factors (for example, prenatal tobacco
exposure);'®"" and (i) aberrant patterns of DNAm have been
linked to a wide range of physical and psychiatric disorders,
including addiction."? For example, animal studies have shown
that repeated drug administration (for example, alcohol and
cocaine) can lead to DNAm changes in reward-related regions of
the brain (for example, striatum).”® In turn, these changes can
influence the expression of genes involved in synaptic plasticity
and memory consolidation, driving neuroadaptations that under-
lie the onset and persistence of addictive behaviors.'* Importantly,
drug-induced epigenetic changes have been found to occur as
early as gestation.'? For example, a recent study in mice reported
an epigenetically-mediated effect of early nicotine exposure on
pup’s neural structure and behavior, which persisted into
adulthood.' So far, studies in humans have provided initial
support for animal findings, reporting methylomic differences
between substance abusers and drug-free controls across several
tissue types and substances.'*'®
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Despite these promising findings, current research in humans
has been limited in four key ways.'” First, the vast majority of
studies have examined adult samples already exposed to
substances. As a result, it has not been possible to establish
whether altered DNAm patterns are a risk factor for and/or
consequence of substance use. Disentangling these associations is
essential to better delineate the role of epigenetic mechanisms in
addiction risk and to enable the identification of novel therapeutic
targets. Second, because existing studies have typically included
DNAm data at a single time point, it is unclear whether epigenetic
effects may be observable across time or only during specific
developmental periods. This is particularly relevant given that
DNAm has been shown to be highly dynamic across the lifespan,
enabling cells to respond to changing internal and external
inputs.'® As such, clarifying how DNAm associates with substance
use over time may provide important insights into windows of
biological vulnerability. Third, little is known about what genetic
and environmental factors may underlie variability in DNAm
patterns associated with substance use. Characterizing these
potential influences may not only offer valuable opportunities for
preventative intervention, but also make it possible to test the role
of the epigenome as a potential mediator in the link between risk
exposure and later substance use. Finally, existing studies have
primarily focused on one type of substance at a time. Although
substance-specific risk factors have been identified, evidence from
both genetically-informative and epidemiological studies indicate
that substance-use risk across drug classes is largely accounted for
by a common underlying liability dimension.>'® Consequently,
examining epigenetic markers common to multiple substances, in
addition to substance-specific markers, may help shed further
light into the biological basis of substance-use liability.

To address these gaps in the literature, we believe we
conducted the first genome-wide, prospective study to examine
associations between DNAm in early life (that is, collected at
repeated time points pre-substance-use initiation; birth and age 7)
and substance use in adolescence (measured as a latent factor
spanning tobacco, cannabis and alcohol use). Our aim was to
address the following key questions:

1. Are DNAm patterns at birth prospectively associated with
adolescent substance use?

2. Are these associations stable across early childhood (birth to
age 7)?

3. Do the identified DNAm markers associate with genetic and
environmental influences?

MATERIALS AND METHODS
Participants

The Epigenetic Pathways to Conduct Problems Study consists of a
subsample of youth (n=339) drawn from the Avon Longitudinal Study
of Parents and Children (ALSPAC) who (i) have repeated measures of
DNAm and (ii) follow previously established trajectories of conduct
problems (4-13 years).?° Only youth who had complete substance-use
ratings (age 14-18) as well as epigenetic data at birth and age 7 (n=244,
54% female) were included in the present study. ALSPAC is an ongoing
epidemiological study of children born between 1991-92 from 14 541
women residing in Avon, UK. Of these initial pregnancies, there was a total
of 14 676 fetuses, resulting in 14 062 live births and 13 988 children who
were alive at 1 year of age.”’ When compared with 1991 National Census
Data, the ALSPAC sample was found to be broadly similar to the UK
population as a whole.?? Informed consent was obtained from all ALSPAC
participants and ethical approval was obtained from the ALSPAC Law and
Ethics Committee and the Local Research Ethics Committees. Please note
that the study website contains details of all the data that is available
through a fully searchable data dictionary: http://www.bris.ac.uk/alspac/
researchers/data-access/data-dictionary/.
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Measures

Adolescent substance use. Substance use was assessed via self-report
ratings of tobacco and cannabis use (age 14, 16 and 18 using frequency
items ranging from ‘never’ to ‘daily’), as well as alcohol use (age 16 and 18
using the 10-item alcohol use disorders identification test).>> Confirmatory
factor analysis was used to extract (i) three first-order factors of tobacco,
cannabis and alcohol use, accounting for shared variance across time
points for each of these substances; and (ii) a single second-order factor of
substance use, accounting for shared variance between substances and
across time. The factor model showed adequate fit: X2 (ref. 18)=49.55;
P <0.01; comparative fit index=0.91; Tucker-Lewis index=0.86; root
mean square error of approximation=0.08, 90% confidence intervals
(Cls)=0.05, 0.10; with standardized loadings ranging from 0.58 to 0.96
(Supplementary Figure 1).

DNA methylation data. A total of 500 ng high molecular weight genomic
DNA from blood (cord at birth, whole at age 7) was bisulfite-converted
using the EZ-DNA methylation kit (Zymo Research, Orange, CA, USA).
DNAm was quantified using the lllumina HumanMethylation450 BeadChip
(Illumina, San Diego, CA, USA) with arrays scanned using an lllumina iScan
(software version 3.3.28). Initial data quality control was conducted using
GenomeStudio (San Diego, CA, USA; version 2011.1) to determine the
status of staining, hybridization, target removal, bisulfite conversion,
specificity, non-polymorphic and negative controls. Samples that survived
this stage were quantile normalized using the dasen function within the
wateRmelon 1.0.3 package®* in R and batch-corrected using the ComBat
package.®® Probes were removed if they were cross-reactive, used for
sample identification on the array, or had a single-nucleotide polymorph-
ism at the single-base extension with a minor allele frequency larger than
5% (that is, common polymorphisms), leaving a total of 413510
probes.?®*” DNAm levels are indexed by beta values (ratio of: methylated
signal/ methylated+unmethylated signal).

Prenatal environmental risks. We included prenatal risks that have been
previously linked to adolescent substance use, including maternal prenatal
smoking, alcohol use and exposure to stressful events.® Maternal smoking
and alcohol use during the first trimester of pregnancy were measured via
maternal ratings, using a yes/no binary variable for smoking (for biological
validation see the results section), and a 4-point scale for alcohol use
(‘never’ to ‘daily’). With regards to stress exposure, we included cumulative
risk scores of prenatal (18-32 weeks) adversity covering the following four
domains: (i) life events (for example, death in family and accident); (ii)
contextual risks (for example, poor housing and financial problems); (iii)
parental risks (for example, psychopathology and criminal behavior); and
(iv) interpersonal risks (for example, partner abuse and family conflict).
These cumulative risk scores were estimated using confirmatory factor
analysis based on maternal reports, as described elsewhere.?®

Data analysis

Analyses were performed in R (version 3.0.1)%° and Mplus (version 6.1.1)%°
adjusting for sex and cell-type proportions (CD8 T-lymphocytes, CD4
T-lymphocytes, natural killer cells, B-lymphocytes, monocytes), estimated
using the reference-based approach detailed in Houseman et al'

Step 1: Are DNAm patterns at birth associated with adolescent substance
use?. Genome-wide association analyses between DNAm at birth and
substance use were performed using the IMA package? Differentially
methylated probes (DMPs) passing a false discovery rate (FDR) correction
of g < 0.05 were considered significant. These DMPs were then uploaded
to the UCSC genome browser (GRCh37/hg19 assembly)*® to explore their
potential functional relevance, by comparing their genomic location to
that of key regulatory elements recorded in the Encyclopedia of DNA
Elements (ENCODE) database (http://genome.ucsc.edu/ENCODE/), includ-
ing (i) transcription factor binding sites (data generated on 161
transcription factors in 91 cell types via ChIP-seq); (ii) DNase |
hypersensitivity clusters (based on data from 125 cell types) and (iii)
histone marks (only relevant cell lines examined, including blood
[GM12878, K562] and umbilical vein endothelial [HUVEC] cells).

Genes to which DMPs were annotated were then examined to identify (i)
underlying genetic networks, using the GeneMANIA bioinformatics soft-
ware, which is based on known genetic and physical interactions, shared
protein domains as well as co-expression data (http://www.genemania.org;
see Supplementary Table 1); and (ii) enriched biological pathways, by using
an optimized gene ontology method that controls for a range of potential
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confounds, including background probe distribution and gene size
(Supplementary Table 1).

As a supplement to the probe-level analysis, we also used the Comb-p
application within Python®* with default settings (P threshold: 1.00E — 04;
sliding window size: 500 bp), to identify wider differentially methylated
regions based on spatially-correlated P-values.

Step 2: Are these associations stable across early childhood (that is, birth to
age 7)?. Given that DNAm is temporally dynamic'®—particularly in early
development®—markers identified at one time point may not necessary
continue to be associated with substance use at other time points. To test
this, we examined whether DMPs identified in step 1 (that is, birth) were
also significantly associated of adolescent substance use at age 7 (that is,
follow-forward approach; FDR-corrected g < 0.05).

Step 3: Do these markers relate to genetic and environmental influences?  As
a last step, we investigated potential genetic and environmental
factors that may influence DNAm levels of the identified DMPs. Given
that our sample was underpowered to directly examine genetic
polymorphisms (that is, single-nucleotide polymorphisms) affecting DNAm,
we used the ALSPAC-derived mQTLdb resource (http://www.mgqtldb.org/)
to search for known mQTLs associated with our DMPs (see Supplementary
Table 1 for further details). Potential environmental influences were
examined next by testing associations between prenatal exposures and
DMPs. Because of the large number of DMPs identified, we grouped these
into a single, cumulative DNAm risk score to minimize multiple testing
burden. Specifically, we applied a method typically used for polygenic risk
scores,>® where we multiplied the methylation values of our DMPs
by their respective standardized regression betas (that is, weights), and
then summed these together into a DNAm risk score. This approach
enabled us to reduce the volume of our methylation data, whereas the use
of weights ensured that DMPs maintained their relative predictive
importance (as opposed to alternative approaches, for example, averaging
DNAm levels across DMPs). Once calculated, we examined associations
between this DNAm risk score and prenatal exposures, using Pearson’s
bivariate correlations. Significant prenatal risks (g <0.05) were then
incorporated into a single path analytic model in Mplus (maximum
likelihood estimation), together with the DNAm risk score and the
substance use factor, to test for indirect effects. Associations in the model
were considered significant if they survived bootstrapped Cls (10 000
times).>® Significant paths (prenatal risks — DNAm — substance use) were
tested for an indirect effect using bootstrapped model constraint
statements.

Code availability. Computer code used in our analyses is available from
the authors on request.

RESULTS
Epigenome-wide association analysis at birth

At birth, 65 probes prospectively associated with adolescent
substance use after genome-wide correction (g < 0.05; Table 1
and Figure 1a). Of these DMPs, 33 were ‘hypomethylated’ (that is,
lower DNAm associating with higher substance use), whereas the
other 32 were ‘hypermethylated’ (that is, higher DNAm associating
with higher substance use). Overall, DMPs were most frequently
located in the gene body (40%) or promoter region near the
transcription start site (30%; see Supplementary Table 2).
DNAm levels were significantly interrelated across the majority
of DMPs (76% of correlations =g < 0.05; rrmax=0.58; rmin=—0.52;
Iabsolute average = 0.20; see Supplementary Table 3). The most
significant  probe, cg04941418 (P=1.10E-08; g=0.005,
Figure 1b), is located in PACSIN1, a developmentally regulated
gene that has an important role in synaptic neurotransmission,
axonal growth and dendritic branching.*’?® Other annotated
genes in the table include (i) SHC2 (cg02290110) and NTRK2
(cg01009697), both implicated in neuronal neurotrophin-activated
Trk receptor signaling,®®*° (i) CLSTNT (cg07395930), involved in
calcium-mediated post-synaptic signals, and (iii) NEUROD4
(cg20056324), involved in neural differentiation. DMPs were then
uploaded in Genome Browser for functional characterization,
based on ENCODE data on regulatory elements. All DMPs
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overlapped with histone marks; 62% (n=40) coincided with
transcription factor binding sites; and 57% (n=37) were located
within DNAse | hypersensitive clusters. Overall, 48% (n=31)
of DMPs were mapped to all three regulatory elements
(Supplementary Table 4).

DMPs were annotated to a total of 60 genes, which were
examined further to identify underlying genetic networks and
enriched biological pathways. On the basis of GeneMANIA
analysis, 57 of the 60 genes were connected to form a compact
cluster network (Figure 1c). Our gene ontology analysis also
indicated that these genes are involved in a range of biological
processes, including regulation of JAK-STAT cascade, vasoconstric-
tion,  cytokine-mediated  signaling and  axonogenesis
(2.30E—-18 < P < 3.37E-03; Figure 1d). Of note, enriched cellular
components included axon part, post-synaptic membrane and
dendritic spine (2.94E — 04 < P < 3.09E - 03; for the full list of GO
terms, see Supplementary Table 5).

Results from the Comb-p analysis indicated that there were no
significant differentially methylated regions after genome-wide
correction.

Follow-forward at age 7

None of the DMPs identified at birth continued to prospectively
associate with adolescent substance use by age 7, after multiple
correction (g>0.05; Supplementary Table 6). Two DMPs showed
nominal associations (cg02404636 [SFIT]: Std B=0.21, P=0.001;
€g20056324 [NEURODA4]: Std B=0.13, P=0.05), both following the
same direction of effects observed at birth. Given this lack of
temporal stability, we proceeded to test, for each DMP, how much
DNAm levels at birth correlated with those at age 7 (that is,
autocorrelation). We found that only 12 DMPs (18%) showed an
autocorrelation significant at P < 0.05, 11 of which were in the
positive direction (across all DMPS: 1.1 = 0.67; I'min = — 0.13; Fapsolute
average = 0.07). Interestingly, however, the pattern of intercorrela-
tions across DMPs at age 7 resembled that observed at birth
(Supplementary Figure 2). In other words, whereas DMPs typically
did not correlate with themselves over time, the way in which they
correlated with each-other within time points was very similar,
potentially reflecting a similar underlying co-methylation network.

Genetic and environmental influences

The 65 DMPs identified at birth were carried forward to explore
associations with potential genetic and environmental influences.
On the basis of the mQTLdb search, we found that five of the
DMPs were associated with known mQTLs (N¢s=4; Nians=1),
suggesting that DNAm levels across these sites are likely to be
under considerable genetic control (Supplementary Table 4). Of
note, temporal stability of these DMPs was stronger (faverage = 0.25)
than the average across all DMPs noted above, consistent with
what has previously been observed at the genome-wide level.’
With regards to environmental influences, we found that three
prenatal exposures significantly correlated with DNAm (measured
as a cumulative risk score comprising of all DMPs)—maternal
tobacco smoking, maternal risks and contextual risks (Table 2). To
test for indirect effects, we estimated a path analytic model
(Figure 2a) that included these three prenatal exposures, the
cumulative DNAm risk score, and the adolescent substance use
outcome. Maternal smoking was the only prenatal factor to
uniquely associate with higher cumulative DNAm risk (over and
above other exposures), which in turn associated with higher
substance use in adolescence (Figure 2b). Analysis of this pathway
indicated a significant indirect effect of maternal smoking on
substance use, via cumulative DNAm risk (unstandardized b=0.19,
s.e.=0.07, P=0.01, bootstrapped 95% Cl=0.05-0.37). To minimize
the possibility that associations with prenatal exposures may
simply reflect genetic confounding, we reran analyses using a
cumulative DNAm risk score that did not include any of the DMPs
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Table 1. DNA methylation loci at birth that prospectively associate with substance use in adolescence (n=65, g < 0.05)
Probe Gene Chr Genomic location Position Std B P-value FDR (g-value)
cg04941418 PACSINT 6 5'UTR 34493129 -0.34 1.10E-08 0.005
cg11074746 MEMO1 2 TSS1500 32236343 0.31 1.77E-07 0.02
cg00335219 — 16 — 86012305 0.27 1.79E-07 0.02
cg07395930 CLSTNT 1 Body 9791419 -0.31 3.84E-07 0.02
cg01589998 FOXN4 12 Body 109729478 0.31 3.92E-07 0.02
cg13978601 PPP2R4 9 Body 131905041 -0.31 4.10E-07 0.02
€g23361356 SLC9A3 5 Body 508834 -0.31 4.17E-07 0.02
cg27020216 SGEF 3 Body 153840347 0.29 8.35E-07 0.03
cg14632140 LMO3 12 5'UTR 16758112 0.29 9.82E-07 0.03
cg08080985 C90rf95 9 Body 77703079 0.30 1.07E-06 0.03
€g20685020 ATP6V0B 1 5'UTR 44440676 0.30 1.34E-06 0.03
€g25229198 ADAMTS6 5 Body 64660684 -0.30 1.38E-06 0.03
cg05968179 USP6NL 10 Body 11505706 -0.29 1.42E-06 0.03
cg01009697 NTRK2 9 TSS1500 87283470 0.29 1.56E - 06 0.03
cg19026817 — 20 — 56782259 -0.29 1.64E - 06 0.03
cg05116255 ANKRD30A 10 TSS1500 37413782 -0.29 1.85E—-06 0.03
cg04799664 NLRC5 16 5'UTR 57053850 -0.29 1.85E-06 0.03
cg07746699 IFT140 16 TSS200 1662305 0.30 1.87E-06 0.03
cg02290110 SHC2 19 TSS1500 461808 0.29 1.91E-06 0.03
cg06951646 TRRAP 7 Body 98586548 -0.29 1.92E-06 0.03
cg02052845 HGS 17 Body 79658835 -0.29 2.00E-06 0.03
cg05033322 ATM 11 TSS1500 108093245 0.29 2.08E-06 0.03
cg02404636 SFI1 22 TSS1500 31891804 0.29 2.10E-06 0.03
cg05620865 AP3B1 5 Body 77588408 -0.29 2.22E-06 0.03
cg14291256 MMP21 10 Body 127461065 -0.29 2.25E-06 0.03
cg12593849 STX12 1 3'UTR 28150710 -0.29 2.31E-06 0.03
cg10844884 ZNF22 10 Body 45498904 -0.29 2.32E-06 0.03
€g27242945 CAV1 7 1st exon 116165134 0.28 2.35E-06 0.03
cg13562386 TAGLN2 1 TSS1500 159895724 0.29 2.36E-06 0.03
925767859 PKD1L1 7 Body 47859324 -0.29 2.37E-06 0.03
cg12202228 FNDC3B 3 Body 171871829 -0.29 2.52E-06 0.03
cg20056324 NEUROD4 12 TSS200 55413610 0.29 2.60E - 06 0.03
€g27122536 FOXF1 16 1st exon 86544658 0.29 2.67E-06 0.03
cg14661886 PRRT3 3 TSS200 9994197 0.29 2.75E-06 0.03
€g27596068 SERPINH1 11 TSS1500 75272301 -0.28 2.77E-06 0.03
cg23088142 — 3 — 137531265 0.29 2.99E-06 0.03
cg08625693 DLG3 X Body 69674126 -0.26 3.09E-06 0.03
cg05463325 RAB4A 1 TSS1500 229406534 0.29 3.23E-06 0.04
cg01894322 PPPIRIB 17 Body 37789575 -0.28 3.38E-06 0.04
cg13138952 RPH3AL 17 Body 236013 -0.29 3.39E-06 0.04
cg01338630 RASD2 22 3'UTR 35948166 -0.27 3.77E-06 0.04
€g22409100 SLC8AT 2 TSS1500 40658918 0.14 4.01E-06 0.04
cg24954684 CLIP1 12 TSS1500 122907641 0.27 4.08E-06 0.04
€g22467567 IGFBP5 2 5'UTR 217559885 0.28 4.39E-06 0.04
cg25179876 NRP1 10 Body 33483109 -0.19 4.47E-06 0.04
cg04388666 CCDC85C 14 TSS1500 100072073 0.28 4.61E-06 0.04
cg13244417 TMTC4 13 TSS200 101327186 0.28 4.75E-06 0.04
cg16661000 HAPLN3 15 5'UTR 89437710 0.27 4.81E-06 0.04
cg00276455 — 6 — 54904638 -0.28 4.82E—-06 0.04
cg08261702 LOC728743 7 Body 150103112 0.25 5.02E-06 0.04
cg05168344 LZTR1 22 Body 21340160 -0.28 5.07E-06 0.04
cg02725795 FAM175A 4 Body 84405871 0.27 5.18E-06 0.04
cg20336014 MGEA5 10 TSS200 103578255 0.27 5.49E - 06 0.04
cg26047334 TNST 2 5'UTR 218785909 0.25 5.56E—-06 0.04
cg18769584 LZTFL1 3 3'UTR 45866619 -0.27 5.64E - 06 0.04
cg13083436 Luzr2 11 TSS200 24518414 0.28 5.74E - 06 0.04
€g23530543 HEPN1 11 TSS1500 124788414 -0.28 5.98E - 06 0.04
cg02957771 FBXO31 16 Body 87380349 -0.27 6.13E-06 0.04
cg17396676 EPS15L1 19 TSS1500 16583990 -0.28 6.56E — 06 0.04
cg09278687 TBX6 16 Body 30100430 -0.28 6.91E-06 0.04
€g20643362 C190rf12 19 1st exon 30206369 0.27 7.37E-06 0.04
cg10395806 CTIN 11 Body 70280601 -0.28 7.43E-06 0.04
cg00877150 BCOR X 5'UTR 39972039 -0.27 7.52E-06 0.04
€g20319698 LRRFIP1 2 Body 238644099 -0.27 7.73E-06 0.04
cg14712611 ANK2 4 5'UTR 113739379 0.27 7.74E-06 0.04
Abbreviation: FDR, false discovery rate.
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Figure 1. Differentially methylated loci at birth associated with adolescent substance use. (a) Manhattan plot showing genome-wide
associations between DNA methylation at birth and later substance use (age 14-18). The dotted line represents the false discovery rate (FDR)-
correction threshold (i.e., loci above the line are considered significant). (b) Prospective association between the top differentially methylated
locus at birth and later substance use. The X axis shows substance use factor scores, whereas the Y axis represents beta methylation values,
adjusted for sex and cell-type proportions. (c) Gene network analysis using GeneMANIA. Black circles represent genes (n =60) associated with
the 65 probes found to be related to adolescent substance use in the genome-wide analysis at birth. Gray circles represent additional genes
predicted by GeneMANIA based on genetic and physical interactions, shared protein domains as well as protein co-expression data. The gene
network analysis demonstrates that, rather than being isolated, these genes clustered into a complex interconnected network. (d)
Significantly enriched biological processes (blue), molecular functions (purple) and cellular components (red), based on gene ontology (GO)
analysis of 60 genes annotated to probes that predict substance use at birth (n=65; g < 0.05). Circles represent GO terms that survive FDR
correction and contain at least one gene. The X axis represents —log(10) P-values. The opacity of the circles indicates level of significance
(darker = more significant). The size of the circles indicates the percentage of genes in our results for a given pathway compared with the total
number of genes in the same pathway (i.e., larger size =larger %).

Table 2. Associations between prenatal exposures, cumulative DNAm risk at birth and adolescent substance use

Prenatal exposures

Maternal smoking ~ Maternal alcohol use Maternal risks Family risks Contextual risks Life events

r P r P r P r P r P r P
Cumulative DNAm risk (birth)  0.20 1.21E-03 -0.07 0.28 0.15 0.01 -0.03 059 0.16 0.01 -0.07 0.26
Substance use (age 14-18) 0.32 1.58E-07 -0.03 0.60 032 1.44E-07 0.09 0.15 0.28 4.33E-06 0.03 0.61

Abbreviation: DNAm, DNA methylation.

associated with mQTLs (that is, five probes removed). This score
was highly correlated with the original score (r=0.99;
P=3.88E—252) and findings remained consistent.

Follow-up analyses

PACSINT: relevance to the brain. PACSINT gos041418 €merged as
the top DMP at birth to associate with adolescent substance use.
Given that our DNAm data was extracted from peripheral blood,
we used the Genotype-Tissue Expression project portal (GTEx;
http://www.gtexportal.org/home/; *' and the EMBL-EBI Expression
Atlas (https://www.ebi.ac.uk/gxa/home/);42 to assess PACSINT
expression across tissues. PACSINT was found to be most highly
expressed in brain tissue, including regions implicated in drug-
seeking behavior and addiction risk, such as the prefrontal cortex,
nucleus accumbens, amygdala and hippocampus (Supplementary
Figure 3). We then used the BrainCloud tool (http://braincloud.

jhmi.edu/plots/),*® to trace the developmental course of PACSINT
expression across the lifespan (fetal-age 80), based on post-
mortem prefrontal cortex tissue from 269 healthy subjects. The
resulting plot showed that the most dramatic change in
expression levels occurs during the neonatal period, bridging
lower expression levels during fetal development with a higher,
stable trajectory of expression from around 3 months of age
onward (Supplementary Figure 3).

Age of substance-use onset. Overall, 65 DMPs at birth prospec-
tively associated with substance-use severity in adolescence. As a
sensitivity analysis, we additionally tested whether these DMPs
also associated with age of onset among substance users. On the
basis of three items that combined self-report data across age 16
and 18, we found that, within youth who endorsed using
substances, higher cumulative DNAm risk correlated with lower
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Indirect effect of prenatal smoking on adolescent substance use via neonatal DNA methylation. (a) Path analytic indirect effects

model. Dotted arrowed lines indicate non-significant paths. Single arrowed lines indicate standardized path coefficients that survived
bootstrap-corrected confidence intervals (i.e., significant path). Red arrows show significant indirect path. Population effect sizes are
interpreted using the standardized estimates (Std. B) following Cohen’s guidelines: an effect of 0.10 is small effect, an effect of 0.24 is a
medium effect, and an effect of 0.37 is a large effect. (b) Graphical representation of the indirect effect, where prenatal smoking associates
with higher cumulative DNA methylation risk at birth (top panel), which in turn associates with higher substance use in adolescence (bottom

panel). DNAm, DNA methylation.

reported age when first ‘smoked whole cigarette’ (r=-0.19,
P=0.03, Nendorse=129), ‘tried cannabis’ (r=-0.36, P=3.40E-04,
Nendorse = 93) and ‘had whole alcoholic drink’ (r=-0.23, P=0.001,
Nendorse = 195), respectively. For data on frequencies, correlations
and details about how the items were created, see Supplementary
Table 7.

Indirect effects for specific substances. We found a significant
indirect effect of prenatal tobacco smoking on adolescent
substance use, via cumulative DNAm risk. Here, we wanted to
clarify whether this indirect effect was observed across all
substances or only specific ones (for example, adolescent tobacco
use). To this end, we reran the path analysis with the three
first-order factors of tobacco, cannabis and alcohol use
(Supplementary Figure 4). Indirect effects were significant across
all three substance types (tobacco: b=0.31, s.e.=0.12, P=0.01,
bootstrapped 95% Cl=0.09-0.59; cannabis: b=0.71, s.e.=0.29, P=
0.01, bootstrapped 95% Cl=0.22-1.34; alcohol: b=0.14, s.e.=0.06,
P =0.03, bootstrapped 95% Cl=0.04-0.30). Because the first-order
factor of cannabis use contained one outlier (that is, >3 s.d. from
the mean), the analysis was also rerun with winsorized data for
this score and results remained consistent.

Biological validation of prenatal maternal smoking. Finally, to
ensure the validity of our measure of prenatal smoking—which
was derived from a single yes (n=48) /no (n=213) item reported
by mothers—we ran an epigenome-wide analysis with prenatal
smoking predicting neonatal DNAm. As expected, the top
differentially methylated locus was ¢g05575921 (AHRR;
P=6.96e —16; g=2.88E - 10, see Supplementary Table 8), a well-
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established, sensitive and specific biomarker of tobacco
exposure.'®"#* Of note, there was no overlap between the
maternal smoking and adolescent substance-use DMPs.

DISCUSSION

The aim of this study was to characterize DNA methylation
patterns prospectively associated with substance-use risk, using
longitudinal data spanning gestation to adolescence. We highlight
here three key findings: (i) epigenetic variation across 65 loci at
birth associated with higher tobacco, cannabis and alcohol use in
adolescence, as well as an earlier age of substance-use onset; (ii)
these effects were specific to the neonatal period and not
observed in mid-childhood; and (iii) several of the identified loci
were associated with known genetic mQTLs, and all, collectively,
mediated the effect of prenatal tobacco smoking on adolescent
substance use. These findings lend novel insights into epigenetic
predictors of substance use, highlight birth as a potentially
sensitive window of biological vulnerability and provide prelimin-
ary support for the role of DNAm as an indirect pathway linking
prenatal exposures to adolescent behavioral outcomes.

Epigenetic variation at birth associates with substance use in
adolescence

Although the impact of substance use on DNAm has been
repeatedly documented,’? less is known about the extent to
which DNAm may confer risk for substance use, as existing studies
have typically focused on adults already exposed to substances.
To our knowledge, this is the first study to address this gap by



examining DNA collected before substance-use initiation. Further-
more, the use of a latent factor score comprising of tobacco,
cannabis and alcohol use enabled us to examine the potential role
of methylomic variation in broader substance-use liability. On the
basis of genome-wide analyses, we found that epigenetic
variation across 65 loci at birth associated with higher substance
use 14-18 years later, as well as an earlier age of onset among
substance users. These loci were annotated to genes that,
together, formed a compact underlying genetic network and
were enriched for a range of biological pathways, including neural
processes (for example, axonogenesis and synaptic transport) and
cellular components (for example, axon, dendritic spine and post-
synaptic membrane). The most differentially methylated locus was
annotated to PACSINT, a developmentally-modulated gene that
has an important role glutamate neurotransmission, axonal
growth, dendritic branching and sjynaptic plasticity” and that is
highly expressed in brain tissue,>”*® including regions implicated
in drug-seeking behavior and addiction risk (for example, nucleus
accumbens, frontal cortex, amygdala and hippocampus).*® Other
key annotated genes also implicated in early brain development
included NEUROD4, involved in neuronal differentiation, and
NTRK2, a Trk receptor for multiple neurodevelopmental genes,
including brain-derived neurotrophic factor, neutrophin 4 and
nerve growth factor.*

The neonatal period as a potential window of biological
vulnerability

The inclusion of repeated DNAmM measures enabled us to test the
stability of epigenetic effects during childhood. We found that
none of the loci identified at birth continued to predict substance
use by age 7 (after multiple correction). This specificity of effects
around birth is consistent with previous studies from our group
examining longitudinal associations between DNAm and devel-
opmental outcomes.?*4*® Findings are also consistent with a
recent study based on the ALSPAC sample that reported low
genome-wide continuity in DNAm patterns over time,” especially
when comparing birth to other time points. A number of factors
may drive the temporal differences observed. First, findings may
reflect tissue-specific DNAm patterns, as data was extracted from
two different blood sources (cord blood at birth vs whole blood at
age 7). Second, differences may reflect the specific timing of
environmental influences, whereby methylation patterns at birth
may be a more reliable proxy for intra-uterine risk exposures and
associated perturbations in fetal development,*® compared with
age 7. Third, the neonatal period may represent a particularly
sensitive window of biological vulnerability to future substance
use. For example, epigenetic patterns at birth may trigger
downstream developmental consequences resulting in enduring
individual differences (for example, in neural networks underlying
drug-seeking behavior and addiction)'*'> without the epigenetic
signature being maintained over time.'® Given that we still know
little about the role of tissue differences, environmental influences
and developmental processes on DNAm,*° the above explanations
are inevitably speculative and will necessitate further
investigation.

Genetic and environmental influences on DNAm patterns
associated with substance use

The identification of neonatal DNAm patterns associated with
adolescent substance use raises questions about what kind of
factors may drive this methylomic variation in the first place.
Evidence suggests that DNAm patterns®'®—like substance use
liability>*—reflect the influence of both genetic and environ-
mental factors. On the basis of data from mQTLdb,’ we found that
5 of our 65 DMPs were associated with known mQTLs, suggesting
that they may be considerably influenced by genetic structure.
Although these associations point to potentially large genetic
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effects on a relatively small number of our DMPs, it is important to
note that the heritability of DNAm patterns is greater than what
can currently be explained using known mQTLs.? As such, genetic
effects on our other DMPs cannot be ruled out, especially the
presence of polygenic effects. With regards to environmental
influences, we found that three prenatal factors were associated
with cumulative DNAm risk at birth (comprising all DMPs):
maternal tobacco smoking (measured in the first trimester),
maternal risks (for example, psychopathology and criminal
behavior) and contextual risks (for example, poor housing and
financial problems). Associations remained consistent after
removing any mQTL-related DMP from our DNAm risk score to
minimize genetic confounding. These findings support the
presence of both genetic and environmental influences on
substance use related DNAm patterns. It is important to note,
however, that because associations were based on correlational
analyses, they should be interpreted with caution and considered
more as well-grounded hypotheses for further examination in
larger longitudinal studies.

DNAm as an indirect pathway linking prenatal smoking to
adolescent substance use

We found that one prenatal exposure—maternal tobacco smoking
—uniquely associated with substance use over and above other
exposures, and that this association was partially mediated by
cumulative DNAm risk at birth. Importantly, this indirect effect was
observed across all three substance types (not just tobacco use,
but also cannabis and alcohol use)—pointing to a potential link
between prenatal tobacco exposure and broader substance-use
liability. To our knowledge, this is the first example in humans of
an indirect effect of prenatal exposures on substance-related
outcomes via DNAm, consistent with recent work reported in
animals.”®> However, due to the correlational nature of the
analyses, such evidence should be considered preliminary and
in need of rigorous assessment using advanced causal inference
methods (for example, two-step Mendelian randomization).”'*? In
particular, further work will be needed to trace the specific
biological pathways through which this indirect effect may be
expressed. Experimental studies have shown that prenatal
nicotine exposure causes neuromorphological changes (for
example, dendritic branching, axonal growth and spine density)
in brain circuits underlying motivation, learning and reward-
processing, which in turn confer latent vulnerability for substance
use and other externalizing problems (for example, hyperactivity
and aggression).'>**** As such, it will be of interest to test
whether the observed effect of prenatal nicotine exposure on
substance use may be expressed via epigenetically-modulated
changes in neural development, organization and structure. This
will also require a more comprehensive investigation of DNAm in
the context of other epigenetic processes, which have also been
implicated in substance use and addiction (for example, histone
modifications and microRNAs, see Nestler' for a review).

Limitations and future directions

Findings should be interpreted in light of a number of limitations.
First, the current study was based on a modestly sized population-
based sample of youth. At present, ALSPAC is the only cohort, to
our knowledge, that is prospective enough to enable the
examination of neonatal DNAm patterns associated with adoles-
cent substance use. Consequently, we were unable to replicate
our results in an independent sample. In future, it will be
important to test the robustness of findings using other
epidemiological cohorts, as well as establishing the relevance of
the identified markers in the development of more severe clinical
phenotypes, including substance abuse and dependence. Second,
findings were based on DNAm from peripheral samples; as such,
more research will be needed to establish the relevance of the
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identified markers to brain function. Future studies incorporating
imaging data will be important for establishing whether these

markers associate with structural

or functional alterations in

addiction-relevant neural pathways (for example, related to

reward-processing,

impulse control, learning and memory),

contributing to a more mechanistic understanding of the
identified associations. Third, functional characterization of the
DMPs was performed using ENCODE data, as we did not have
access to RNA. Integration of transcriptomic data will mark an
important step toward establishing the downstream effects of the
observed DNAm changes on gene expression. Fourth, despite the
fact that we identified prospective associations between DNAmM
and substance use (that is, DNAm collected before initiation of
substance use), it is not possible to establish causality. Finally, the
study focused exclusively on DNA methylation, and other
epigenetic processes (for example, histone modifications and
microRNAs) are likely to be important in mediating the onset and
consequences of addiction.'

CONCLUSIONS

The present findings lend novel insights into early epigenetic
correlates of substance use, pinpointing specific markers for future
interrogation. Evidence of temporally-specific effects points to
birth as a potentially sensitive window of biological vulnerability,
which may particularly benefit from intervention efforts. Findings
also highlight prenatal smoking as an important prevention target,
and contribute to a better understanding of the biological
mechanisms through which tobacco exposure during pregnancy
may increase risk for future substance use.
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