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Abstract

Prdm genes encode transcription factors with a subtype of SET domain known as the PRDF1-RIZ (PR) homology domain
and a variable number of zinc finger motifs. These genes are involved in a wide variety of functions during animal
development. As most Prdm genes have been studied in vertebrates, especially in mice, little is known about the evolution
of this gene family. We searched for Prdm genes in the fully sequenced genomes of 93 different species representative of
all the main metazoan lineages. A total of 976 Prdm genes were identified in these species. The number of Prdm genes per
species ranges from 2 to 19. To better understand how the Prdm gene family has evolved in metazoans, we performed
phylogenetic analyses using this large set of identified Prdm genes. These analyses allowed us to define 14 different
subfamilies of Prdm genes and to establish, through ancestral state reconstruction, that 11 of them are ancestral to
bilaterian animals. Three additional subfamilies were acquired during early vertebrate evolution (Prdm5, Prdm11, and
Prdm17). Several gene duplication and gene loss events were identified and mapped onto the metazoan phylogenetic
tree. By studying a large number of nonmetazoan genomes, we confirmed that Prdm genes likely constitute a metazoan-
specific gene family. Our data also suggest that Prdm genes originated before the diversification of animals through the
association of a single ancestral SET domain encoding gene with one or several zinc finger encoding genes.
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Introduction
Transcriptional regulation is an important aspect of the de-
velopment of multicellular organisms, such as animals.
Decades of molecular and genetic studies, mainly conducted
in bilaterian model organisms, have shown that many key
developmental regulators encode transcription factors (TFs)
sporting a huge diversity of DNA binding domains. Genomic
data from various species belonging to both bilaterians and
nonbilaterians, as well as to nonmetazoan opisthokonts, were
used to highlight the origin or diversification of several fam-
ilies of animal developmental TFs. These events happened
before the divergence of the contemporary animal lineages
either in holozoans (a group that includes metazoans and
their closest unicellular relatives, such as choanoflagellates
and filastereans) or during early metazoan evolution (e.g.,
Jager et al. 2006; Ryan et al. 2007; Simionato et al. 2007;
Degnan et al. 2009; Sebé-Pedr�os et al. 2011, 2013; de
Mendoza et al. 2013). However, we are still lacking a precise
understanding of the evolution of many developmental TF
families, such as the Prdm family.

Prdm genes encode proteins that are characterized by the
presence of a PR domain originally found to be shared by
PRDI-BF1 (positive regulatory domain I-binding factor 1, now
known as Prdm1 or Blimp1) and RIZ1 (retinoblastoma pro-
tein-interacting zinc finger gene 1, now known as Prdm2)
(Fog et al. 2012; Hohenauer and Moore 2012; Di Zazzo
et al. 2013). The PR domain corresponds to a subtype of a
SET domain, which is found in many histone lysine

methyltransferases (HMTs) (Huang 2002; Wu et al. 2010).
However, only some Prdm proteins have been shown to dis-
play intrinsic HMT activity. Other Prdm proteins are known
to mediate indirect epigenetic regulations through binding of
histone-modifying enzymes including HMTs, histone deace-
tylases, and histone acetyltransferases (reviewed in Fog et al.
2012; Hohenauer and Moore 2012). With the exception of
vertebrate Prdm11 proteins, all characterized Prdm proteins
associate a PR domain to a variable number of Zn fingers
(Fumasoni et al. 2007; Kinameri et al. 2008; Sun et al. 2008). Zn
fingers motifs mediate sequence-specific DNA binding and
protein–protein interactions (Hohenauer and Moore 2012).

The Prdm gene family comprises 17 members in primates
(Human, common chimpanzee, and macaque), 16 in rodents
(mouse and rat), chick, and Xenopus, whereas only two to
three genes have been reported in Caenorhabditis and
Drosophila, respectively (Fumasoni et al. 2007; Sun et al.
2008). Prdm genes display a wide variety of expression pat-
terns and functions during development (reviewed in Fog
et al. 2012; Hohenauer and Moore 2012; Di Zazzo et al.
2013). This includes germ cell development, neurogenesis, vas-
cular development, brown fat differentiation, hematopoiesis,
and insect tracheal development. For example, Prdm1 and
Prdm14 are key regulators of primordial germ cell specifica-
tion in mouse (Ohinata et al. 2005; Kurimoto et al. 2008;
Yamaji et al. 2008; Grabole et al. 2013; Magn�usd�ottir et al.
2013) and are also important for naive pluripotency
in embryonic stem cells (Chu et al. 2011; Grabole et al.
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2013; Yamaji et al. 2013). Several Prdm genes are expressed in
restricted population of cells of the developing nervous
system in vertebrates (e.g., Kinameri et al. 2008) and one of
them, Prdm13, has recently been shown to promote
GABAergic over glutamatergic neuronal fate in the dorsal
spinal cord (Chang et al. 2013; Hanotel et al. 2014). Many
Prdm genes are also deregulated in human diseases, in par-
ticular hematological and solid tumor cancers where some
Prdm genes act as tumor suppressors and others as onco-
genes (reviewed in Fog et al. 2012). Several Prdm proteins
have also been shown to be modulators of developmental
signaling pathways, such as transforming growth factor-�,
Notch, and estrogen signaling (reviewed in Hohenauer and
Moore 2012; Di Zazzo et al. 2013). One Prdm gene, Prdm9, is a
key determinant of sequence-specific recombination hot-
spots during meiosis in Human and mouse (Baudat et al.
2010; Parvanov et al. 2010) and also behaves as a speciation
gene in mouse (Mihola et al. 2009).

Despite the importance of this gene family, only a single
study addressed the evolution of Prdm genes in metazoans so
far (Fumasoni et al. 2007). The authors proposed that the
Prdm genes were specific to animals, that an important ex-
pansion of the family occurred in vertebrates, and that one
additional duplication took place in primates. However,
these conclusions were based on a rather small species sam-
pling (14 among which 8 vertebrates, 2 Drosophila and 2
Caenorhabditis species) and without any lophotrochozoans
nor nonbilaterian representatives. Here, we identified Prdm
genes in 93 animal species whose genome has been fully se-
quenced and which are distributed in all the main metazoan
lineages. Our phylogenetic analyses allowed the subdivision of
the Prdm family into 14 subfamilies and showed that at least
11 of these subfamilies were already present in the last
common ancestor (LCA) of bilaterians. Our data indicate
that an important diversification of the Prdm family occurred
during early metazoan evolution. We were also able to map
on the metazoan phylogenetic tree the many gene duplica-
tion/loss events in the different Prdm subfamilies that oc-
curred during the metazoan evolutionary history. Based on
the examination of a large number of nonmetazoan genomes,
we confirmed that the Prdm family is likely specific to meta-
zoans. Finally, we discuss the possibility that different Prdm
subfamilies may have originated independently, through the
fusion of a single ancestral SET domain encoding gene with
several different ancestral Zn finger encoding genes.

Results and Discussion

Genome-Wide Search of Prdm Genes and Definition
of Metazoan Prdm Subfamilies

We identified a total number of 976 Prdm genes in the fully
sequenced genome of 93 metazoan species that represent
a significant sampling of metazoan diversity (table 1).
Supplementary tables S1–S6, Supplementary Material
online, list all the identified genes (with accession numbers,
presence of characteristic domains, sources of the genomic
data, and taxonomic information about the studied species).
The sequences of all the corresponding proteins can be found

in supplementary data set S1, Supplementary Material online.
The number of Prdm genes found per species ranges from 2 in
the sponge Oscarella carmela, the placozoan Trichoplax
adhaerens, and the nematode Caenorhabditis elegans to 19
in teleosteans (table 1). These important differences in Prdm
genes number are also found within each main animal line-
age. In ecdysozoans, for example, two to seven genes can be
found in nematodes, whereas in arthropods the number of
Prdm genes ranges from 4 in some insects (such as Apis
mellifera) to 13 in the centipede Strigamia maritima
(table 1). In deuterostomes, whereas 18 Prdm genes are
found in the echinoderm Strongylocentrotus purpuratus, the
sea squirt Ciona savignyi possess only five Prdm members.
Finally, the interval in vertebrates ranges from 9 to 19 Prdm
genes (table 1). Prdm genes encode proteins that are charac-
terized by the presence of a SET domain—this domain is
thought to mediate the enzymatic activity of a large
number of histone lysine methyltransferases (HMTs). An in-
trinsic HMT activity has been described for vertebrate Prdm2,
Prdm3, Prdm6, Prdm7/9, Prdm8, Prdm13, and Prdm16 pro-
teins (Hohenauer and Moore 2012; Pinheiro et al. 2012;
Hanotel et al. 2014). We analyzed a selection of SET domains
from a broad range of species and identified several residues
that are well conserved in Prdm proteins and could therefore
be important for their functions (supplementary text S1 and
figs. S1 and S2, Supplementary Material online).

We next performed phylogenetic analyses to assess
whether we can define Prdm subfamilies and study their
distribution in metazoans. Given the very large number of
sequences studied here, we performed these analyses using
four different partial sets of sequences: All nonvertebrate se-
quences + all nonmammalian vertebrates + five mammals
(data set 1), all vertebrates + a sampling of nonvertebrate
species (data set 2), a sampling of bilaterians only (data set
3), and a sampling of vertebrates and nonvertebrates (data set
4). The use of these reduced data sets allowed performing
time-demanding phylogenetic methods, such as bootstrap
resamplings and Bayesian analysis, and testing the possible
effects of different samplings of species on the robustness of
the main nodes of the phylogenetic trees. Supplementary
figure S3, Supplementary Material online, shows a represen-
tative unrooted tree produced using data set 4. Fourteen
different subfamilies of Prdm genes were defined using
these phylogenetic analyses. These correspond to monophy-
letic groups that include sequences from several different
species and that are consistently observed in the trees pro-
duced by different methods and using the four different data
sets. Supplementary table S7, Supplementary Material online,
compiles the statistical supports for the nodes defining these
groups in the different performed analyses (maximum-
likelihood [ML] and Bayesian analysis on the four different
data sets). We also tested whether different sequence sam-
plings affected the presence of the different subfamilies in the
phylogenetic tree. For this purpose, we conducted several
phylogenetic analyses with all Prdm sequences minus the se-
quences of a given subfamily (e.g., all sequences minus Prdm1
sequences) or minus all orphan genes. The results of these
analyses are summarized in supplementary table S7,
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Table 1. Prdm Genes in Metazoans.

Evolutionary Lineages Phyla Species Full Name Species Abbreviated Name Number of Prdm Genes

Nonbilaterians Porifera Sycon ciliatum Scil 8
Amphimedon queenslandica Aque 4
Oscarella carmela Ocar 2

Ctenophora Mnemiopsis leidyi Mley 3
Pleurobrachia bachei Pbac 3

Cnidaria Nematostella vectensis Nvec 13
Acropora digitifera Adig 11
Hydra magnipapillata Hmag 7

Placozoa Trichoplax adhaerens Tadh 2

Lophotrochozoans Mollusca Crassostrea gigas Cgig 13
Lottia gigantea Lgig 12
Pinctada fucata Pfuc 8

Annelida Platynereis dumerilii Pdum 11
Capitella teleta Ctel 11
Helobdella robusta Hrob 8

Rotifera Adineta vaga Avag 9
Platyhelmintha Schmidtea mediterranea Smed 8

Schistosoma mansoni Sman 6

Ecdysozoans Nematoda Caenorhabditis elegans Cele 2
Pristionchus pacificus Ppac 7
Brugia malayi Bmal 3
Loa loa Lloa 4
Wuchereria bancrofti Wban 4
Trichinella spiralis Tspi 3

Arthropoda Metaseiulus occidentalis Mocc 4
Ixodes scapularis Isca 5
Tetranychus urticae Turt 5
Strigamia maritima Smar 13
Daphnia pulex Dpul 4
Pediculus humanus corporis Phum 6
Acyrthosiphon pisum Apis 5
Rhodnius prolixus Rpro 4
Aedes aegypti Aaeg 4
Culex quinquefasciatus Cqui 5
Drosophila melanogaster Dmel 5
Ceratitis capitata Ccap 4
Atta cephalotes Acep 7
Megachile rotundata Mrot 4
Bombus terrestris Bter 6
Bombus impatiens Bimp 6
Apis mellifera Amel 4
Nasonia vitripennis Nvit 5
Tribolium castaneum Tcas 6
Bombyx mori Bmor 5
Danaus plexippus Dple 6
Heliconius melpomene Hmel 4

Deuterostomes Hemichordata Saccoglossus kowalevskii Skow 10
Echinodermata Strongylocentrotus purpuratus Spur 18
Chordata Branchiostoma floridae Bflo 11

Ciona intestinalis Cint 7
Ciona savignyi Csav 5
Petromyzon marinus Pmar 9
Callorhinchus milii Cmil 17
Danio rerio Drer 19
Takifugu rubripes Trub 19
Gasterosteus aculeatus Gacu 13
Xiphophorus maculatus Xmac 17
Oreochromis niloticus Onil 19
Oryzias latipes Olat 19
Latimeria chalumnae Lcha 16
Xenopus tropicalis Xtro 15
Anolis carolinensis Acar 12
Pelodiscus sinensis Psin 16
Gallus gallus Ggal 13

(continued)
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Supplementary Material online, and show that deleting se-
quences of any given subfamily do not affect the presence and
composition of the other monophyletic groups in the phylo-
genetic tree.

We named each subfamily using the name of the Human
gene(s) included in the group (supplementary fig. S3 and
table S1, Supplementary Material online). In most cases,
a subfamily contains a single Human member. However,
three subfamilies (Prdm3/16, Prdm10/15, and Prdm7/9)
contain two Human genes (supplementary table S1,
Supplementary Material online) and we obtained evidence
that these pairs of genes result from vertebrate- or primate-
specific duplications (see below). We were able to confidently
assign 931 of the 976 analyzed genes in the 14 defined sub-
groups. The 45 remaining genes were categorized as “or-
phans” and were mainly genes that were associated with
alternative subfamilies depending on the data set and/or
the phylogenetic method used. We also found phylogenetic
relationships between some subfamilies, such as between
Prdm6 and Prdm12, or between Prdm8 and Prdm13 (supple-
mentary fig. S3, Supplementary Material online), but these
groupings were usually not found in all analyses and/or had
poor statistical supports (supplementary table S7,
Supplementary Material online).

Supplementary table S1, Supplementary Material online,
and figure 1 show the distribution of the Prdm genes in the
defined subfamilies or in the orphans group in all studied
species and the main phylogenetic groups, respectively.
Together, these species provide a significant coverage of the
main animal evolutionary lineages, including both bilaterians

(lophotrochozoans, ecdysozoans, and deuterostomes) and
nonbilaterians (poriferans, cnidarians, ctenophores, and pla-
cozoans). For most studied phyla, including nonbilaterians,
we were able to study Prdm genes from more than one spe-
cies, an important achievement as hypotheses drawn for lin-
eages represented by single species can be misleading. Our
choice of species from various animal lineages allows the
study of the evolution of Prdm genes to be studied at
the whole metazoan clade scale. In addition, the inclusion
in the study of a rich sampling of chordates, arthropods,
and to a lesser extent nematodes also allows Prdm gene evo-
lution to be studied in a detailed manner within these three
phyla. Although we have tried to be as exhaustive as possible,
we must caution that we may have missed some of the Prdm
genes in some species, as these genes may lie in unsequenced
or badly assembled regions. However, we are confident that
our data are sufficient to obtain a qualitatively accurate as-
sessment of the evolution of Prdm genes in metazoans.

Ancestral Repertoires of Prdm Subfamilies and
Subfamily Losses in Metazoans

We constructed a character matrix (supplementary table S8,
Supplementary Material online) that compiles presence/ab-
sence states for each Prdm subfamilies in all studied species,
coded by 0 or 1 (0 = absence; 1 = presence, regardless of the
number of members). This matrix was used to infer the set of
Prdm subfamilies that were likely present at the different
nodes of the metazoan tree. For this purpose, we used both
Dollo-like parsimony and ML approaches as implemented in

Table 1. Continued

Evolutionary Lineages Phyla Species Full Name Species Abbreviated Name Number of Prdm Genes

Taeniopygia guttata Tgut 14
Ornithorhynchus anatinus Oana 14
Sarcophilus harrisii Shar 13
Monodelphis domestica Mdom 15
Macropus eugenii Meug 14
Ailuropoda melanoleuca Amela 16
Canis lupus familiaris Clup 15
Mustela putorius furo Mput 16
Felis catus Fcat 16
Myotis lucifugus Mluc 15
Sus scrofa Sscr 16
Bos taurus Btau 16
Equus caballus Ecab 15
Loxodonta africana Lafr 16
Cavia porcellus Cpor 14
Ictidomys tridecemlineatus Itri 15
Rattus norvegicus Rnor 15
Mus musculus Mmus 16
Oryctolagus cuniculus Ocun 16
Microcebus murinus Mmur 15
Otolemur garnettii Ogar 15
Tarsius syrichta Tsyr 12
Callithrix jacchus Cjac 17
Macaca mulatta Mmul 15
Nomascus leucogenys Nleu 16
Gorilla gorilla Ggor 16
Pongo abelii Pabe 15
Pan troglodytes Ptro 17
Homo sapiens Hsap 17

NOTE.—shaded areas discriminate evolutionary lineages
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the ancestral state reconstruction tools of Mesquite (see
Materials and Methods for details). Ancestral state recon-
struction crucially depends on the established phylogeny of
the studied species. Although the relationships between the
main bilaterian phyla and lineages are quite consensual
(Telford and Copley 2011) (fig. 2), those between bilaterians,
cnidarians, placozoans, ctenophores, and poriferans are still
very controversial. We considered four recently proposed
phylogenies of these groups (Dunn et al. 2008; Philippe
et al. 2009; Schierwater et al. 2009; Pick et al. 2010; Ryan
et al. 2013) (fig. 3) for ancestral state reconstructions.
Results of these analyses obtained by parsimony and ML
were very consistent and are shown in supplementary
tables S9–S12, Supplementary Material online. By comparing
ancestral sets of Prdm subfamilies at different nodes, we were
also able to infer the timing of the appearance of the Prdm
subfamilies and to position subfamily losses that have oc-
curred in some lineages. The most important inferences are
reported on the taxon and species phylogenetic tree shown in
figures 2–5 and discussed below.

We inferred that the LCA of metazoans possessed at least
the Prdm6 subfamily and may have possessed up to five
additional ones depending on the considered phylogeny of
bilaterians and nonbilaterians phyla (Prdm7/9, Prdm8,
Prdm12, Prdm13, and Prdm14; figs. 2 and 3). In the four
possible phylogenies, the LCA of cnidarians and bilaterians,
wherever this ancestor is positioned, would have possessed at
least six Prdm genes (fig. 3). We can infer that cnidarians have
lost the Prdm8 subfamily and the placozoan T. adhaerens has
lost two to four ancestral Prdm genes (fig. 3). Finally, we
conclude that 11 Prdm subfamilies are ancestral to bilaterians

(fig. 2). One of these subfamilies, Prdm6 is only found in
nonbilaterians and deuterostomes, suggesting that this sub-
family was lost during early protostome evolution. Two of the
ancestral subfamilies, Prdm2 and Prdm14, are found in deu-
terostomes and lophotrochozoans, but not in ecdysozoans,
suggesting a loss in the ecdysozoan lineage. Although all the
bilaterian ancestral subfamilies were also present in the LCA
of deuterostomes, one of them, Prdm8, was likely lost in the
ambulacrarian lineage (echinoderms and hemichordates; fig.
2). Considering lophotrochozoans, our data suggest that
many gene losses have occurred in the platyhelminthe line-
age, as Prdm2, Prdm4, Prdm7/9, Prdm10/15, and Prdm12
subfamily members are not found in the two sampled platy-
helminthe species (figs. 1 and 2). However, we noticed that
there are two to three orphan genes in Schmidtea mediterra-
nea and Schistosoma mansoni respectively, and that these
orphans may represent very divergent members of some of
the aforementioned Prdm subfamilies. Similar conclusions
hold true for the rotifer Adineta vaga which possesses a re-
duced number of Prdm genes, two of which are orphan genes
(supplementary table S1, Supplementary Material online).
Our data are also suggestive of a loss of the Prdm12 gene
in clitellate annelids (Helobdella robusta and Capitella teleta;
fig. 2), although we cannot exclude that the single orphan
gene found in both species may be a divergent Prdm12 gene.

In ecdysozoans, from an ancestral situation in which eight
Prdm subfamilies were present, three of them (Prdm4,
Prdm10/15, and Prdm12) have been lost before the appear-
ance of the LCA of the six studied nematode species (fig. 4).
The Prdm13 gene was retained in Trichinella spiralis, but lost
in the five remaining species. Additional losses of Prdm3/16
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and Prdm8 occurred in the rhabditina (belonging to the so
called clade V which includes C. elegans and Pristionchus
pacificus) and spirurina (clade III which includes Loa loa,
Brugia malayi and Wuchereria bancrofti) lineages, respectively.
The Prdm7/9 and Prdm8 genes were lost in Trichi. spiralis. In
arthropods, one species, the centipede S. maritima, possesses
much more Prdm genes that all the other studied species
(table 1). As compared with other arthropods, this large
number of Prdm genes in the centipede is due to several
reasons: The retention of the ecdysozoan ancestral repertoire

of Prdm genes partly lost in the other arthropod lineages,
gene duplications in two of the subfamilies and the presence
of two orphan genes. The phylogenetic relationships between
the main arthropod lineages (pancrustaceans, chelicerates,
and myriapods) are still a matter of controversy (Telford
et al. 2008; Budd and Telford 2009): One hypothesis is that
pancrustaceans and myriapods form a monophyletic group
(Mandibulata), whereas another hypothesis suggests a mono-
phyletic group composed of myriapods and chelicerates
(Myriochelata). This controversy does not hinder our
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interpretations as in light of both hypotheses, Prdm4 and
Prdm7/9 genes appear to have been independently lost in
chelicerates and pancrustaceans, the latter having also lost
the Prdm12 subfamily (fig. 4). Finally, the Prdm10/15 subfam-
ily was lost in the Mecopterida clade that includes lepidop-
terans and dipterans (fig. 4).

In chordates, the putative ancestral set of bilaterian
Prdm genes is composed of the same 11 subfamilies present
in the LCA of bilaterians (fig. 5). The cephalochordate
Branchiostoma floridae (Amphioxus) has retained most of
these genes (only Prdm8 is missing; supplementary table S1,
Supplementary Material online), whereas the urochordates Ci.
intestinalis and Ci. savignyi (ascidians) have lost six of these
ancestral subfamilies (fig. 5). In vertebrates, only few gene
losses are observed, such as the loss of Prdm11 in most tele-
osteans, Prdm17 in marsupial mammals and birds, and
Prdm7/9 in birds (fig. 5). In contrast, the Prdm gene family
has significantly expanded in vertebrates. Three subfamilies
(Prdm5, Prdm11, and Prdm17) arose during the course of
vertebrate evolution. We determined that Prdm5 was ances-
tral to vertebrates, Prdm17 to gnathostomes, and Prdm11 to
euteleostomes (fig. 5). However, how these new subfamilies
have been produced remains unclear. An obvious possibility
is that the genes belonging to these subfamilies have been
produced through gene duplications of ancestral genes
followed by extensive divergence of one of the paralogs
(supplementary fig. S4A, Supplementary Material online).

Under this hypothesis, one could expect the vertebrate-spe-
cific subfamilies to group with some other subfamilies in the
phylogenetic trees (supplementary fig. S4B, Supplementary
Material online). As mentioned earlier, we failed to detect
robust groupings of subfamilies, even if we found an associ-
ation of Prdm5 and Prdm14 subfamilies in one phylogenetic
analysis (supplementary table S7, Supplementary Material
online). Consequently, this deprives us of conclusive argu-
ments in favor of the duplication hypothesis.

Our data therefore imply that an important part of the
diversification of Prdm genes occurred before the emergence
of present-day bilaterian main lineages. This is at odds with
the previous study of Prdm gene evolution, which suggested
that only very few Prdm genes were ancestral to bilaterians
(Fumasoni et al. 2007). The discrepancy between our study
and the previous one is due to our inclusion of a large number
of nonvertebrate sequences in contrast to the few species
included in the previous study. Moreover, this earlier work
taxonomic sampling included species such as Drosophila
melanogaster and C. elegans which were characterized here
to have lost several ancestral Prdm genes. Our findings are
however not surprising, as similar important early metazoan
diversifications have been observed for many genes families
involved in development including TFs and cell signaling mol-
ecules (e.g., Kusserow et al. 2005; Jager et al. 2006; Ryan et al.
2006; Simionato et al. 2007; Larroux et al. 2008; Degnan et al.
2009). The determination of the exact timing of the early
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diversification of Prdm genes is rendered difficult, in part by
the still relative paucity of sequenced nonbilaterian genomes,
and even more importantly by the uncertainties about the
phylogenetic relationships of nonbilaterian phyla between
each other and bilaterians. Our data nevertheless suggest a
two-step increase in the number of Prdm genes: A first one at
the origin of metazoans and a second one in the cnidarian/
bilaterian lineage. A similar timing has been proposed for
other developmental gene families, such as basic Helix–
Loop–Helix TFs (Simionato et al. 2007), and may hold true
for many other TF families (Degnan et al. 2009).

Interestingly, though the groupings between some subfa-
milies (Prdm6+Prdm12, Prdm8+Prdm13, Prdm2+Prdm3/16,
Prdm4+10/15, and Prdm5+Prdm14) were not statistically sig-
nificant, it still matched a trend of paralog retention/loss in
that if a lineage lost a subfamily, it retained its putative paralog
subfamily most of the time. This holds true for loss of Prdm 6
and retention of Prdm12 in Protostomes (at least ancestrally),
loss of Prdm 8 and retention of Prdm13 in cnidarians and
ambulacrarians, loss of Prdm2 and retention of Prdm3/16 in

ecdysozoans, planarians and bivalves. This trend is less clear
for the grouping Prdm4 and 10/15. Because Prdm5 is never
lost after its emergence in vertebrates, that trend is not tested
in that case, Prdm14 being also always present.

Gene Duplications within Prdm Subfamilies

Ten of the 14 identified Prdm subfamilies possess more than
one member in at least one of the studied species (supple-
mentary table S1, Supplementary Material online), suggesting
the occurrence of gene duplications during their evolutionary
history. Consequently, no genes duplications were detected in
the four remaining Prdm subfamilies, Prdm4, Prdm5, Prdm11,
and Prdm17. We studied the evolution of all the Prdm sub-
families by performing phylogenetic analyses (supplementary
text S2, Supplementary Material online; figs. 6 and 7, supple-
mentary figs. S5–S16, Supplementary Material online). Many
duplications seem to have occurred in lineages that lead to
single studied species. Nevertheless, seven subfamilies (Prdm
1, Prdm2, Prdm3/16, Prdm7/9, Prdm 8, Prdm10/15, and
Prdm12) are likely to display more ancient duplications as
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several broadly related species possess more than one gene for
these subfamilies.

We mapped these duplications onto the species phyloge-
netic tree using both ancestral state reconstruction and phy-
logenetic analyses. We constructed a character matrix
(supplementary table S13, Supplementary Material online)
that compiles the number of members for the seven afore-
mentioned Prdm subfamilies in all studied species, with a
multistate code (0 = no member, 1 = one member, 2 = two
members, 3 = three or more members). This matrix was used

to infer the number of members of each of these subfamilies
at the different nodes of the metazoan tree. For this purpose,
we used both unbiased parsimony and ML approaches as
implemented in the ancestral state reconstruction tools of
Mesquite (see Materials and Methods for details). Results of
these analyses obtained by parsimony and ML were very con-
sistent and are shown in supplementary tables S14 and S15,
Supplementary Material online. By comparing the number of
members at different nodes, we can both infer the position of
gene duplications and identify potential secondary gene
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trees constructed with several different species samplings (sampling 1: only deuterostome genes; sampling 2: only chordate genes; sampling 3: only
vertebrate genes).
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losses. These inferences were confronted to the phylogenetic
analysis of the corresponding subfamilies. The robustness of
the obtained phylogenetic trees was further assessed using
species resampling and approximately unbiased (AU) topol-
ogy tests (see Materials and Methods).

Prdm1 Subfamily
Ancestral state reconstruction indicates one duplication
having occurred in the Gnathostomata lineage, followed by
the secondary loss of one of the duplicates in the Tetrapoda
lineage and a second duplication in the Euteleostei lineage
(fig. 5). Both hypotheses are at first sight supported by the
phylogenetic tree of this subfamily (supplementary fig. S5,
Supplementary Material online). However, the nodes defining
the crucial monophyletic groups for the hypothesis of the
duplication in the Gnathostomata lineage (the Prdm1b
group in particular) are not statistically supported and are
not robust over species resampling (supplementary fig. S5,
Supplementary Material online). In addition, alternative tree
topologies that are not consistent with this hypothesis
cannot be rejected by the AU test (supplementary table
S16, Supplementary Material online). In contrast, the node
that defines a monophyletic group made of euteleost Prdm1a
and Prdm1c genes (and therefore supporting a duplication in
the Euteleostei lineage) is statistically supported and found
with different species samplings (supplementary fig. S5,
Supplementary Material online). Alternative topologies not
consistent with this hypothesis are rejected by the AU test
(supplementary table S16, Supplementary Material online).
The phylogenetic analyses provide therefore strong support
for the hypothesis of a duplication having occurred in
the Euteleostei lineage, but are not helpful for positioning
the other duplication which may have occurred in the
Gnathostomata lineage.

Prdm2 Subfamily
Ancestral state reconstruction indicates that one duplication
has occurred in the lineage leading to the Teleostei ancestor.
This hypothesis is supported by the phylogenetic analysis
as we observed a monophyletic group that includes the
teleost Prdm2a and Prdm2b genes (supplementary fig. S6,
Supplementary Material online). This monophyletic group
is also found in trees constructed with different species sam-
plings and alternative topologies in which the teleost Prdm
genes do not form a monophyletic group are rejected by the
AU test (supplementary table S16, Supplementary Material
online). The phylogenetic analyses therefore provide support
for the hypothesis of a duplication in the Teleostei lineage.

Prdm3/16 Subfamily
Ancestral state reconstruction indicates that two duplications
have occurred, one in vertebrates in the lineage leading to the
Gnathostomata ancestor (this duplication gave rise to the
Prdm3 and Prdm16 genes; fig. 5) and another in arthropods
in the lineage leading to the Hexapoda ancestor (Prdm3/16a
and Prdm3/16b; fig. 4). The phylogenetic analysis supports the
positioning of a duplication in the Gnathostomata lineage, as
the gnathostome sequences form a monophyletic group and
the single gene from the nongnathostome vertebrate

Petromyzon (Pmar_prdm3_16) is found as outgroup of this
monophyletic group (fig. 6). This topology is robust over
species resampling and alternative topologies that are not
consistent with the hypothesis of a duplication in the
Gnathostomata lineage are rejected by the AU test (supple-
mentary table S16, Supplementary Material online). The phy-
logenetic tree also shows that the single gene found in the
crustacean Daphnia (Dpul_Prdm3_16) clusters with hexapod
Prdm3_16a genes, whereas the single genes that are found in
other nonhexapod species are found as outgroup of the
Prdm3a + Prdm3b clade (fig. 6). This suggests that the dupli-
cation may have occurred before the divergence between
crustaceans and hexapods within the Pancrustacea lineage
and that Daphnia has lost the Prdm3b gene. In addition,
the two paralogs that are found in some hymenopterans
clustered together within the Prdm3_16a group, suggesting
an additional duplication and the loss of the Prdm3_16b
genes in hymenopterans (fig. 6). These groups are found
in trees constructed with other species samplings (fig. 6)
and alternative groupings are rejected by the AU test
(supplementary table S16, Supplementary Material online).
Phylogenetic analyses therefore support the occurrence of
three duplications, in the Gnathostomata, Pancrustacea,
and Hymenoptera lineages (figs. 4 and 5).

Prdm7/9 Subfamily
Ancestral state reconstruction indicates that in Primates, a
duplication may have occurred in the lineage that leads to
the ancestor of either Haplorrhini or Simiiformes (fig. 5). The
phylogenetic tree does not provide support for this hypoth-
esis as the Primate Prdm7 and Prdm9 genes do not form
separate monophyletic groups (supplementary fig. S10,
Supplementary Material online). More generally, this gene
tree shows many incongruences with the species tree, which
could be due to the rapid and unusual evolution of these
genes in mammals, and in primates in particular (Oliver
et al. 2009; Thomas et al. 2009). Strikingly different topolo-
gies were found when the trees were constructed with dif-
ferent species samplings, but we never found separate
Prdm7 and Prdm9 monophyletic groups. We tested alterna-
tive topologies in which the Prdm7 and Prdm9 genes form
separate monophyletic groups and found that these alter-
native topologies are nevertheless not rejected by the AU
test (supplementary table S16, Supplementary Material
online). We therefore conclude that the phylogenetic anal-
ysis of the Prdm7/9 subfamily is unreliable for positioning
the duplication that has occurred.

Prdm8 Subfamily
Ancestral state reconstruction indicates that duplications
may have independently occurred in the lineages leading to
Danio, Oryzias, and Callorhinchus. The phylogenetic analysis
in contrast suggests a duplication having occurred in the lin-
eage leading to the Gnathostomata ancestor, followed by
gene losses in the Sarcopterygia lineage and in the lineages
leading to several teleosts (fig. 5 and supplementary fig. S11,
Supplementary Material online). Indeed, one of the paralogs
found in Danio, Oryzias, and Callorhinchus (Prdm8b se-
quences) forms a monophyletic group (that also includes
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the single gene found in Gasterosteus) that is found as
the sister group to a large monophyletic group that includes
all sarcopterygian Prdm8 sequences, the single genes found
in some teleosts and the second Danio, Oryzias, and
Callorhinchus paralogs (Prdm8a genes). This topology is
robust over species resamplings and alternative topologies
are rejected by the AU test (supplementary fig. S11 and
table S16, Supplementary Material online). Phylogenetic anal-
yses therefore suggest a duplication in Gnathostomata.

Prdm10/15 Subfamily
Ancestral state reconstruction indicates that a duplication,
which gave rise to Prdm10 and Prdm15 genes, has occurred
in the lineage leading to the Gnathostomata ancestor.
Accordingly, Prdm10 and Prdm15 genes form well-supported
monophyletic groups in the phylogenetic tree of this subfam-
ily (fig. 7). However, the single gene found in the nongnathos-
tome Petromyzon is found within the Prdm15 group.
Gnathostome Prdm15 proteins display a few stretches of
amino acids that are not found in gnathostome Prdm10 or
nonvertebrate Prdm10/15 proteins (not shown). The single
Petromyzon protein displays these stretches, further support-
ing that it is encoded by a bona fide Prdm15 gene. This there-
fore suggests that the duplication has occurred at the root of
the vertebrates (fig. 5) and that the Prdm10 paralog has been
lost in Petromyzon (or is located in a nonsequenced part of
the genome). A same tree topology than in trees constructed
with different species samplings (fig. 7) and alternative topol-
ogies in which the Petromyzon gene clusters with the Prdm10
genes are rejected by the AU test (supplementary table S16,
Supplementary Material online). We therefore conclude that
the duplication has likely occurred in the lineage leading to
the Vertebrata ancestor.

Prdm12 Subfamily
Ancestral state reconstruction indicates that either one du-
plication occurred in the Euteleostei lineage or one duplica-
tion occurred in the Ovalentariae lineage and possibly a
second in the Percomorpharia lineage (fig. 5). Phylogenetic
analyses strongly support the hypothesis of a duplication in
the Euteleostei lineage. Indeed, we can observe in the phylo-
genetic tree two monophyletic groups that each includes one
of the two paralogs (Prdm12a and Prdm12b) found in
Euteleostei species, with the single gene from Danio as out-
group, this topology is robust over species resamplings and
alternative topologies not consistent with the duplication in
Euteleostei are rejected by the AU test (supplementary fig.
S13 and table S16, Supplementary Material online). We there-
fore conclude that the duplication has likely occurred in the
lineage leading to the Euteleostei ancestor.

In conclusion, the combination of ancestral state recon-
struction and phylogenetic analyses allowed us to determine
the timing of several duplications that occurred during the
evolution of some Prdm subfamilies. Two duplications oc-
curred during early evolution of vertebrates, giving rise to
Prdm10 and Prdm15 genes, on one hand, and Prdm3 and
Prdm16 genes, on the other hand. Together with the origina-
tion of the three vertebrate-specific subfamilies (Prdm5,
Prdm11, and Prdm17), these duplications contribute to

the overall expansion of the Prdm gene repertoire in verte-
brates. Two other duplications likely took place in the
Gnathostomata lineage (Prdm1 and Prdm8 subfamilies),
but only one paralog was retained in most vertebrates.
Several duplications (Prdm1, Prdm2, and Prdm12 subfamilies)
occurred in teleosts and one duplication took place in pri-
mates, giving rise to Prdm7 and Prdm9 genes.

Evolutionary Origin of Prdm Genes

So far we only identified and studied Prdm genes in meta-
zoans. To determine whether Prdm genes can be found in
nonmetazoan species, we made Basic Local Alignment
Search Tool (BLAST) searches against the fully sequenced
genomes of 40 species belonging to several eukaryotic line-
ages, with a special focus on opisthokonts, the group to
which metazoans belong (supplementary table S17,
Supplementary Material online). We used the same meth-
odology than for the searches in metazoans: The 17 Human
Prdm genes were used as queries, the best BLAST hits for
each species were used to make BLAST against Human
Refseq genes, and only those that allow retrieving Prdm
genes as best BLAST hits were retained. One or a few such
sequences were found in 25 of the 40 studied species (sup-
plementary table S17 and data set S2, Supplementary
Material online). In most cases, sequence similarity to
Prdm genes was low. None of the encoded proteins contains
both a SET domain and Zn fingers, whereas many of the
proteins lack these domains entirely. Three of the proteins
contain a SET domain (supplementary table S17,
Supplementary Material online)—however, in a phyloge-
netic analysis with a larger sample of SET domain proteins
(see below), these sequences do not cluster with Prdm pro-
teins (not shown). We determine that it is unlikely that bona
fide Prdm genes exist outside metazoans and therefore con-
clude that the Prdm genes constitute a metazoan-specific
family of TFs.

Seventeen of the retrieved nonmetazoan genes encode
proteins with one or more Zn fingers and we further studied
these genes. We noticed that, when making BLAST searches
of Prdm genes in animals, we also often retrieved non-Prdm
Zn finger genes with some similarity to Prdm genes. We
therefore made phylogenetic analyses using a multiple align-
ment of the Zn fingers of a few Prdm proteins (from two
deuterostomes [Human and Saccoglossus], one ecdysozoan
Strigamia, and one lophotrochozoan Platynereis), a large set
of Human Zn finger proteins retrieved in the BLAST searches
(supplementary data set S3, Supplementary Material online),
and the 17 aforementioned nonmetazoan proteins. We
found a monophyletic group that includes all Prdm proteins
(except Human Prdm9), the 17 nonmetazoan Zn finger pro-
teins, and 11 Human Zn finger proteins (supplementary fig.
S17, Supplementary Material online). Within this group, the
Prdm proteins do not form a monophyletic group and are
intermixed with Human and nonmetazoan Zn finger pro-
teins, suggesting that some Prdm Zn fingers are more closely
related to some non-Prdm Zn fingers than to other Prdm Zn
Fingers. One simple interpretation of this phylogenetic tree
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would therefore be that the Prdm Zn fingers originated from
several different ancestral genes. The phylogenetic tree has
however to be taken with much caution, as 1) many nodes of
the tree have low to very low statistical support, 2) different
groupings were found in a few instances in the ML and
Bayesian inference (BI) trees, and 3) some phylogenetic rela-
tionships between Prdm proteins were at odds with our other
analyses (e.g., Human Prdm3 and Prdm16 do not cluster to-
gether nor with Platynereis Prdm3/16). Therefore, we cannot
exclude that some of the phylogenetic relationships displayed
in this tree could be artefactual.

We next wondered whether a similar situation can be ob-
served for the modified SET domain of Prdm proteins: The PR
domain. We started from the SET domain proteins identified
by Sun et al. (2008) in Human, Drosophila, Saccharomyces,
and Schizosaccharomyces and retrieved their putative

orthologs by BLAST searches in 14 additional species belong-
ing to Unikonts (supplementary table S18 and data set S4,
Supplementary Material online). Orthology relationships
were assessed by reciprocal best BLAST hit and only the pu-
tative orthologs that encode a protein with a recognizable
SET domain were retained for further analysis. We then per-
formed phylogenetic analyses using a multiple alignment of
the SET domain of the 419 retrieved proteins. We found a
well-supported monophyletic and exclusive group of Prdm
proteins, in addition to several other monophyletic groups
(fig. 8). This phylogenetic tree is largely consistent with pre-
vious analyses of SET domain proteins made with different
species samples (Sun et al. 2008; Zhang and Ma 2012;
Lhuillier-Akakpo et al. 2014). Therefore, this phylogenetic
analysis strongly suggests that the PR-modified SET domain
of all Prdm proteins originates from a single ancestral SET
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Group VII

PRDM
Group X

PRDM-
associated

SETD6
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FIG. 8. Phylogenetic analysis of SET domain proteins. An unrooted ML tree is shown. Statistical supports for the different highlighted groups are as in
figure 6. The different groups were named according to Sun et al. (2008) and Zhang and Ma (2012).
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domain. Interestingly, we found that SET domain sequences
from three nonmetazoan opisthokont species (Capsaspora
owczarzaki, Sphaeroforma arctica, and Spizellomyces puncta-
tus) cluster with the Prdm proteins in the phylogenetic tree
(fig. 8). The corresponding genes, which are found in three
different opisthokont lineages (filastereans, ichthyosporeans,
and fungi), might therefore derive from the same ancestral
gene that gave rise to Prdm genes. However, we have to note
that the three aforementioned nonmetazoan proteins, when
blasted against animal genomes, do not allow retrieving Prdm
proteins among the best BLAST hits. In addition, the PR
domain of Prdm proteins is considered to be a very divergent
type of SET domain (Sun et al. 2008; Wu et al. 2010).
Therefore, we cannot rule out that the association of these
three proteins with Prdm ones in the phylogenetic tree may
be an artefactual grouping of very divergent SET domains. In
addition, if the three nonmetazoan genes do indeed derive
from the ancestral gene from which the Prdm genes origi-
nated, we have to assume that this ancestral gene has been
lost in most studied fungi and choanoflagellates. This type of
differential loss/retention of ancestral genes in different line-
ages is not uncommon, as it has been observed for other TF
families and RNA-binding proteins (Kerner et al. 2011; de
Mendoza et al. 2013), and has been proposed as one of the
reasons behind the existence of taxonomically restricted
genes (Forêt et al. 2010).

Taken together, our data suggest that Prdm genes ap-
peared alongside early animal evolution through a genome
rearrangement event that put together Zn fingers and SET
domain-encoding regions from different genes (supplemen-
tary fig. S18, Supplementary Material online). Although the
SET domain-encoding region of all Prdm genes would have
originated from a single ancestral gene, Zn fingers would have
derived from several different ancestral genes (supplementary
fig. S18A, Supplementary Material online). We cannot how-
ever rule out an alternative scenario in which after gene du-
plications from a single ancestral Prdm gene, genome
rearrangement events, such as exon shuffling or gene conver-
sion, may have brought different or additional Zn finger-
encoding regions to separate Prdm genes (supplementary
fig. S18B, Supplementary Material online).

Conclusions
Our data suggest that Prdm genes originated at the dawn of
the animal kingdom through the association of a single an-
cestral SET domain-encoding gene with one or several Zn
finger-encoding genes. It has been often proposed that ap-
pearance of “new” genes may be correlated to the appearance
of new traits (Khalturin et al. 2009; Forêt et al. 2010) and it is
therefore tempting to speculate that Prdm genes may have
had an importance for the acquisition of some metazoan
traits. Given the involvement of many Prdm genes in devel-
opment in present-day bilaterians, one obvious possibility
would be implications in the evolution of developmental
processes associated with the acquisition of multicellularity
in metazoans. Our study also sheds new light on the evolution
of Prdm genes in animals. We defined four probable phases of
Prdm gene family diversification: 1) one phase prior to

metazoan cladogenesis and which gave rise to two to three
different Prdm genes (this phase may in fact correspond to
the appearance of Prdm genes as discussed above); 2) a
second phase before cnidarians and bilaterians diverged and
which gave rise to six different genes; 3) a third phase before
the divergence of the main bilaterian lineages, giving rise to 11
different genes; and 4) a fourth phase during early vertebrate
evolution leading to the presence of three additional Prdm
subfamilies in most vertebrates lineages. Finally, by identifying
Prdm genes in many species in which these genes were so far
unknown, including species amenable to gene expression and
functional studies, our study also paves the way toward a
better understanding of the evolution of the expression pat-
terns and functions of the Prdm genes in animals.

Materials and Methods

Whole-Genome Analysis

For all the studied species, genomic sequences (genome
contigs and/or gene predictions and/or peptide predictions)
were retrieved from the various sources listed in supplemen-
tary tables S2–S6, Supplementary Material online. BLAST
searches (Altschul et al. 1997) were performed using the
KoriBlast and ngKLAST softwares (Korilog Company,
Muzillac, France) on local databases constructed from the
downloaded genomic sequences. We first used the 17 de-
scribed Prdm genes from Homo sapiens (Fumasoni et al.
2007) as queries for these BLAST searches. To enhance the
comprehensiveness of our searches, we next used the Prdm
sequences of some additional species as queries in BLAST
searches against the genome of species from the same tax-
onomic group. We used the Prdm sequences from the well-
assembled and annotated Drosophila and Tribolium ge-
nomes as queries to search the Prdm genes in the other
arthropod genomes; the Danio Prdm sequences were used
to screen the genomes of the other teleosts; and the Prdm
genes from Amphimedon and Nematostella were used for
searches in the nonbilaterian and nonmetazoan genomes.
Sequences were recognized as Prdm genes if they 1) show
high sequence similarity to Human Prdm genes, 2) display
the characteristic Prdm domains (PR domain and/or Zn
fingers), and 3) allow retrieving Prdm genes as best BLAST
hits when used as query to make BLAST against the Human
genome. Conserved domains were identified using NCBI
batch CD-search (Marchler-Bauer et al. 2015). To test the
extensiveness of our approach, we chose a sample of 11
species considered as having the best-characterized species
genomes and allowing a fair coverage of the diversity of the
studied animals. The species are H. sapiens, B. floridae, Stro.
purpuratus, D. melanogaster, S. maritima, C. elegans, Cap.
teleta, Lottia gigantea, Nematostella vectensis, Pleurobrachia
bachei, and Amphimedon queenslandica. We took the iden-
tified Prdm sequences from each of these 11 species and
used them as queries for BLAST searches against the
genome of the remaining ten species (110 different
BLASTs in total). To identify Prdm genes in these BLAST
searches, we retrieved all hits and 1) blasted them against
the genome from which came the query, 2) blasted them

693

Evolution of Prdm Genes . doi:10.1093/molbev/msv260 MBE

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv260/-/DC1


against the Human genome, and 3) identified the putative
domains present in the sequences (with CD-search). We
considered a given sequence to be part of a Prdm gene if
this sequence matches a known Prdm genes in a reciprocal
BLAST and/or a Human genome BLAST, and if it contains a
least one Zinc finger or a PR domain. Strikingly, these BLAST
searches only recovered already identified Prdm sequences
and did not allow the identification of any additional ones,
providing good evidence that our identification scheme was
working very well. We also used all the “orphan” genes for
BLAST searches against the genomes of the aforementioned
11 species. The rationale behind these searches was the idea
that orphan genes may correspond to very divergent genes,
not found in vertebrates or Drosophila, which would none-
theless allow BLAST retrieval of other divergent genes that
cannot be found using Human Prdms. Eleven performed
BLAST searches were performed and analyzed as mentioned
above, but did not allow the identification of any additional
Prdm genes in the 11 studied species, further supporting the
comprehensiveness of our approach.

Multiple Alignments, Phylogenetic Analyses, and
Topology Tests

Multiple alignments were obtained using MUSCLE 3.5 (Edgar
2004), available on the Bioinformatics toolkit platform of the
Max Planck Institute for Developmental Biology at T€ubingen
(http://toolkit.tuebingen.mpg.de, last accessed November 25,
2015). The resulting multiple alignments were manually im-
proved. Multiple alignments were handled using SEAVIEW 4
(Gouy et al. 2010). BoxShade (http://www.ch.embnet.org/
software/BOX_form.html, last accessed November 25, 2015)
was used to generate printouts of some multiple alignments.
WebLogo (http://weblogo.berkeley.edu, last accessed
November 25, 2015) was used to generate sequence logos.
ML analyses were performed using the online available
PHYML software (http://www.atgc-montpellier.fr/phyml/,
last accessed November 25, 2015; Guindon and Gascuel
2003; Guindon et al. 2005). Le and Gascuel amino acid sub-
stitution model was used (Le and Gascuel 2008). Equilibrium
frequencies, proportion of invariable sites, and gamma shape
parameter were estimated from the data. We used four sub-
stitution rate categories. The starting trees were generated
using BIONJ and the NNI type of tree improvement was used.
Statistical supports for the different internal branches were
determined by approximate likelihood-ratio test (aLRT), a
Bayesian-like transformation of aLRT (aBayes) and in some
cases bootstrap resampling (Anisimova and Gascuel 2006;
Anisimova et al. 2011). BI was performed using MRBAYES
3.2 (Huelsenbeck and Ronquist 2001; Ronquist et al. 2012)
with JTT + G model (Jones et al. 1992). Two independent
Markov chains were sampled every 200 generations. The
trees obtained in the two runs were mixed and the first
25% of the trees were discarded as “burn-in.” Convergence
was assessed by looking at the average standard deviation
split frequencies and potential scale reduction factor values,
following the software’s instructions. Phylogenetic trees were
visualized and rooted using FigTree 1.4 developed by Andrew

Rambaud (http://tree.bio.ed.ac.uk/software/figtree/, last
accessed November 25, 2015). We also performed AU test
(Shimodaira 2002). We generated trees with different topol-
ogies by rearranging the branching order of the ML trees
produced by PhyML. Likelihoods of these test trees and
best PhyML tree were compared by the AU test using
CONSEL (Shimodaira and Hasegawa 2001). A given topology
was considered as rejected if the P value of this tree was
inferior to 0.05.

Ancestral State Reconstructions

Character matrices were constructed with Mesquite (Version
3.03; http://mesquiteproject.org, last accessed November 25,
2015). Species trees were manually constructed (using the
nexus format) and then visualized with Mesquite. Ancestral
state reconstructions were performed using the “Trace all
characters” tool of Mesquite, using both parsimony and ML
methods. To reconstruct the ancestral states of the presence/
absence of the different Prdm subfamilies with the ML
method, the asymmetrical two-parameter Markov-k Model
(AsymmMk) was used. We tested a range of forward
and backward rates—the ancestral rates shown in the article
were consistently obtained when the forward rate is less than
0.05 and the backward rate greater than 0.3. Values shown in
supplementary tables S11 and S12, Supplementary Material
online, were obtained with a forward rate of 0.00340136 and a
backward rate of 0.59183673. Likelihoods were calculated as-
suming that root state frequencies are same as equilibrium.
To reconstruct the ancestral states of the number of mem-
bers of the Prdm1, 2, 3/16, 7/9, 8, 10/15, and 12 subfamilies
with the ML method, the symmetrical one-parameter
Markov-k Model (Mk1) was used.

Supplementary Material
Supplementary texts S1 and S2, tables S1–S18, figures S1–S18,
and data sets S1–S4 are available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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Sebé-Pedr�os A, Ariza-Cosano A, Weirauch MT, Leininger S, Yang A,
Torruella G, Adamski M, Adamska M, Hughes TR, Gomez-
Skarmeta JL, et al. 2013. Early evolution of the T-box transcription
factor family. Proc Natl Acad Sci U S A. 110:16050–16055.
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